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1. Introduction and Preliminaries

Banachs contraction principle is one of the pivotal results of analysis. It is widely
considered as the source of metric fixed point theory. Also, its significance lies in its vast
applicability in a number of branches of mathematics. Many kinds of generalizations of
the above principle have been a heavily investigated branch of research. In particular,
Diaz and Margolis [9] presented the following definition and fixed point theorem in a
generalized complete metric space.

Definition 1.1. Let X be a nonempty set. Then a mapping d : X2 −→ [0,∞] is called
a generalized metric on X if d satisfies the following conditions:

(D1) d(x, y) = 0 if and only if x = y,
(D2) d(x, y) = d(y, x), and
(D3) d(x, y) ≤ d(x, z) + d(z, y).

In this case, (X, d) is called a generalized metric space.
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A sequence {xn} in a generalized metric space (X, d) is called Cauchy if
limn,m→∞ d(xn, xm) = 0 and a generalized metric space (X, d) is called complete if

every Cauchy sequence in (X, d) is convergent.

Theorem 1.2. Suppose that (X, d) is a generalized complete metric space and a function
T : X −→ X is a contraction, that is, T satisfies the following condition:

(CI) There exists a constant L with 0 < L < 1 such that, whenever d(x, y) <∞,

d(Tx, Ty) ≤ Ld(x, y). (1.1)

Let x0 ∈ X and consider a sequence {Tn(x0)} of successive approximations with the initial
element x0. Then the following alternative holds:

either
(A) for all n ≥ 0, one has d(Tn(x0), Tn+1(x0)) =∞
or
(B) the sequence {Tn(x0)} is convergent to a fixed point of T in (X, d).

Further, Nieto and Rodriguez-Lopez [11] proved a fixed point theorem in partially
ordered sets as follows.

Theorem 1.3. Let (X,≤) be a partially ordered set. Suppose that there exists a metric
d in X such that (X, d) is a complete metric space. Let f : X −→ X be a continuous and
nondecreasing mapping such that there exists a constant L ∈ [0, 1) with

d(f(x), f(y)) ≤ Ld(x, y) (1.2)

for all x, y ∈ X. If there exists an x0 ∈ X with x0 ≤ f(x0), then f has a fixed point.

Moreover, in [7], the following fixed point theorem for a partially ordered generalized
complete metric space was proved.

Theorem 1.4. Let (X,≤) be a partially ordered set. Suppose that (X, d) is a generalized
complete metric space and a mapping T : X −→ X is a continuous and nondecreasing
mapping such that there exists a constant L ∈ [0, 1) such that

d(Tx, Ty) ≤ Ld(x, y) (1.3)

for all x, y ∈ X with x ≥ y. If there exists an x0 in X with x0 ≤ f(x0), then the following
alternative holds:

either
(A) for all n ≥ 0, one has d(Tn(x0), Tn+1(x0)) =∞
or
(B) the sequence {Tn(x0)} is convergent to a fixed point of T in (X, d).

The inequality in (D3) is called the triangle inequality. A metric d on X is said to
be non-Archimedean if the triangle inequality is replaced with the following stronger
inequality, called the ultrametric inequality :

(D4) d(x, y) ≤ max{d(x, z), d(z, y)} for all x, y, z ∈ X.

A valuation is a function | · | from a field K into [0,∞) such that for any r, s ∈ K,
the following conditions hold: (i) |r| = 0 if and only if r = 0, (ii) |rs| = |r||s|, and
(iii) |r + s| ≤ |r| + |s|. A field K is called a valued field if K carries a valuation. The
usual absolute values of R and C are examples of valuations. If the triangle inequality
is replaced by |r + s| ≤ max{|r|, |s|} for all r, s ∈ K, then the valuation | · | is called a
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non-Archimedean valuation and the field with a non-Archimedean valuation is called a
non-Archimedean field. If |·| is a non-Archimedean valuation on K, then clearly, |1| = |−1|
and |n| ≤ 1 for all n ∈ N.

Let X be a vector space over a field K with a non-Archimedean nontrivial valuation | · |.
A function ‖ · ‖ : X −→ R is called a non-Archimedean norm if it satisfies the following
conditions:
(a) ‖x‖ = 0 if and only if x = 0,
(b) ‖rx‖ = |r|‖x‖, and
(c) the strong triangle inequality (ultrametric) holds, that is,

||x+ y|| ≤ max{‖x‖, ‖y‖}

for all x, y ∈ X and all r ∈ K. If ‖ · ‖ is a non-Archimedean norm, then (X, ‖ · ‖) is called
a non-Archimedean normed space.

Let (X, ‖ · ‖) be a non-Archimedean normed space and {xn} a sequence in X. Then
{xn} is said to be convergent if there exists an x ∈ X such that limn→∞ ‖xn−x‖ = 0. In
that case, x is called the limit of the sequence {xn} and one denotes it by limn→∞ xn = x
or xn → x in (X, ‖·‖). A sequence {xn} is said to be Cauchy in (X, ‖·‖) if limn→∞ ‖xn+p−
xn‖ = 0 for all p ∈ N. By the strong triangle inequality, we have

‖xn − xm‖ ≤ max{‖xj+1 − xj‖ | m ≤ j ≤ n− 1} (n > m)

and so the sequence {xn} is Cauchy in (X, ‖ · ‖) if and only if {xn+1 − xn} converges
to zero in (X, ‖ · ‖). By a complete non-Archimedean space we mean one in which every
Cauchy sequence is convergent.

In this paper, we introduce the concepts of quasi-orders on a set which are generaliza-
tion of partial orders and the concepts of a generalized non-Archimedean quasi-ordered
metric space which are generalization of non-Archimedean metric spaces. And we inves-
tigate the generalized non-Archimedean quasi-ordered metric on the set of all mappings
from a non-Archimedean normed space to a complete non-Archimedean normed space.
Further, we prove a fixed point theorem for a contraction in d-complete spaces. As an
application, we give the stability for some functional equations.

Throughout in this paper, let (X, ‖·‖) be a non-Archimedean normed space and (Y, ‖·‖)
a complete non-Archimedean normed space.

2. Fixed Point Theorem in d-Complete Metric Spaces

We start with the definition of quasi-orders which is a generalization of the concept
of partial orders. A relation ≤X on a set X is called a quasi-order on X if ≤X satis-
fies reflexive and transitive. Let ≤X be a quasi-order on X. Then x and y are called
comparable, denoted by x ∼X y or simply x ∼ y, if x ≤X y or y ≤X x.

Definition 2.1. Let X be a nonempty set and ≤X a quasi-order on X. Then a mapping
d : X2 −→ [0,∞] is called a generalized non-Archimedean quasi-ordered metric on X if d
satisfies (D1), (D2), and the following inequality

(DO) d(x, y) ≤ max{d(x, z), d(z, y)}
for all x, y, z ∈ X with x ∼X z and z ∼X y. In this case, (X, d,≤X) is called a gener-
alized non-Archimedean quasi-ordered metric space. And a generalized non-Archimedean
quasi-ordered metric space (X, d,≤X) is called d-complete if every nondecreasing Cauchy
sequence in (X, d,≤X) is convergent in (X, d).
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Theorem 2.2. Let (X, d,≤X) be a d-complete metric space such that
if {xn} is a nondecreasing sequence in (X,≤X) and xn → x in (X, ‖ · ‖),
then xn ≤X x for all n ∈ N.

Let T : X −→ X be a nondecreasing mapping such that there exists an L ∈ [0, 1) such
that

d(Tx, Ty) ≤ Ld(x, y) (2.1)

for all x, y ∈ X with x ∼ y. If there exist an x0 in X with x0 ≤X Tx0, then the following
alternative holds:

either
(A) for all n ≥ 0, one has d(Tnx0, T

n+1x0) =∞
or
(B) the sequence {Tnx0} is convergent to a fixed point u of T in (X, d). Further, if

d(x0, Tx0) <∞, then

d(u, x0) ≤ Ld(x0, Tx0). (2.2)

Proof. Suppose that there is an l ∈ N ∪ {0} such that d(T lx0, T
l+1xo) < ∞. Since T is

nondecreasing and x0 ≤X Tx0,

x0 ≤X Tx0 ≤X T 2x0 ≤X · · · ≤X Tnx0 ≤X · · ·

and by (2.1), we have

d(Tnx0, T
n+1x0) ≤ Ln−ld(T lx0, T

l+1x0) (2.3)

and

d(Tnx0, T
n+1x0) <∞

for all positive integers n with l ≤ n. Hence for m > n ≥ l, by (DO) and (2.3), we have

d(Tmx0, T
nx0)

≤ max{d(T ix0, T
i+1x0) | n ≤ i ≤ m− 1} ≤ Ln−ld(T lx0, T

l+1x0)
(2.4)

and so the sequence {Tnx0} is a nondecreasing Cauchy sequence in (X, d,≤X). Since
(X, d,≤X) is d-complete, there is a u ∈ X such that Tnxo → u in (X, d,≤X).

Now, we will show that u is the fixed point of T . Let ε > 0 be given. Since Tn(xo)→ u,
there is a k ∈ N such that

k ≤ n ⇒ d(Tnx0, u) ≤ ε

and since Tnx0 ≤X u , Tn+1x0 ≤X Tu for all n ∈ N. By (DO), we have

d(Tu, u) ≤ max{d(Tu, T k+1x0), d(T k+1x0, u)}

≤ max{Ld(u, T kx0), d(T k+1x0, u)} ≤ ε

and so Tu = u.
Moreover, if d(x0, Tx0) <∞, then, by (2.4), we have (2.2).

Define a relation ≤X on (X, ‖ · ‖) by

x ≤X y if ‖x‖ ≤ ‖y‖.

We can easily show the following proposition.
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Proposition 2.3. Let (X, ‖ · ‖) be a non-Archimedean normed space. Then we have the
following :

(1) ≤X is a quasi-order on X.
(2) If {xn} is a nondecreasing sequence in (X,≤X) and xn → x in (X, ‖ · ‖), then

xn ≤X x for all n ∈ N.

Proof. (1) is trivial.
(2) Suppose that there is an m ∈ N such that ε = ‖xm‖ − ‖x‖ > 0. Since xn → x in

(X, ‖ · ‖), there is a k ∈ N such that m < k and ‖xk − x‖ < ε and so ‖xk‖ < ‖xm‖. Since
{xn} is a nondecreasing sequence in (X,≤X), xm ≤X xk which is a contradiction.

Let S = {g | g : X −→ Y }. Define a quasi-order ≤s on S by

g ≤s h

if and only if

g(x) ≤Y h(x), ∀x ∈ X.
Let φ : X2 −→ [0,∞) be a mapping. For any g, l, h ∈ S, let

m(g, l, h)(x) = max{‖g(x)− l(x)‖, ‖l(x)− h(x)‖}.
Define a mapping d : S2 −→ [0,∞] by

d(g, h) = inf{c ∈ R+ | there is an l ∈ S such that g ∼ l, l ∼ h, and
m(g, l, h)(x) ≤ cφ(x, 0), ∀x ∈ X}.

Lemma 2.4. Let g, h ∈ S with g ∼ h. Then

d(g, h) = inf{c ∈ R+ | ‖g(x)− h(x)‖ ≤ cφ(x, 0), ∀x ∈ X}.

Proof. Let c ∈ R+ such that

‖g(x)− h(x)‖ ≤ cφ(x, 0)

for all x ∈ X . Then g ∼ h, h ∼ h, and

‖g(x)− h(x)‖ = max{‖g(x)− h(x)‖, ‖h(x)− h(x)‖} = m(g, h, h)(x) ≤ cφ(x, 0),

for all x ∈ X. Hence we have d(g, h) ≤ c. For the converse, suppose that r ∈ R+ and
l ∈ S such that g ∼ l, l ∼ h, and

m(g, l, h)(x) ≤ rφ(x, 0)

for all x ∈ X. Since ‖g(x)− h(x)‖ ≤ m(g, l, h)(x) ≤ rφ(x, 0) for all x ∈ X,

inf{c ∈ R+ | ‖g(x)− h(x)‖ ≤ cφ(x, 0), ∀x ∈ X} ≤ r.
Hence one has the result.

Using Lemma 2.4, we have the following theorem:

Theorem 2.5. (S, d,≤s) is a d-complete metric space.

Proof. Suppose that d(g, h) = 0 and g 6= h. Then there exists a z ∈ X such that
g(z) 6= h(z). Let ε = ‖g(z) − h(z)‖. Then ε > 0 and there exists a δ > 0 such that
δφ(z, 0) < ε. Since d(g, h) = 0, there exists a c ∈ R+ such that c < δ and

m(g, l, h)(x) ≤ cφ(x, 0)



486 Thai J. Math. Vol. 21 (2023) /C.I. Kim and G.J. Han

for all x ∈ X and some l ∈ S with g ∼ l and l ∼ h. Then

‖g(z)− h(z)‖ ≤ m(g, l, h)(z) ≤ cφ(z, 0) < ε

which is a contradiction. Hence (D1) holds and clearly, d satisfies (D2).
Let g, l, h ∈ S such that g ∼ l and l ∼ h. Since g ∼ l and l ∼ h, by Lemma 2.4, we

have

d(g, l) = inf{c ∈ R+ | ‖g(x)− l(x)‖ ≤ cφ(x, 0), ∀x ∈ X}

and

d(l, h) = inf{c ∈ R+ | ‖l(x)− h(x)‖ ≤ cφ(x, 0), ∀x ∈ X}.

Let c1, c2 ∈ R and l1, l2 ∈ S such that g ∼ l1, l1 ∼ l, l ∼ l2, l2 ∼ h, and

m(g, l1, l)(x) ≤ c1φ(x, 0), m(l, l2, h)(x) ≤ c2φ(x, 0)

for all x ∈ X. Then we have

m(g, l, h)(x)

= max{‖g(x)− l(x)‖, ‖l(x)− h(x)‖}
≤ max{‖g(x)− l1(x)‖, ‖l1(x)− l(x)‖, ‖l(x)− l2(x)‖, ‖l2(x)− h(x)‖}
≤ max{c1, c2}φ(x, 0)

for all x ∈ X and so d satisfies (DO). Hence d is a generalized non-Archimedean quasi-
ordered metric on S.

Now, we claim that (S, d,≤s) is d-complete. Let {hn} be a nondecreasing Cauchy
sequence in (S, d,≤s). For any x ∈ X, {hn(x)} is a nondecreasing Cauchy sequence in
Y and since Y is complete, there exists h(x) in Y such that limn→∞ hn(x) = h(x). By
Proposition 2.3, hn(x) ≤Y h(x) for all x ∈ X and all n ∈ N. Hence hn ≤s h for all n ∈ N.
Let ε > 0. Then there is a k ∈ N such that for n > m ≥ k,

d(hn, hm) < ε. (2.5)

Let n > m ≥ k. Since hm ≤s hn,

d(hn, hm) = inf{c ∈ R+ | ‖hn(x)− hm(x)‖ ≤ cφ(x, 0), ∀x ∈ X}

and by (2.5), we have ‖hn(x) − hm(x)‖ ≤ εφ(x, 0) for all x ∈ X. Since the mapping
t(y) = ‖y − hm(x)‖ is continuous on Y , ‖h(x)− hm(x)‖ ≤ εφ(x, 0) for all x ∈ X. Hence
d(hm, h) ≤ ε for all m ∈ N with m ≥ k, because hm ≤s h and thus hn → h in (S, d,≤s).

3. Applications

In this section, we will prove the stability as an application of our fixed point theorem.
We start with the following lemma:

Lemma 3.1. Define a mapping T : S −→ S by Tg(x) = pg(rx) for some real numbers
p, r. Then T is a nondecreasing mapping.

By Theroem 2.5 and Lemma 3.1, we have the following theorem:
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Theorem 3.2. Let a, k be natural numbers and L be a positive real number such that
L < 1 and

φ(ax, ay) ≤ |a|kLφ(x, y) (3.1)

for all x, y ∈ X. Let f : X −→ Y be a mapping such that

‖akf(x)− f(ax)‖ ≤Mφ(x, 0), ‖f(x)‖ ≤
∥∥∥ 1

ak
f(ax)

∥∥∥ (3.2)

for all x ∈ X and some positive real number M . Then there exists a unique mapping
F : X −→ Y such that limn→∞

1
akn f(anx) = F (x) for all x ∈ X and∥∥∥ 1

akn
f(anx)

∥∥∥ ≤ ‖F (x)‖, F (ax) = akF (x),

‖F (x)− f(x)‖ ≤ M

|a|k
φ(x, 0)

(3.3)

for all x ∈ X and all n ∈ N ∪ {0}.

Proof. By Theorem 2.5, (S, d,≤s) is a d-complete metric space. Define a mapping T :
S −→ S by Tf(x) = 1

ak f(ax). By Lemma 3.1, T is a nondecreasing mapping and by

(3.2), f ≤s Tf . Let f, g ∈ S with f ≤s g. For any c ∈ R+ with

‖f(x)− g(x)‖ ≤ cφ(x, 0)

for all x ∈ X, by (3.1), we have

‖Tf(x)− Tg(x)‖ ≤ c

|a|k
φ(ax, 0) ≤ cLφ(x, 0) (3.4)

for all x ∈ X. Since Tf ≤s Tg, by Lemma 2.4, d(Tf, Tg) ≤ Ld(f, g) and by Theorem 2.2,
there exists a unique mapping F : X −→ Y with (3.3).

In 1940, Ulam proposed the following stability problem ([14]):
“Let G1 be a group and G2 a metric group with the metric d. Given a constant

δ > 0, does there exist a constant c > 0 such that if a mapping f : G1 −→ G2 satisfies
d(f(xy), f(x)f(y)) < c for all x, y ∈ G1, then there exists a unique homomorphism
h : G1 −→ G2 with d(f(x), h(x)) < δ for all x ∈ G1?”

In the next year, Hyers [8] gave a partial solution of Ulam
′
s problem for the case of

approximate additive mappings. Subsequently, his result was generalized by Aoki [1]
for additive mappings, and by Rassias [13] for linear mappings, to consider the stability
problem with unbounded Cauchy differences. Rassias [13] solved the generalized Hyers-
Ulam stability of the functional inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)

for some ε(≥ 0), p(< 1) and for all x, y ∈ X, where f : X −→ Y is a function between Ba-
nach spaces. The paper of Rassias [13] has provided a lot of influence in the development
of what we call the generalized Hyers-Ulam stability or Hyers-Ulam-Rassias stability of
functional equations. A generalization of the Rassias theorem was obtained by Gǎvruta
[6] by replacing the unbounded Cauchy difference by a general control function in the
spirit of Rassis approach. The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y)
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is called a quadratic functional equation and a solution of a quadratic functional equation
is called quadratic. Rassias [12] investigated the following the cubic functional equation

f(3x+ y) + f(3x− y) = 3f(x+ y) + 3f(x− y) + 48f(x),

and proved the generalized Hyers-Ulam stability for it. During the last decades, the
stability problems of functional equations have been extensively investigated by a number
of mathematicians([3, 4, 5, 10]). Cádariu and Radu [2] applied the fixed point method
to investigate the Jensen functional equation and presented a short and simple proof
(different from the direct method initiated by Hyers in 1941 for the Hyers-Ulam stability
of the Jensen functional equation).

Let D1 be a functional operator on S defined by

D1f(x, y) = f(ax+ by) + f(ax− by)− 2af(x) + c[f(x+ y) + f(x− y)− 2f(x)]

for a fixed non-zero rational number a and real numbers b, c such that a2 6= b2. The we
can easily show the following lemma.

Lemma 3.3. Let f : X −→ Y be a mapping with f(0) = 0. Then f is additive if and
only if D1f(x, y) = 0 for all x, y ∈ X.

Using Theorem 3.2 and Lemma 3.3, we have the following theorem :

Theorem 3.4. Let a be a natural number with a ≥ 2 and φ : X2 −→ [0,∞) be a mapping
such that

φ(ax, ay) ≤ |a|Lφ(x, y) (3.5)

for all x, y ∈ X and some L ∈ (0, 1). Suppose that f : X −→ Y is a mapping such that
f(0) = 0,

‖f(x)‖ ≤
∥∥∥1

a
f(ax)

∥∥∥,
for all x ∈ X and

‖D1f(x, y)‖ ≤ φ(x, y) (3.6)

for all x, y ∈ X. Then there exists a unique additive mapping A : X −→ Y such that
limn→∞

1
an f(anx) = A(x) for all x ∈ X and∥∥∥ 1

an
f(anx)

∥∥∥ ≤ ‖A(x)‖, ‖f(x)‖ ≤ ‖A(x)‖, ‖A(x)− f(x)‖ ≤ 1

|2a|
φ(x, 0) (3.7)

for all x ∈ X and n ∈ N ∪ {0}.

Proof. Letting y = 0 in (3.6), we have

‖af(x)− f(ax)‖ ≤ 1

|2|
φ(x, 0)

for all x ∈ X. By Theorem 3.2, there is a unique mapping A : X −→ Y such that∥∥∥ 1

an
f(anx)

∥∥∥ ≤ ‖A(x)‖, A(ax) = aA(x), ‖A(x)− f(x)‖ ≤ 1

|2a|
φ(x, 0)

for all x ∈ X and all n ∈ N ∪ {0}. By (3.5) and (3.6), we have∥∥∥ 1

an
D1f(anx, any)

∥∥∥ ≤ 1

|a|n
φ(anx, any) ≤ Lnφ(x, y)
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for all x, y ∈ X and all n ∈ N. Letting n→∞ in the above inequality, we can show that
D1A(x, y) = 0 for all x, y ∈ X and hence A is an additive mapping.

Suppose that G : X −→ Y is another additive mapping with (3.7). Then, by (3.7), we
have

‖A(x)−G(x)‖ ≤ 1

|a|n
max{‖A(anx)− f(anx)‖, ‖A(anx)− f(anx)‖}

≤ 1

|2a|
Lnφ(x, 0)

for all x ∈ X and all n ∈ N. Since 0 < L < 1, A = G.

Let D2 and D3 be functional operators on S defined by

D2f(x, y) = f(3x+ y) + f(3x− y)− 18f(x)− 2f(y)

and

D3f(x, y) = f(3x+ y) + f(3x− y)− 3f(x+ y)− 3f(x− y)− 48f(x),

respectively. Then, clearly, for any mapping f : X −→ Y with f(0) = 0, f is qua-
dratic(cubic, resp.) if and only if D2f(x, y) = 0(D3f(x, y) = 0, resp.) for all x, y ∈ X.

Similar to Theorem 3.4, we have the following remark:

Remark 3.5. Let k = 2 or k = 3 and φ : X2 −→ [0,∞) such that

φ(3x, 3y) ≤ |3|kLφ(x, y)

for all x, y ∈ X and some L ∈ (0, 1). Suppose that f : X −→ Y is a mapping satisfying

f(0) = 0, ‖f(x)‖ ≤
∥∥∥ 1
3k
f(3x)

∥∥∥ for all x ∈ X, and

‖Dkf(x, y)‖ ≤ φ(x, y) (3.8)

for all x, y ∈ X. Further, suppose that (3.8) implies that

‖3knf(x)− f(3nx)‖ ≤Mφ(x, 0)

for all x ∈ X and some positive real number M . Then there exists a unique mapping
F : X −→ Y such that DkF (x, y) = 0 for all x, y ∈ X and∥∥∥ 1

3kn
f(3nx)

∥∥∥ ≤ ‖F (x)‖, f ≤s F, ‖F (x)− f(x)‖ ≤ M

|3|k
φ(x, 0)

for all x ∈ X.
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