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Abstract Human T-lymphotropic virus type I (HTLV-I) is a retrovirus infecting CD4+ T-cells in human

body with no specific treatment or vaccine. It has been linked to the adult T cell leukemia/lymphoma

(ATL). A better understanding of virus dynamics is therefore essential. In this study, we propose a

mathematical model describing both HTLV-I infection and leukemia of CD4+ T-cells incorporating the

HTLV-I-specific CD8+ T-cells cytotoxic T-lymphocyte (CTL) response. We exhibit two biologically fea-

sible equilibria which are infection-free and chronic infection equilibrium points. The basic reproduction

number is calculated and used as a threshold clarifying equilibria stability. Optimal control problem is

also investigated in this model by adding two controls namely preventive control and treatment effort

control for leukemia cells. Our numerical results demonstrate that preventive control has shown to play

an essential role in reducing the HTLV-I infection of CD4+ T-cells, and the treatment control can reduce

leukemia cells significantly. However, a combination of both controls gives the best result in reducing

HTLV-I infection and leukemia.
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1. Introduction

Human T-lymphotropic virus type I (HTLV-I) is an exogeneous retrovirus that attacks
the CD4+ T-cells in human body and can lead to two main types of diseases which
are adult T cell leukemia/lymphoma (ATL) and HTLV-I associated myelopathy/tropical
spastic paraparesis (HAM/TSP) [1, 2] HTLV-I is primarily transmitted via cell-to-cell in
human through bodily fluid including sexual contact, breastfeeding, needle sharing [3].
However, there is still no clear understanding about the development of HTLV-I related
diseases, no vaccine, and no satisfactory treatment.
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Worldwide, approximately 5-10 million people are infected with HTLV-I currently [4].
Most of HTLV-I infected people are living asymptomatic, whereas about 2-5% of HTLV-I
carriers develop to ATL and about 0.25-3% develop to HAM/TSP [1, 4, 5]. However, at
a present time physicians have no way of predicting which infected patients will develop
ATL, where the treatment required for ATL depends on what type of ATL patients have
and how it affects individually.

A mathematical model has been shown to be a good tool to further our understanding
on infectious diseases either in population level or within-host level. Here in this study,
we emphasize on within-host model in particular for HTLV-I infection. To the authors
knowledge, Stilianakis and Seydel [6] were the first two researchers who developed an
HTLV-I infection model describing the dynamics of T-cells. They divided the cells into
four compartments consisting of uninfected CD4+ T-cells, latently infected CD4+ T-
cells, actively infected CD4+ T-cells and leukemia cells. A few years later, Wang and
colleagues [7] analyzed Stilianakis and Seydel model further in more details. In 2004, Ka-
tri and Ruan [8] modified the work of Stilianakis and Seydel further by considering a delay
as a waiting period between the time when virus contacts the cell and the time when the
viral RNA is incorporated into the DNA of the host genome. A year later, Gmez-Acevedo
and Li [9] proposed a two-compartment model i.e., uninfected and infected T-cells which
incorporates both horizontal and vertical (through mitotic proliferation) transmission. In
2006, Song and Li [10] modified Stilianakis and Seydels model by introducing the bilinear
incidence term into the model. Five years later, Cai and colleagues [11] modified Song
and Lis model by changing incidence term to general function. In the same year, Li and
Lim [12] extended the model of Gmez-Acevedo and Li [9] by taking into account of latent
period, thus it was added up to three-compartment model consisting of uninfected cells,
latently infected cells and actively infected cells. In 2014, Li and Zhou [13] proposed
three-compartment model consisting of healthy CD4+ T-cells, resting infected CD4+ T-
cells and Tax-expressing infected CD4+ T-cells which incorporates with mitotic routes.
In the same year, Lim and Maini [14] extended the model of Li and Lim [12] by incor-
porating viral latency and the HTLV-I-specific CTL response. Their model consisted of
four compartments which were healthy CD4+ T-cells, latently infected CD4+ T-cells, ac-
tively infected CD4+ T-cells and HTLV-I-specific CD8+ or CTLs. They also represented
the infected CD4+ T-cells proliferation as exponential growth term. Recently, Khajanchi
and colleague [15] modified the model of Lim and Maini [14] by considering the term of
elimination of actively infected CD4+ T-cells by HTLV-I specific CD8+ T-cells as bi-
linear incidence term. Furthermore, there are some studies of HTLV-I infection which
researchers added time delay in the CTL immune response e.g., the work by Li and Shu,
2012 [16] and Song and Xu, 2021 [17]. Also, recently a few studies involving co-infection of
HTLV-I and HIV has been explored e.g., the work by Elaiw and AIShamrani, 2021a [18],
Elaiw and AIShamrani, 2021b [19], Elaiw and AIShamrani, 2021c [20] and AIShamrani,
2021 [21].

Motivated by above works, we propose an HTLV-I infection model to study the T-cells
dynamics including ATL progression. We modify the work of Stilianakis and Seydel, 1999
[6] and Khajanchi et al., 2021 [15] by incorporating three types of cells which are CD4+
T-cells, HTLV-I-specific CD8+ T-cells or CTLs and ATL cells. The paper is started by
describing how model is formulated in section 2, followed by all model analysis in section 3.
Optimal control problem is also studied to seek the best strategy in reducing the HTLV-I
infection and it is demonstrated in section 4. Section 5 presents the numerical solutions
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in different scenarios of control conditions with discussion and finally the conclusion is in
section 6.

2. Model Formulation

We propose a mathematical model describing the dynamics of CD4+ T-cells in the
HTLV-I infection process. In this model, we consider the importance of the possible
progression of infected CD4+ T-cells to become ATL cells and the essential role of HTLV-
I-specific CD8+ T-cells or CTLs. Therefore, we further modify the work of Stilianakis and
Seydel, 1999 [6] and Khajanchi et al., 2021 [15] by combining three types of cells which
are CD4+ T-cells, ATL cells and HTLV-I-specific CD8+ T-cells or CTLs. Therefore, the
model is divided into five compartments which are the concentration of uninfected CD4+
T-cells (X), the concentration of latently infected CD4+ T-cells (E), the concentration
of actively infected CD4+ T-cells (Y ), the concentration of leukemia cells (ATL cells)
(L) and the concentration of HTLV-I-specific CD8+ T-cells or CTLs (H). The model
schematic diagram is shown in Figure 1 and is presented as the following system of
nonlinear differential equations:

dX

dt
= Λ− βXY − µX,

dE

dt
= βXY + qY − αE − µE,

dY

dt
= αE − θY − εY H − dY − µY, (2.1)

dL

dt
= θY + γL(1− L

k
)−mL− µL,

dH

dt
= sY H − nH,

with initial condition

X(0) > 0, E(0) > 0, Y (0) > 0, L(0) > 0, H(0) > 0.

Figure 1. A schematic diagram for the HTLV-1 infection model.
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The newly CD4+ T-cells are regulated at a rate λ and are assumed to be susceptible.
HTLV-I infection of these cells occur when they contact the actively infected CD4+ T-
cells giving a bilinear incidence term as βXY, where β is the transmission rate. These
cells therefore become latently infected CD4+ T-cells. The role of mitotic division of
infected cells is also considered within the model. As same as Lim and Maini, 2014
[14], we suppose that the latently infected CD4+ T-cells proliferate with an exponential
rate of q representing by the term qY. The transition of latently infected CD4+ T-cells
to actively infected CD4+ T-cells is represented by the term αE. The actively infected
CD4+ T-cells can be eliminated by an infection at a rate d and by HTLV-I-specific CD8+
T-cells or CTLs at a rate ε, whereas they have some progression and are transferred to
become leukemia cells (ATL cells) at a rate θ. Further, the leukemia cells (ATL cells)

proliferate logistically at a rate γ, giving a term γL(1 − L

K
), where K is the maximal

value of leukemia cells (ATL cells). Here CD4+ T-cells die naturally at a rate µ, where
the leukemia cells (ATL cells) die due to the leukemia with a rate m. The HTLV-I-specific
CD8+ T-cells or CTLs are proliferated by an induced of actively infected CD4+ T-cells
at a rate and decay naturally at a rate n. In this model, all parameters are positive and
ε > s as the CTL proliferation is a slow process [15, 16].

3. Model Analysis

3.1. Nonnegativity and Boundary of Solutions

Theorem 3.1. For any nonnegative initial conditions, the solutions (X(t),E(t),Y (t),L(t),H(t))

of system of equations (2.1) are nonnegative for all t > 0.

Proof. For any nonnegative initial conditions, consider the following,

dX

dt

∣∣∣
X=0

= Λ ≥ 0,

dE

dt

∣∣∣
E=0

= βXY + qY ≥ 0,

dY

dt

∣∣∣
Y=0

= αE ≥ 0,

dL

dt

∣∣∣
L=0

= θY ≥ 0,

dH

dt

∣∣∣
H=0

= 0.

Thus, all solutions of system (2.1) are nonnegative.
This completes the proof.

Theorem 3.2. All the solutions of the system (2.1) with nonnegative initial conditions
are bounded for all t > 0 in the region Ω for σ > q and µ+m > r.
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Proof. First, let N = X + E + Y +H, then

dN

dt
=

dX

dt
+
dE

dt
+
dY

dt
+
dH

dt
= Λ− βXY − µX + βXY + qY − αE − µE + αE

−θY − εY H − dY − µY + sY H − nH
= Λ− µX − µE − µY − nH + qY − dY − θY − (ε− s)Y H, ∵ ε > s

≤ Λ−min(µ, n)N + qY. (3.1)

Since, Y < N , we have

dN

dt
≤ Λ−min(µ, n)N + qN

= Λ− (σ − q)N, (3.2)

where, σ =min(µ, n).
with integrating factor method, we have;

dN

dt
+ (σ − q)N ≤ Λ, (3.3)

e
∫
(σ−q)dt

(dN
dt

+ (σ − q)N
)
≤ Λe

∫
(σ−q)dt, (3.4)

e(σ−q)t
(dN
dt

+ (σ − q)N
)
≤ Λe(σ−q)t. (3.5)

N ≤ Λ

σ − q
+ C1e

−(σ−q)t. (3.6)

Then N → Λ

σ − q
when t→∞ implying that 0 ≤ N ≤ Λ

σ − q
, where σ > q.

Next, consider the concentration of leukemia cells, we have

dL

dt
= θY + γL(1− L

k
)−mL− µL

≤ θY + γL−mL− µL. (3.7)

Since, Y ≤ N ≤ Λ

σ − q
, then

dL

dt
≤ θ Λ

(σ − q)
− (µ+m− γ)L. (3.8)

Let W =
Λ

(σ − q)
, for the ease of calculation and by integrating factor, we have

e
∫
(µ+m−γ)dt

(dL
dt

+ (µ+m− γ)L
)
≤ θW e

∫
(µ+m−γ)dt,

L ≤ θW

(µ+m− γ)
+ C2 e

−(µ+m−γ)t. (3.9)
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Then L→ θW

µ+m− γ
when t→∞ implying that 0 ≤ L ≤ θW

µ+m− γ
,

where W =
Λ

(σ − q)
. Thus, the considered region for this model is

Ω =
{

(X,E, Y, L,H) ∈ R5
+ : N ≤ Λ

σ − q
and L ≤ θw

µ+m− γ

}
,whereN = X+E+Y +H.

All solutions of this model are bounded and enter the region Ω for σ > q and µ+m > γ.
Hence, Ω is a positively invariant. That is every solution of this model remains positive
and bounded for all t > 0.

3.2. Equilibrium Points

Two equilibrium points are determined as follows:
(i) Infection-free equilibrium point which is

E0 = (X0, E0, Y0, L0, H0) =

(
Λ

µ
, 0, 0, 0, 0

)
.

(ii) The chronic infection equilibrium point is E1 = (X∗, E∗, Y ∗, L∗, H∗), where

X∗ =
Λ

βY ∗ + µ
,

E∗ =
βX∗Y ∗ + qY ∗

α+ µ
,

Y ∗ =
n

s
,

H∗ =
1

ε

[
(βX∗ + q)α

α+ µ
− (θ + d+ µ)

]
, and

L∗ is a positive solution of A1L
2 +A2L+A3 = 0 where

A1 =
γ

k
,A2 = µ+m− γ,A3 = −θn

s
.

Since A1 > 0 and A3 < 0, whether or not A2 > 0 or A2 < 0, there is one time change of
sign, By Descartes’s rule of sign, it guarantees that there is one positive solution L∗, and

it is L∗ =
k

2γ
[

√
(µ+m− γ)2 + 4

γθn

ks
− (µ+m− γ)].

3.3. The Basic Reproduction Number (R0)

The basic reproduction number (R0) is the expected number of secondary cases pro-
duced by a typical infective individual. The next-generation matrix method by van den
Driessche et al. [22] is used to find R0 and we obtain

F =

 βXY + qY

0

 and V =

 αE + µE

θY + εY H + dY + µY − αE

 .
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Then,

F =

 0 βX + q

0 0

 and V =

 α+ µ 0

−α θ + εH + d+ µ

 .
By substituting E0 =

(
Λ

µ
, 0, 0, 0, 0,

)
in F and V matrix above, we have

F (E0) =

 0 β
Λ

µ
+ q

0 0

 and V (E0) =

 α+ µ 0

−α θ + d+ µ

 .
Then,

V −1 =
1

(α+ µ)(θ + d+ µ)

 θ + d+ µ 0

α α+ µ

 .
The next generation matrix is

FV −1 =


αβΛ + αqµ

µ(α+ µ)(θ + d+ µ)

βΛ + qµ

µ(θ + d+ µ)

0 0

 .
The basic reproduction number is given by ρ(FV −1), which is

R0 =
αβΛ + αqµ

µ(α+ µ)(θ + d+ µ)
.

3.4. Local Stability of Infection-Free Equilibrium Point

The Jacobian matrix of the system (2.1) is the matrix of all first-order partial deriva-
tives of all equations with respect to X,E, Y, L and H, respectively. Hence, we have

J(X,E, Y, L,H) =



−βY − µ 0 −βX 0 0

βY −α− µ βX + q 0 0

0 α −θ − εH − d− µ 0 −εY

0 0 θ γ(1 −
2L

k
) − µ−m 0

0 0 sH 0 sY − n


.

(3.10)

Theorem 3.3. If R0 < 1, then the infection-free equilibrium point (E0) is locally asymp-
totically stable. Otherwise, the infection-free equilibrium point (E0) is unstable.
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Proof. The Jacobian matrix of the infection-free equilibrium point (E0) is

J (X0, E0, Y0, L0, H0) =



−µ 0 −β
Λ

µ
0 0

0 −α− µ β
Λ

µ
+ q 0 0

0 α −θ − d− µ 0 0

0 0 θ γ − µ−m 0

0 0 0 0 −n


. (3.11)

From Jacobian matrix above, we set det(J(E0) − λI) = 0 to find eigenvalues. Thus,
λ1 = −µ < 0, λ2 = −n < 0, λ3 = γ − µ − m < 0, and we consider the rest of
equation in the form of λ2 + a1λ + a2 = 0, where a1 = θ + d + α + 2µ > 0, and
a2 =

[
(α + µ)(θ + d + µ)

](
1 − R0

)
, when R0 < 1, we obtain that a2 > 0. Thus, by the

Routh-Hurwitz Criterion, the infection-free equilibrium point is locally asymptotically
stable, if R0 < 1. When R0 > 1, it is unstable.

3.5. The Global Stability of the Infection-Free Equilibrium Point

Theorem 3.4. The infection-free equilibrium point E0 is globally asymptotically stable
in Ω if R0 < 1.

Proof. In this proof, we use the method of Lyapunov functions.
Let

V = αE +
(
α+ µ

)
Y. (3.12)

It is clear that V is positive definite. Then, the derivative of V along the solutions of the
system (2.1) is

V
′

=
∂V

∂E
· dE
dt

+
∂V

∂Y
· dY
dt

= α
(
βXY + qY − αE − µE

)
+ (α+ µ)

(
αE − θY − εY H − dY − µY

)
= Y (α+ µ)(θ + d+ µ)

[ α(βX + q)

(α+ µ)(θ + d+ µ)
− 1
]
− εY H(α+ µ)

≤ Y (α+ µ)(θ + d+ µ)
[ α(βΛ + qµ)

µ(α+ µ)(θ + d+ µ)
− 1
]
− εY H(α+ µ) ∵ X(t) ≤ Λ

µ
.

Since, R0 =
α(βΛ + qµ)

µ(α+ µ)(θ + d+ µ)
, then V

′
(t) above can be written as

V
′
≤ Y (α+ µ)(θ + d+ µ)

[
R0 − 1

]
− εY H(α+ µ).

We obtain that V
′

= 0, when Y = 0 and V
′
< 0 when R0 < 1.

Therefore, by Lasalle’s invariance principle [23] E0 is globally asymptotically stable when
R0 < 1. This completes the proof.
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3.6. Local Stability of the Chronic Infection Equilibrium Point

Theorem 3.5. When R0 > 1, the chronic infection equilibrium point (E1) is stable if it
satisfies the Routh-Hurwitz criteria.

Proof. Consider the Jacobian matrix of E1 we have

J(E1) =



−βY ∗ − µ 0 −βX∗ 0 0

βY ∗ −α− µ βX∗ + q 0 0

0 α −θ − εH∗ − d− µ 0 −εY ∗

0 0 θ γ(1 − 2L∗

k
) − µ−m 0

0 0 sH∗ 0 sY ∗ − n


.

By setting det(J(E1) − λI) = 0, we have λ1 = γ(1 − 2L∗

k
) − µ − m < 0. The rest of

equation can be considered by using the Routh-Hurwitz criteria in the form of λ4+a1λ
3+

a2λ
2 + a3λ+ a4 = 0, where

a1 = βY ∗ + µ+ α+ 2µ+ θ + εH∗ + d > 0,

a2 = (βY ∗ + µ)(α+ 2µ+ θ + εH∗ + d) + (α+ µ)(θ + εH∗ + d+ µ)

+ (sH∗εY ∗)− α(βX∗ + q),

a3 = (βY ∗ + µ)

[
(α+ µ)(θ + εH∗ + d+ µ) + (sH∗εY ∗)− α(βX∗ + q)

]
+ (α+ µ)(sH∗εY ∗) + βY ∗α(βX∗) > 0,

a4 = (βY ∗ + µ)(α+ µ)(sH∗εY ∗) > 0.

Therefore, by Routh-Hurwitz criteria the chronic infection equilibrium point is stable if
a1a2a3 > a23 + a21a4.

3.7. Global Stability of the Chronic Infection Equilibrium Point

Theorem 3.6. The chronic infection equilibrium point E1 is globally asymptotically stable
in Ω when R0 > 1.

Proof. We use the method of Lyapunov functions, and W (X∗, E∗, Y ∗, L∗, H∗) = 0. At
chronic infection equilibrium point, we have

Λ = βX∗Y ∗ − µX∗,

α+ µ =
βX∗Y ∗ + qY ∗

E∗
, (3.13)

αE∗

Y ∗
− εH∗ = θ + d+ µ,

n = sY ∗.
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The positive definite Lyapunov function is

W = (X −X∗ −X∗ ln
X

X∗ ) + (E − E∗ − E∗ ln
E

E∗ ) + (
α+ µ

α
)(Y − Y ∗ − Y ∗ ln

Y

Y ∗ )

+ (
α+ µ

α
)(
ε

s
)(H −H∗ −H∗ ln

H

H∗ ).

The derivative of W along the solutions of the system (2.1) is

W
′

=
∂W

∂X
· dX
dt

+
∂W

∂E
· dE
dt

+
∂W

∂Y
· dY
dt

+
∂W

∂H
· dH
dt
.

W
′

= (1− X∗

X
)(βX∗Y ∗ + µX∗ − βXY − µX)

+
(

1− E∗

E

)
(βXY + qY − αE − µE)

+
(

1− Y ∗

Y

)(α+ µ

α

)
(αE − θY − εY H − dY − µY )

+
(

1− H∗

H

)(α+ µ

α

)ε
s

(sY H − nH).

Using the expressions of (3.13), we obtain

W ′ = µX∗(2− X

X∗
− X∗

X
) + βX∗Y ∗(1− X∗

X
− XY

X∗Y ∗
− Y

Y ∗
)

+ βX∗Y ∗
( XY

X∗Y ∗
− E

E∗
− XY E

X∗Y ∗E∗
+ 1
)

+ qY ∗
( Y
Y ∗
− E

E∗
− Y E∗

Y ∗E
+ 1
)

+ βX∗Y ∗
( E
E∗
− Y

Y ∗
− EY ∗

E∗Y
+ 1
)

+ qY ∗
( E
E∗
− Y

Y ∗
− EY ∗

E∗Y
+ 1
)

+
(α+ µ

α

)(
εY H∗ − εY H − εY ∗H∗ + εY ∗H

)
+
(α+ µ

α

)(
εY H − εY ∗H − εY H∗ + εY ∗H∗

)
= µX∗(2− X

X∗
− X∗

X
) + βX∗Y ∗

(
3− X∗

X
− EY ∗

E∗Y
− XY E∗

X∗Y ∗E

)
+ qY ∗

(
2− Y E∗

Y ∗E
− EY ∗

E∗Y

)
.

By the fact that the arithmetic mean is greater than or equal to the geometric mean, we
have

2− X

X∗
− X∗

X
≤ 0,

3− X∗

X
− EY ∗

E∗Y
− XY E∗

X∗Y ∗E
≤ 0,

2− Y E∗

Y ∗E
− EY ∗

E∗Y
≤ 0.

This leads W ′ < 0 and W ′ = 0 when X = X∗, E = E∗, and Y = Y ∗. By the LaSalle
invariance principle [23] the chronic infection equilibrium point E1 is globally asymptoti-
cally stable when R0 > 1.
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3.8. Sensitivity Analysis of R0

The sensitivity indices are calculated by using the technique of the normalized forward
sensitivity index [24, 25] The normalized forward sensitivity index of R0, with respect to
a parameter W is given by

SR0

W =
∂R0

∂W
× W

R0
.

The normalized sensitivity are calculated numerically using parameter value in Table 2
and they are shown in Tabel 1.

Table 1. Numerical values of sensitivity indices of R0

Parameter Value Sign

Λ +0.9639 positive

β +0.5709 positive

α +0.2500 positive

q +0.0361 positive

µ +0.0310 positive

θ −0.0006 negative

d −0.8328 negative

4. Optimal Control Model

We next extend the system (2.1) by applying optimal control variables in the model
shown in Fig. 2. For the optimal control problem, we include two control variables defined
as follows:
(i) u1(t) is the preventive control e.g. safe sex.
(ii) u2(t) is the treatment effort for leukemia cells e.g. chemotherapy.

Figure 2. A schematic diagram for the optimal control problem of
HTLV-I infection.
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This model above can be written as system of control equations as follows:

dX

dt
= Λ− (1− u1(t))βXY − µX,

dE

dt
= (1− u1(t))βXY + qY − αE − µE,

dY

dt
= αE − θY − εY H − dY − µY, (4.1)

dL

dt
= θY + γL(1− L

k
)−mL− µL− u2(t)L,

dH

dt
= sY H − nH.

The objective of the model is to minimize the concentration of latently infected CD4+
T-cells, actively infected CD4+ T-cells and leukemia cells at a minimal cost of control
over the time interval [0, T ]. The objective function is given by

J(u1, u2, ) = min

∫ T

0

[
W1E +W2Y +W3L+

1

2

[
W4u

2
1(t) +W5u

2
2(t)

]]
dt (4.2)

with initial conditions

X(0) ≥ 0, E(0) ≥ 0, Y (0) ≥ 0, L(0) ≥ 0, and H(0) ≥ 0.

Here the weight constants are denoted byW1,W2,W3, W4 andW5 and the costs associated
with preventive control and treatment effort for leukemia cell are denoted by W4u

2
1(t) and

W5u
2
2(t), respectively.

The Lagrangian of the optimal control problem is given by

f(E, Y, L, u1, u2) = W1E +W2Y +W3L+
1

2

[
W4u

2
1(t) +W 2

5 (t)
]
. (4.3)

With Pontryagins Minimum Principle (PMP), we form the Hamiltonian and derive the
optimality system as follows:

M = W1E +W2Y +W3L+
1

2

[
W4u

2
1(t) +W5u

2
2(t)

]
+λX [Λ− (1− u1(t))βXY − µX] + λE [(1− u1(t))βXY + qY − αE − µE]

+λY [αE − θY − εY H − dY − µY ]

+λL[θY + γL(1− L

k
)−mL− µL− u2(t)L] + λH [sY H − nH], (4.4)

where λX , λE , λY , λL and λH are the adjoint functions associated with the state equations
for X,E, Y, L and H, respectively.

Theorem 4.1. Let X̃, Ẽ, Ỹ , L̃ and H̃ be optimal state solution with associated optimal
control variable u∗1(t) and u∗2(t) for the optimal control problem (4.1). Then there exist
adjoint variables λX , λE , λY , λL and λH satisfying:
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λ
′

X = −
[
λX

(
− (1− u1(t))βỸ − µ

)
+ λE(1− u1(t))βỸ

]
,

λ
′

E = − [W1 + λE(−µ− α) + λY α] ,

λ
′

Y = −

[
W2 + λX [−(1− u1(t))βX̃] + λE

[
(1− u1(t))βX̃ + q

]
+ λY (−θ − εH̃ − µ− d) + λLθ

]
, (4.5)

λ
′

L = −

[
W3 + λL

(
γ(1− 2L̃

k
)− µ−m− u2(t)

)]
,

λ
′

H = −
[
−λY (εỸ ) + λH(sỸ − n)

]
,

with transversality conditions:

λX(T ) = 0, λE(T ) = 0, λY (T ) = 0, λL(T ) = 0 and λH(T ) = 0.

And the optimal control variables u∗1(t) and u∗2(t) are

u∗1(t) = max

{
0,min

{
(λE − λX)(βX̃Ỹ )

W4
, u1max

}}
,

u∗2(t) = max

{
0,min

{
λLL̃

M5
, u2max

}}
.

Proof. We first differentiate Hamiltonian (4.4) with respect to X,E, Y, L and H, respec-
tively, and the adjoint system can be calculated as

λ
′
X = −∂M

∂X
= −

[
λX

(
− (1 − u1(t))βỸ − µ

)
+ λE(1 − u1(t))βỸ

]
,

λ
′
E = −∂M

∂E
= − [W1 + λE(−µ− α) + λY α]

λ
′
Y = −∂M

∂Y
= −

[
W2 + λX [−(1 − u1(t))βX̃] + λE

[
(1 − u1(t))βX̃ + q

]
,

+ λY (−θ − εH̃ − µ− d) + λLθ

]
λ

′
L = −∂M

∂L
= −

[
W3 + λL

(
γ(1 − 2L̃

k
) − µ−m− u2(t)

)]
,

λ
′
H = −∂M

∂H
= −

[
−λY (εỸ ) + λH(sỸ − n)

]
. (4.6)

Next, with the approach of Pontryagin [26], we solve the equation,
∂M

∂ui
= 0 at u∗i ; for

i = 1, 2,
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∂M

∂u1
= W4u1(t) + λXβX̃Ỹ − λEβX̃Ỹ = 0,

∴ u1(t) =
(λE − λX)βX̃Ỹ

W4
. (4.7)

∂M

∂u2
= W5u2(t) − λLL̃ = 0,

∴ u2(t) =
λLL̃

W5
, (4.8)

where 0 ≤ u1(t) ≤ u1max and 0 ≤ u2(t) ≤ u2max.
Thus, we have

u∗1(t) = max

{
0,min

{
(λE − λX)(βX̃Ỹ )

W4
, u1max

}}
,

u∗2(t) = max

{
0,min

{
λLL̃

M5
, u2max

}}
. (4.9)

This completes the proof.

5. Numerical Simulation of Optimal Control

The dynamics of the system (4.1) is studied by performing numerical simulations. The
forward-backward sweep method is used to solve the optimality system numerically. We
consider the optimal control continuously for 450 days, with the use to the parameter
values represents in Table 2. The numerical results are shown in Figure 3 - Figure 5. We
divide our results into three startegies as shown below.

Table 2. Parameter values of the model used in numerical study.

Parameter Description Value Unit Ref

Λ Influx of newly produced CD4+ T-Cells 6 day−1 [6]

β The transmission rate 0.002 - [27]

q The mitotic of viral transmission rate 0.045 day−1 [14]

α The rate at which latently infected CD4+ T-
Cells convert spontaneously to activated cells

0.0300 day−1 [28]

θ The rate at which actively infected CD4+ T-
Cells convert to ATL Cells

0.00004 day−1 [6]

γ Leukemia cell proliferation rate 0.003 day−1 [6]

m Leukemia induced death rate 0.0005 day−1 Assume

d Infection induced death rate 0.05 day−1 Assume

ε The rate of CTL-mediated lysis 0.009 - [29]

s The rate of CD8+T-Cells proliferation 0.007 - [29]

k The maximal value that ATL cells can reach 2200 cell/mm3 [6]

µ CD4+T-Cells natural death rate 0.01 - [30]

n Natural decay rate of HTLV-I-specific CD8+
T-cells or CTLs

0.4 day−1 [6]
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5.1. Preventive Control Alone

We use control u1 to optimize the objective function while u2 are set to zero. Figure
3 (a) shows that the concentration of uninfected CD4+ T-cells (X) reduces slower in the
control case althought it reaches the same equilibrium value around 430 days. Figure
3 (b) shows that the concentration of latently infected CD4+ T-cells (E) increases to
the peak about 70 days slower with much smaller peak in control case than non-control.
Figure 3 (c) shows that in non-control case the concentration of actively infected CD4+
T-cells (Y ) increases and time for the peak to occur is faster than control case about 50
days. Further, in control case there exists the second peak of (Y ) 300 days after the first
peak and then reduces back to same value of equilibrium as non-control case. Figure 3
(d) shows an unchange of the concentration of leukemia cells (ATL cells) (L). Figure 3
(e) shows an increase in the concentration of HTLV-I-specific CD8+ T-cells or CTLs (H)
and it reaches the peak of approximately 48 in the non-control case, whereas it drops at
start to zero and increases again to reach a peak on approximately 100th day in control
case, then comes back down to the level that lower then control case. Further, the second
peak occurs 370 days after the first peak and reduces to the same equilibrium value as
non-control case. Finally, Figure 3 (f) shows the strategy of u1, that it has to be at the
maximum rate of 90% for about 350 days and then decreases gradually towards zero in
the 450th day.

5.2. Treatment Control for Leukemia Alone

We use control u2 to optimize the objective function while u1 are set to zero. With
this strategy, Figure 4 (a)-(c) and (e) demonstrate an unchange in the concentration of
uninfected CD4+ T-cells (X), the concentration of latently of infected CD4+ T-cells (E),
the concentration of actively infected CD4+ T-cells (Y ) and the concentration of HTLV-
I-specific CD8+ T-cells or CTLs (H) between the control and non-control one. However,
Figure 4 (d) shows a dramatic decrease in the concentration of leukemia cells (ATL cells)
(L) in control case comparing to non-control case which slowly decreases. From the results
above, it is obtained that u2 gives a big impact in reducing the concentration of leukemia
cells (ATL cells) (L) faster. Finally, Figure 4 (f) shows the strategy of u2, that it has to
start at the maximum rate of 90% for about 7 days and and comes down to around 15%
then fluctuate between 10%-25% for 20-30 days. After that it stays at approximately 12%
towards the end of 450 days and reaches zero finally.

5.3. Combination of Both Controls

We use a combination of both controls to optimize the objective function. Figure
5 (a) shows that the concentration of uninfected CD4+ T-cells (X) reduces slower in
the control case althought it reaches the same equilibrium value on around 420th day.
Figure 5 (b) shows that the concentration of latently infected CD4+ T-cells (E) increases
to the peak about 70 days slower with much smaller peak in control case than non-
control one. Further, the second peak occurs on 370th day reaching at 300 and reduces
to equilibrium value at the end. In non-control case it increases largely and reaches the
peck of approximately 680. Figure 5 (c) shows that in non-control case the concentration
of actively infected CD4+ T-cells (Y ) increases and time for the peak to occur is faster
than control case about 60 days. Further, in control case there exists the second peak of
(Y ) 300 days after the first peak and then reduces back to same value of equilibrium as
non-control case. Figure 5 (d) shows a dramatic decrease in the concentration of leukemia
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cells (ATL cells) (L) in control case comparing to non-control case which slowly decreases.
Figure 5 (e) shows an increase in the concentration of HTLV-I-specific CD8+ T-cells or
CTLs (H) and reaches the peak of approximately 48 in the non-control case, whereas it
drops at start to zero and increases again to reach a peak on approximately 100th day in
control case, then comes back down to the level that lower than control case. Further,
the second peak occurs 280 days after the first peak and reduces to the same equilibrium
value as non-control case towards the end. Figure 5 (f) shows the strategy of u1 that it
has to be at the maximum rate of 90% for about 350 days and then decreases gradually
towards zero on the 450th day. Figure 5 (g) shows the strategy of u2 that it has to start at
the maximum rate of 90% for about 7 days and goes down to around 5% then fluctuates
between 5%-25% for 100-120 days. After that it stays at approximately 12% and increases
tiny after 380 days then it stays at 12% towards the end of 450 days and reaches zero
finally. From results above, they indicate that a combination of both controls gives the
best result in reducing transmission of HTLV-I and leukemia cells although the control
of u2 in this case may need to apply longer at the beginning than the case in Figure 5.

6. Conclusion

With an essential of better understanding of HTLV-I infection dynamics, we therefore
propose a mathematical model describing an HTLV-I infection incorporating the possible
progression of infected CD4+ T-cells to become ATL cells and the role of HTLV-I-specific
CD8+ T-cells or CTLs. We modify the work of Stilianakis and Seydel, 1999 [6] and
Khajanchi et al., 2021 [15] by combining three types of cells which are CD4+ T-cells,
ATL cells and HTLV-I-specific CD8+ T-cells or CTLs. Therefore, our model consists of
five classes which are the concentration of uninfected CD4+ T-cells (X), the concentration
of latently infected CD4+ T-cells (E), the concentration of actively infected CD4+ T-cells
(Y ), the concentration of leukemia cells (ATL cells) (L) and the concentration of HTLV-I-
specific CD8+ T-cells or CTLs (H).Within this study, mathematical analysis is performed.
Positivity and boundary of solutions are proved, two equilibrium points namely infection-
free and chronic infection equilibrium points are calculated and the basic reproduction
number is determined. The stability of both equilibria is analyzed. We prove that if the
basic reproduction number is less than unity, then no chronic HTLV-I infection would
occur and the infected CD4+ T-cells will die out eventually. However, when the basic
reproduction number is greater than one, then the HTLV-I infection becomes chronic
with the chronic equilibrium point being global stable. Furthermore, to investigate how
much prevention and/or treatment could play a role in reducing HTLV-I infection and
leukemia, we extend the model above by considering the optimal control problem using
Pontryagins Minimum Principle. We add two possible controls into the model and they
are preventive control e.g., safe sex, and the treatment effort control for leukemia cells
e.g., chemotherapy. Our numerical results of optimal control problem demonstrate a
big impact of preventive control in reducing HTLV-I infection, and the treatment effort
significantly reduces the leukemia cells. Furthermore, a combination of both controls gives
the best result in decreasing the HTLV-I infection and leukemia. Therefore, our model
could explain the dynamics more realistically as we combine all CD4+ T-cells, ATL cells
and HTLV-I-specific CD8+ T-cells or CTLs classes. And the numerical results encourage
the preventive control as an essential approach to reduce the infection overall.
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Figure 3. Numerical simulations of the optimal control model (4.1)
with preventive control (u1) alone. (a) the concentration of uninfected
CD4+ T-cells (X), (b) the concentration of latently infected CD4+ T-
cells (E), (c) the concentration of actively infected CD4+ T-cells (Y ), (d)
the concentration of leukemia cells (ATL cells) (L), (e) the concentration
of HTLV-I-specific CD8+ T-cells or CTLs (H) and (f) the strategy of
control (u1) when u1max=0.9, u2=0.
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Figure 4. Numerical simulations of the optimal control model (4.1)
with treatment control (u2) alone. (a) the concentration of uninfected
CD4+ T-cells (X), (b) the concentration of latently infected CD4+ T-
cells (E), (c) the concentration of actively infected CD4+ T-cells (Y ), (d)
the concentration of leukemia cells (ATL cells) (L), (e) the concentration
of HTLV-I-specific CD8+ T-cells or CTLs (H) and (f) the strategy of
control (u2) when u1=0, u2max=0.9.
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Figure 5. Numerical simulations of the optimal control model (4.1) with preventive

control (u1) and treatment control (u2). (a) the concentration of uninfected CD4+

T-cells (X), (b) the concentration of latently infected CD4+ T-cells (E), (c) the

concentration of actively infected CD4+ T-cells (Y ), (d) the concentration of leukemia

cells (ATL cells) (L), (e) the concentration of HTLV-I-specific CD8+ T-cells or CTLs

(H), (f) and (g) the strategy of control (u1) and (u2) when u1max=0.9, u2max=0.9.
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