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Abstract In this article, we develop and study the space of null variable exponent second-order quantum

backward difference sequences of soft functions, which are critical extensions to the concept of modular

spaces. The mappings have been idealized through the use of extended s−soft functions and this soft

function sequence space. The topological and geometric features of this new space are described, as well

as the ideal mappings that correspond to them. We establish the existence of a Kannan contraction

mapping fixed point acting on this space and its associated pre-quasi ideal. It’s fascinating that we give

various numerical experiments to show our findings. Additionally, several practical applications of the

existence of solutions to nonlinear difference equations involving soft functions are discussed.
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1. Introduction

Let N be the set of non-negative integers. Yaying et al. [45], defined quantum
second-order backward difference operator, ∇2

p, where va = 0 for a < 0, and ∇2
pva =

va − (1 + p)va−1 + pva−2, for all p ∈ (0, 1) and a ∈ N . Recall that the operator ∇2
p

becomes ∇2 if p → 1−, which defined and studied in [15]. They proved that the spaces
c0(∇2

p) and c(∇2
p) are Banach spaces linearly isomorphic to c0 and c, respectively, and

obtained their Schauder bases and α−, β− and γ−duals. They investigated the spectrum,
the point spectrum, the continuous spectrum, and the residual spectrum of the operator
∇2
p over the Banach space c0 of null sequences. Evidently c0 & c0(∇2

p) & c0(∇2). For strict
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inclusion. We have (1, 1, · · · ) /∈ c0 and (1, 1, · · · ) ∈ c0(∇2
p), and (0, 1, 2, · · · ) /∈ c0(∇2

p) and

(0, 1, 2, · · · ) ∈ c0(∇2).
In functional analysis, the ideal theory of mappings is highly regarded. The ideals of
closed mappings are certain to play a significant role in the Banach lattice principle.
The following theories use mappings’ ideal: fixed point theory, Banach space geometry,
normal series theory, approximation theory, and ideal transformations. s−numbers is a
critical method. Pietsch [33–36] explored in depth and examined the theory of s-numbers
of linear bounded mappings between Banach spaces. He presented and explained some
topological and geometric structures of the quasi ideals of `p type mappings. Then, Con-
stantin [8], generalized the class of `p type mappings to the class of cesp type mappings.
Makarov and Faried [26] proved some inclusion relations of `p type mappings. As a gen-
eralization of `p type mappings, Stolz mappings and mappings ideal were investigated

by Tita [42, 43]. In [25], Maji and Srivastava offered the class A
(s)
p of s-type cesp map-

pings using s-number sequence and Cesàro sequence spaces and they introduced a new

classA
(s)
p,q of s-type ces(p, q) mappings by weighted cesp with 1 < p <∞. In [21], the class

of s-type Z(u, v; `p) mappings was defined and some of their properties were explained.
Pre-quasi mappings ideals are more extensive than quasi mappings ideals, according to
Faried and Bakery [16]. Bakery and Abou Elmatty [? ] investigated the necessary con-
ditions on any s−type sequence space to form an operator’s ideal. They showed that the
s−type Nakano generalized difference sequence space X fails to generate an operator’s
ideal. They investigated the sufficient conditions on X to be pre-modular Banach special
space of sequences. The constructed pre-quasi-operator ideal becomes a small, simple,
and closed Banach space and has eigenvalues identical to its s−numbers. Finally, they
introduced necessary and sufficient conditions on X, explaining some topological and ge-
ometrical structures of the multiplication operator defined on X. The study of variable
exponent Lebesgue spaces was accelerated by the mathematical explanation of the hy-
drodynamics of non-Newtonian fluids. (see [38, 40]). Electrorheological fluids are used in
various sectors, including military science, civil engineering, and orthopedics. Guo and
Zhu [19] examined a class of stochastic VolterraLevin equations with Poisson jumps. Mao
et al. [27], concerned with neutral stochastic functional differential equations driven by
pure jumps (NSFDEwPJs). They showed the existence and uniqueness of the solution to
NSFDEwPJs. The coefficients of the latter satisfy the local Lipschitz condition and es-
tablish the p-th exponential estimations and almost surely asymptotic estimations of the
solution for NSFDEwJs. Yang and Zhu [44], concerned with a class of stochastic neutral
functional differential equations of Sobolev-type with Poisson jumps. Since the publi-
cation of the Banach fixed point theorem [5], there have been numerous developments
in the field of mathematics. While contractions have fixed-point actions, Kannan [20]
illustrated a non-continuous mapping. In Reference [18], a single attempt was made to
explain Kannan operators in modular vector spaces. The mathematics underpinnings of
fuzzy set theory, pioneered by Zadeh [46] in 1965 and have made significant progress, are
well understood in fuzzy theory. The fuzzy theory applies to a wide variety of real-world
challenges. For instance, various researchers established the possibility theory, including
Dubois and Prade [14] and Nahmias [29]. The contribution of probability theory, fuzzy
set theory, and rough sets to the study of uncertainty are critical. Yet, these theories have
some limitations as well as advantages. The theory of soft sets, developed by Molodtsov
[28], was introduced as a new mathematical strategy for dealing with uncertainties to
overcome these characteristics. Soft sets have been widely used in various disciplines and
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technologies. In particular, Maji et al. [23, 24] studied several operations on soft sets
and applied their findings to decision-making problems in the literature. Several writers,
including Chen [6], Pei and Miao [32], Zou and Xiao [47], and Kong et al. [22], have
discovered significant characteristics of soft sets. Soft semirings, soft ideals, and idealistic
soft semirings were all investigated by Feng et al. [17]. Das and Samanta developed the
ideas of a soft real number and a soft real set in [10] and discussed the characteristics of
each concept. These principles served as the foundation for their investigation into the
concept of “soft metrics” in [11] (see [9, 12] for a more in-depth examination). Based
on the idea of soft elements of soft metric spaces, Abbas et al. [1] developed the con-
cept of soft contraction mapping, which they named “soft contraction mapping”. They
focused on fixed points of soft contraction maps and obtained, among other things, a
soft Banach contraction principle due to their efforts. In their paper, Abbas et al. [2]
demonstrated that every complete soft metric induces an equivalent complete usual met-
ric. They obtained in a direct way soft metric versions of various significant fixed point
theorems for metric spaces, such as the Banach contraction principle, Kannan and Meir-
Keeler fixed point theorems, and Caristi-theorem, Kirk’s, among other things. In [7],
Chen and Lin presented an extension of the Meir and Keeler fixed point theorem to soft
metric spaces, which was previously published. Many researchers working on sequence
spaces and summability theory were involved in introducing fuzzy sequence spaces and
studying their many characteristics. When it comes to fuzzy numbers, Nuray and Savaş
[31] defined and explored the Nakano sequences of fuzzy numbers, `F (τ) equipped with
a definite function. Numerous fixed point theorems are effective when applied to a par-
ticular space because they either increase the size of the self-mapping acting on it or the
space itself. We develop and examine the space of null variable exponent second-order
quantum backward difference sequences of soft functions in this paper, which are critical
extensions to the concept of modular spaces. The mappings have been idealized through
extended s−soft functions and this soft function sequence space. The topological and
geometric features of this new space are described, as well as the ideal mappings that
correspond to them. We establish the existence of a Kannan contraction mapping fixed
point functioning in this space and its associated pre-quasi ideal. It’s fascinating that we
give various numerical experiments to show our findings. Additionally, several practical
applications of the existence of solutions to nonlinear difference equations involving soft
functions are discussed.

2. Definitions and Preliminaries:

Definition 2.1. [28] Let U be an initial universe set and E be a set of parameters. A
pair (F,E) is called a soft set (over U) if and only if F is a mapping of E into the set of
all subsets of the set U .

If R is the set of real numbers. We denote the collection of all nonempty bounded
subsets of R by B(R) and E is the set of parameters.

Definition 2.2. [10] A soft real set denoted by (f̃ , A), or simply by f̃ , is a mapping

f̃ : A → B(R). If f̃ is a single-valued mapping on A ⊂ E taking values in R, then f̃ is

called a soft element of R or a soft real number. If f̃ is a single-valued mapping on A ⊂ E
taking values in the set R+ of nonnegative real numbers, then f̃ is called a nonnegative
soft real number. We shall denote the set of nonnegative soft real numbers (corresponding
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to A) by R(A)∗. A constant soft real number c̃ is a soft real number such that for each
a ∈ A, we have c̃(a) = c, where c is some real number.

Definition 2.3. [13] For two soft real numbers f̃ ,g̃, we say that

(a): f̃≤̃g̃ if f̃(a)≤̃g̃(a), for all a ∈ A,

(b): f̃≥̃g̃ if f̃(a)≥̃g̃(a), for all a ∈ A,

(c): f̃ <̃g̃ if f̃(a)<̃g̃(a), for all a ∈ A, and

(d): f̃ >̃g̃ if f̃(a)>̃g̃(a), for all a ∈ A.

Note that the relation ≤̃ is a partial order on R(A). The additive identity and multi-

plicative identity in R(A) are denoted by 0̃ and 1̃, respectively.
The arithmetic operations on R(A) are defined as follows:

(f̃ ⊕ g̃)(λ) =
{
f̃(λ) + g̃(λ) : λ ∈ A

}
,

(f̃ 	 g̃)(λ) =
{
f̃(λ)− g̃(λ) : λ ∈ A

}
,

(f̃ ⊗ g̃)(λ) =
{
f̃(λ)g̃(λ) : λ ∈ A

}
,(

f

g

)
(λ) =

{
f̃(λ)

g̃(λ)
: λ ∈ A and 0 /∈ g̃(λ)

}
.

The absolute value |f̃ | of f̃ ∈ R(A) is defined by

|f̃ |(λ) =
{
|f̃(λ)| : λ ∈ A

}
.

Let d : R(A) × R(A) → R(A)∗, where d(f̃ , g̃) = |f̃ − g̃| for all f̃ , g̃ ∈ R(A). Assume

md : R(A)×R(A)→ R+ is defined by md(f̃ , g̃) = max
λ∈A

d(f̃ , g̃)(λ).

Note that:

(1) (R(A),md) is a complete metric space.

(2) md(f̃ + k̃, g̃ + k̃) = md(f̃ , g̃) for all f̃ , g̃, k̃ ∈ R(A).

(3) md(f̃ + k̃, g̃ + l̃) ≤ md(f̃ , g̃) +md(k̃, l̃).

(4) md(ξf̃ , ξg̃) = |ξ|md(f, g), for all ξ ∈ R.

Definition 2.4. A sequence f̃ = (f̃j) of soft real numbers is said to be

(a): bounded if the set {f̃j : j ∈ N} of soft real numbers is bounded i.e., if

a sequence (f̃j) is bounded, then there are two soft real numbers g̃, l̃ such that

g̃≤̃f̃j≤̃l̃,
(b): convergent to a soft real number f̃0 if for every ε > 0, there exists n0 ∈ N

such that md(f̃j , f̃0) < ε, for all j ≥ j0.

By c0, `∞ and `r, we denote the space of null, bounded and r-absolutely summable se-
quences of real numbers. We indicate the space of all bounded, finite rank linear mappings
from an infinite dimensional Banach space Ω into an infinite dimensional Banach space
Λ by L(Ω,Λ), and F(Ω,Λ) and when Ω = Λ, we inscribe L(Ω) and F(Ω). The space of
approximable and compact bounded linear mappings from Ω into Λ will be denoted by
Υ(Ω,Λ) and Lc(Ω,Λ), and if Ω = Λ, we mark Υ(Ω) and Lc(Ω), respectively.
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Definition 2.5. [37] An s-number function is a mapping s : L(Ω,Λ)→ R+N that gives
all V ∈ L(Ω,Λ) a (sd(V ))∞d=0 satisfies the following conditions:

(a): ‖V ‖ = s0(V ) ≥ s1(V ) ≥ s2(V ) ≥ ... ≥ 0, for every V ∈ L(Ω,Λ),
(b): sl+d−1(V1 +V2) ≤ sl(V1)+sd(V2), for every V1, V2 ∈ L(Ω,Λ) and l, d ∈ N ,
(c): sd(V YW ) ≤ ‖V ‖sd(Y ) ‖W‖, for every W ∈ L(Ω0,Ω), Y ∈ L(Ω,Λ) and

V ∈ L(Λ,Λ0), where Ω0 and Λ0 are arbitrary Banach spaces,
(d): assume V ∈ L(Ω,Λ) and γ ∈ R, then sd(γV ) = |γ|sd(V ),
(e): if rank(V ) ≤ d, then sd(V ) = 0, for all V ∈ L(Ω,Λ),
(f): sl≥a(Ia) = 0 or sl<a(Ia) = 1, where Ia indicates the unit mapping on the

a-dimensional Hilbert space `a2 .

We give here some examples of s-numbers:

(1): The q-th Kolmogorov number, denoted by dq(X), is marked by
dq(X) = infdim J≤q sup ‖f‖≤1 infg∈J ‖Xf − g‖.

(2): The q-th approximation number, indicated by αq(X), is marked by
αq(X) = inf { ‖X − Y ‖ : Y ∈ L(Ω,Λ) and rank(Y ) ≤ q}.

Definition 2.6. [36] Let L be the class of all bounded linear operators within any two
arbitrary Banach spaces. A sub class U of L is said to be a mappings ideal, if every
U(Ω,Λ) = U ∩ L(Ω,Λ) satisfies the following setups:

(i): IΓ ∈ U , where Γ indicates Banach space of one dimension.
(ii): The space U(Ω,Λ) is linear over R.
(iii): IfW ∈ L(Ω0,Ω), X ∈ U(Ω,Λ) and Y ∈ L(Λ,Λ0), then Y XW ∈ U(Ω0,Λ0).

Definition 2.7. [16] A function H ∈ [0,∞)U is said to be a pre-quasi norm on the ideal
U if the following conditions hold:

(1): Assume V ∈ U(Ω,Λ), H(V ) ≥ 0 and H(V ) = 0, if and only if, V = 0,
(2): one has Q ≥ 1 with H(αV ) ≤ D|α|H(V ), for all V ∈ U(Ω,Λ) and α ∈ R,
(3): there are P ≥ 1 such that H(V1 +V2) ≤ P [H(V1)+H(V2)], for all V1, V2 ∈
U(Ω,Λ),

(4): there are σ ≥ 1 so that if V ∈ L(Ω0,Ω), X ∈ U(Ω,Λ) and Y ∈ L(Λ,Λ0)
then H(Y XV ) ≤ σ ‖Y ‖H(X) ‖V ‖.

Theorem 2.8 ([16]). H is a pre-quasi norm on the ideal U , whenever H is a quasi norm
on the ideal U .

Lemma 2.9 ([3]). If τa > 0 and va, ta ∈ R, for all a ∈ N , then |va+ta|τa ≤ 2K−1(|va|τa+
|ta|τa), where K = max{1, supa τa}.

3. Some Characteristics of cS0 (∇2
p, τ)

We have presented in this section sufficient setups of the space of null variable expo-
nent second-order quantum backward difference sequences of soft functions, cS0 (∇2

p, τ),
equipped with the definite function h to be pre-quasi Banach (certain space of sequences
of soft reals, or in short (csss)). We have investigated some algebraic and topological
properties like completeness, solidness, symmetry, convergence-free, etc. The Fatou prop-
erty of various pre-quasi norms h on cS0 (∇2

p, τ) has been studied.

If ω(S) is the space of all sequence spaces of soft reals. Assume τ = (τa) ∈ R+N , where
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R+N is the space of positive real sequences. The space of null variable exponent second-
order quantum backward difference sequences of soft functions is defined as:

cS0 (∇2
p, τ) =

{
ṽ = (ṽa) ∈ ω(S) : lim

a→∞

[
md

(∣∣∇2
p|µṽa|

∣∣ , 0̃)] τaK = 0 , for some µ > 0
}
.

Theorem 3.1. If (τa) ∈ `∞, then

cS0 (∇2
p, τ) =

{
ṽ = (ṽa) ∈ ω(S) : lim

a→∞

[
md

(∣∣∇2
p|µṽa|

∣∣ , 0̃)] τaK = 0 , for any µ > 0
}
.

Proof.

cS0 (∇2
p, τ) =

{
ṽ = (ṽa) ∈ ω(S) : lim

a→∞

[
md

(∣∣∇2
p|µṽa|

∣∣ , 0̃)] τaK = 0 , for some µ > 0
}

=
{
ṽ = (ṽa) ∈ ω(S) : inf

a
|µ|

τa
K lim
a→∞

[
md

(∣∣∇2
p|ṽa|

∣∣ , 0̃)] τaK ≤ 0 , for some µ > 0
}

=
{
ṽ = (ṽa) ∈ ω(S) : lim

a→∞

[
md

(∣∣∇2
p|ṽa|

∣∣ , 0̃)] τaK = 0
}

=
{
ṽ = (ṽa) ∈ ω(S) : lim

a→∞

[
md

(∣∣∇2
p|µṽa|

∣∣ , 0̃)] τaK = 0 , for any µ > 0
}
.

Clearly, if (τa) ∈ `∞, then

cS0 (τ) & cS0 (∇2
p, τ) & cS0 (∇2, τ).

For the strict inclusion. We have (1̃, 1̃, 1̃, · · · ) /∈ cS0 and (1̃, 1̃, 1̃, · · · ) ∈ cS0 (∇2
p, τ), and

(0̃, 1̃, 2̃, · · · ) /∈ cS0 (∇2
p, τ) and (0̃, 1̃, 2̃, · · · ) ∈ cS0 (∇2, τ).

For X = (Xk), a given sequence S(X) denotes the set of all permutation of the elements
of (Xk), that is S(X) =

{
(Xπ(k))

}
.

Definition 3.2. (1): A sequence space of soft numbers U is said to be sym-
metric, if S(X) ∈ U, for all X ∈ U.

(2): A sequence space of soft numbers U is said to be convergence free if (Yk) ∈
U whenever (Xk) ∈ U and Xk = 0̃ implies Yk = 0̃.

Theorem 3.3. If (τa) ∈ `∞, then the space
(
cS0 (∇2

p, τ)
)
h

is not symmetric.

Proof. Consider (Xk) = (

3 times︷ ︸︸ ︷
1̃, ..., 1̃,

3 times︷ ︸︸ ︷
−1̃, ...,−1̃,

6 times︷ ︸︸ ︷
1̃, ..., 1̃,

6 times︷ ︸︸ ︷
−1̃, ...,−1̃,

9 times︷ ︸︸ ︷
1̃, ..., 1̃,

9 times︷ ︸︸ ︷
−1̃, ...,−1̃, ...). Then

(Xk) ∈
(
cS0 (∇2

p, τ)
)
h
. Now if (Yk) is the rearrangement of (Xk) defined by (Yk) =

(1̃,−1̃, 1̃,−1̃, · · · ). Then (Yk) /∈
(
cS0 (∇2

p, τ)
)
h
. Therefore, the space

(
cS0 (∇2

p, τ)
)
h

is not
symmetric.

Theorem 3.4. If (τa) ∈ `∞, then the space
(
cS0 (∇2

p, τ)
)
h

is not convergence free.

Proof. Consider the sequence (Xk) = (1̃, 1̃, · · · ). Then (Xk) ∈
(
cS0 (∇2

p, τ)
)
h
. Again if

(Yk) = (k̃). Clearly, (Yk) /∈
(
cS0 (∇2

p, τ)
)
h
. Hence the space

(
cS0 (∇2

p, τ)
)
h

is not convergence
free.

Let us mark the space of all functions h : U −→ [0,∞) by [0,∞)U.



Kannan Contraction Maps on the Space of Null Variable ... 451

Definition 3.5. [30] If U is a vector space of soft reals. A function h ∈ [0,∞]U is said
to be modular if the following conditions hold:

(a): Assume Ỹ ∈ U, Ỹ = ϑ̃⇔ h(Ỹ ) = 0 with h(Ỹ ) ≥ 0, where ϑ̃ = (0̃, 0̃, 0̃, . . .),

(b): h(ηZ̃) = h(Z̃) verifies, for every Z̃ ∈ U and |η| = 1,

(c): the inequality h(αỸ +(1−α)Z̃) ≤ h(Ỹ )+h(Z̃) satisfies, for every Ỹ , Z̃ ∈ U
and α ∈ [0, 1].

Definition 3.6. The linear space U is called a certain space of sequences of soft reals
(csss), when

(1): {b̃q}q∈N ⊆ U, where b̃q = {0̃, 0̃, ..., 1̃, 0̃, 0̃, ...}, for 1̃ marks at the qth place,

(2): U is solid i.e., if Ỹ = (Ỹq) ∈ ω(S), Z̃ = (Z̃q) ∈ U and |Ỹq|≤̃|Z̃q|, for all

q ∈ N , one has Ỹ ∈ U,

(3): (Ỹ[ q2 ])
∞
q=0 ∈ U, where [ q2 ] indicates the integral part of q2 , assume (Ỹq)

∞
q=0 ∈

U.

Definition 3.7. A subclass Uh of U is said to be a pre-modular (csss), if there is
h ∈ [0,∞)U satisfies the following conditions:

(i): Suppose Ỹ ∈ U, Ỹ = ϑ̃⇔ h(Ỹ ) = 0 with h(Ỹ ) ≥ 0,

(ii): we have Q ≥ 1, the inequality h(αỸ ) ≤ Q|α|h(Ỹ ) satisfies, for all Ỹ ∈ U
and α ∈ R,

(iii): one has P ≥ 1, the inequality h(Ỹ + Z̃) ≤ P (h(Ỹ ) + h(Z̃)) satisfies, for

all Ỹ , Z̃ ∈ U,

(iv): when |Ỹq|≤̃|Z̃q|, for all q ∈ N , we have h((Ỹq)) ≤ h((Z̃q)),

(v): the inequality, h((Ỹq)) ≤ h((Ỹ[ q2 ])) ≤ P0h((Ỹq)) verifies, for some P0 ≥ 1,

(vi): assume E is the space of finite sequences of soft real numbers, one has the
closure of E = Uh,

(vii): we have σ > 0 with h(α̃, 0̃, 0̃, 0̃, ...) ≥ σ|α|h(1̃, 0̃, 0̃, 0̃, ...), where α̃(a) = α,
for every a ∈ A.

Note that the notion of pre-modular vector spaces is more general than modular vector
spaces. Some examples of pre-modular vector spaces but not modular vector spaces.

Example 3.8. The function h(Z̃) = sup
q

[
md

(∣∣∣∇2
p|Z̃q|

∣∣∣ , 0̃)] 4q+1
q+4

on the vector space

cS0

(
∇2
p,
(

4q+1
q+4

))
. As for every Z̃, Ỹ ∈ cS0

(
∇2
p,
(

4q+1
q+4

))
, one has

h

(
Z̃ + Ỹ

2

)
= sup

q

[
md

(∣∣∣∣∣∇2
p

∣∣∣∣∣ Z̃q + Ỹq
2

∣∣∣∣∣
∣∣∣∣∣ , 0̃
)] 4q+1

q+4

≤ 8
4
√

2
(h(Z̃) + h(Ỹ )).

Example 3.9. The function h(Z̃) = sup
q

[
md

(∣∣∣∇2
p|Z̃q|

∣∣∣ , 0̃)] 5q+2
q+1

on the vector space

cS0

(
∇2
p,
(

5q+2
q+1

))
. As for every Z̃, Ỹ ∈ cS0

(
∇2
p,
(

5q+2
q+1

))
, one has

h

(
Z̃ + Ỹ

2

)
= sup

q

[
md

(∣∣∣∣∣∇2
p

∣∣∣∣∣ Z̃q + Ỹq
2

∣∣∣∣∣
∣∣∣∣∣ , 0̃
)] 5q+2

q+1

≤ 4(h(Z̃) + h(Ỹ )).

Some examples of pre-modular vector spaces and modular vector spaces.
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Example 3.10. The function h(Z̃) = sup
q

[
md

(∣∣∣∇2
p|Z̃q|

∣∣∣ , 0̃)] q+1
3q+4

on the vector space

cS0

(
∇2
p,
(
q+1
3q+4

))
. As for every Z̃, Ỹ ∈ cS0

(
∇2
p,
(
q+1
3q+4

))
, one has

h

(
Z̃ + Ỹ

2

)
= sup

q

[
md

(∣∣∣∣∣∇2
p

∣∣∣∣∣ Z̃q + Ỹq
2

∣∣∣∣∣
∣∣∣∣∣ , 0̃
)] q+1

3q+4

≤ 1
4
√

2
(h(Z̃) + h(Ỹ )).

Example 3.11. The function h(Ỹ ) = inf
{
α > 0 : sup

q

[
md

(∣∣∣∣∣∇2
p|
Ỹq
α
|

∣∣∣∣∣ , 0̃
)] 2q+3

q+2

≤ 1
}

is

a pre-modular (modular) on the vector space cS0

(
∇2
p,
(

2q+3
q+2

))
.

Definition 3.12. If U is a (csss). The function h ∈ [0,∞)U is said to be a pre-quasi
norm on U, if it verifies the following settings:

(i): Suppose Ỹ ∈ U, Ỹ = ϑ̃⇔ h(Ỹ ) = 0 with h(Ỹ ) ≥ 0,

(ii): we have Q ≥ 1, the inequality h(αỸ ) ≤ Q|α|h(Ỹ ) satisfies, for all Ỹ ∈ U
and α ∈ R,

(iii): one has P ≥ 1, the inequality h(Ỹ + Z̃) ≤ P (h(Ỹ ) + h(Z̃)) satisfies, for

all Ỹ , Z̃ ∈ U.

Theorem 3.13. Suppose U is a pre-modular (csss), then it is pre-quasi normed (csss).

Theorem 3.14. U is a pre-quasi normed (csss), if it is quasi-normed (csss).

Definition 3.15. (a): The function h on cS0 (∇2
p, τ) is called h-convex, when

h(αỸ + (1− α)Z̃) ≤ αh(Ỹ ) + (1− α)h(Z̃),

for all α ∈ [0, 1] and Ỹ , Z̃ ∈ cS0 (∇2
p, τ).

(b): {Ỹq}q∈N ⊆
(
cS0 (∇2

p, τ)
)
h

is h-convergent to Ỹ ∈
(
cS0 (∇2

p, τ)
)
h
, if and only

if, limq→∞ h(Ỹq − Ỹ ) = 0. If the h-limit exists, then it is unique.

(c): {Ỹq}q∈N ⊆
(
cS0 (∇2

p, τ)
)
h

is h-Cauchy, if limq,r→∞ h(Ỹq − Ỹr) = 0.

(d): Γ ⊂
(
cS0 (∇2

p, τ)
)
h

is h-closed, if for every h-converges {Ỹq}a∈N ⊂ Γ to Ỹ ,

one has Ỹ ∈ Γ.

(e): Γ ⊂
(
cS0 (∇2

p, τ)
)
h

is h-bounded, assume δh(Γ) = sup
{
h(Ỹ − Z̃) : Ỹ , Z̃ ∈

Γ
}
<∞.

(f): The h-ball of radius ε ≥ 0 and center Ỹ , for all Ỹ ∈
(
cS0 (∇2

p, τ)
)
h
, is

denoted by:

Bh(Ỹ , ε) =
{
Z̃ ∈

(
cS0 (∇2

p, τ)
)
h

: h(Ỹ − Z̃) ≤ ε
}
.

(g): A pre-quasi norm h on cS0 (∇2
p, τ) verifies the Fatou property, if for all

sequence {Z̃(q)} ⊆
(
cS0 (∇2

p, τ)
)
h

with limq→∞ h(Z̃(q) − Z̃) = 0 and every Ỹ ∈(
cS0 (∇2

p, τ)
)
h
, we have h(Ỹ − Z̃) ≤ supr infq≥r h(Ỹ − Z̃(q)).
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We will denote the space of all increasing sequences of real numbers by I.

Theorem 3.16.
(
cS0 (∇2

p, τ)
)
h

, where h(Ỹ ) = sup
q

[
md

(∣∣∣∣∣∇2
p

∣∣ Ỹq|∣∣∣ , 0̃)] τqK , for every Ỹ ∈

cS0 (∇2
p, τ), is a pre-modular (csss), if the following conditions are satisfied:

a.: (τq)q∈N ∈ `∞ ∩ I with τ0 > 0,

b.: ∇2
p is an absolute non-decreasing, i.e., if |Z̃i|≤̃|Ỹi| for all i ∈ N, then∣∣∣∇2

p|Z̃i|
∣∣∣≤̃∣∣∣∇2

p|Ỹi|
∣∣∣.

Proof. (i) Clearly, h(Ỹ ) ≥ 0 and h(Ỹ ) = 0⇔ Ỹ = ϑ̃.

(1-i) Assume Ỹ , Z̃ ∈ cS0 (∇2
p, τ). We have

h(Ỹ + Z̃) = sup
q

[
md

(∣∣∣∇2
p|Ỹq + Z̃q|

∣∣∣ , 0̃)] τqK
≤ sup

q

[
md

(∣∣∣∇2
p|Ỹq|

∣∣∣ , 0̃)] τqK + sup
q

[
md

(∣∣∣∇2
p|Z̃q|

∣∣∣ , 0̃)] τqK
= h(Ỹ ) + h(Z̃) <∞,

then Ỹ + Z̃ ∈ cS0 (∇2
p, τ).

(iii) There are P ≥ 1 with h(Ỹ + Z̃) ≤ P (h(Ỹ ) + h(Z̃)), for every Ỹ , Z̃ ∈ cS0 (∇2
p, τ).

(1-ii) If α ∈ R and Ỹ ∈ cS0 (∇2
p, τ), one has

h(αỸ ) = sup
q

[
md

(∣∣∣∇2
p|αỸq|

∣∣∣ , 0̃)] τqK
≤ sup

q
|α|

τq
K sup

q

[
md

(∣∣∣∇2
p|Ỹq|

∣∣∣ , 0̃)] τqK
≤ Q|α|h(Ỹ ) <∞.

Since αỸ ∈ cS0 (∇2
p, τ), hence from parts (1-i) and (1-ii), we have cS0 (∇2

p, τ) is linear. Also

b̃p ∈ cS0 (∇2
p, τ), for every p ∈ N , as h(̃bp) = sup

q

[
md

(∣∣∣∇2
p|(̃bp)q|

∣∣∣ , 0̃)] τqK = 1.

(ii) One has Q = max
{

1, supq |α|
τq
K −1

}
≥ 1 with h(αỸ ) ≤ Q|α|h(Ỹ ), for every Ỹ ∈

cS0 (∇2
p, τ) and α ∈ R.

(2) If |Ỹq| ≤ |Z̃q|, for every q ∈ N and Z̃ ∈ cS0 (∇2
p, τ). We obtain

h(Ỹ ) = sup
q

[
md

(∣∣∣∇2
p|Ỹq|

∣∣∣ , 0̃)] τqK ≤ sup
q

[
md

(∣∣∣∇2
p|Z̃q|

∣∣∣ , 0̃)] τqK = h(Z̃) <∞,

then Ỹ ∈ cS0 (∇2
p, τ).

(iv) Evidently, from (2).
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(3) Assume (Ỹq) ∈ cS0 (∇2
p, τ), one can see

h
(

(Ỹ[ q2 ])
)

= sup
q

[
md

(∣∣∣∇2
p|Ỹ[ q2 ]|

∣∣∣ , 0̃)] τqK
≤ max

{
sup
q

[
md

(∣∣∣∇2
p|Ỹq|

∣∣∣ , 0̃)] τ2qK , sup
q

[
md

(∣∣∣∇2
p|Ỹq|

∣∣∣ , 0̃)] τ2q+1
K

}

≤ sup
q

[
md

(∣∣∣∇2
p|Ỹq|

∣∣∣ , 0̃)] τqK = h
(

(Ỹq)
)
,

then (Ỹ[ q2 ]) ∈ cS0 (∇2
p, τ). (v) From (3), one has P0 = 1.

(vi) Clearly, the closure of E = cS0 (∇2
p, τ).

(vii) One gets 0 < σ ≤ supq |α|
τq
K −1, for α 6= 0 or σ > 0, for α = 0 with

h(α̃, 0̃, 0̃, 0̃, ...) ≥ σ|α|h(1̃, 0̃, 0̃, 0̃, ...).

Theorem 3.17. If the conditions of Theorem 3.16 are satisfied, then
(
cS0 (∇2

p, τ)
)
h

is a

pre-quasi Banach (csss), where h(Ỹ ) = sup
q

[
md

(∣∣∣∇2
p|Ỹq|

∣∣∣ , 0̃)] τqK , for all Y ∈ cS0 (∇2
p, τ).

Proof. According to Theorem 3.16 and Theorem 3.13, the space
(
cS0 (∇2

p, τ)
)
h

is a pre-

quasi normed (csss). If Ỹ l = (Ỹq
l
)∞q=0 is a Cauchy sequence in

(
cS0 (∇2

p, τ)
)
h
, hence for

all ε ∈ (0, 1), then l0 ∈ N such that for every l,m ≥ l0, we have

h(Ỹ l − Ỹ m) = sup
q

[
md

(∣∣∣∇2
p|Ỹ lq − Ỹ mq |

∣∣∣ , 0̃)] τqK < ε.

Therefore, md

(∣∣∣∇2
p|Ỹ lq − Ỹ mq |

∣∣∣ , 0̃) < ε. Since (R(A),md) is a complete metric space. So

(Ỹ mq ) is a Cauchy sequence in R(A), for fixed q ∈ N . This gives limm→∞ Ỹ mq =̃Ỹ 0
q , for

fixed q ∈ N . Then h(Ỹ l − Ỹ 0) < ε, for all l ≥ l0. As h(Ỹ 0) = h(Ỹ 0 − Ỹ l + Ỹ l) ≤
h(Ỹ l − Ỹ 0) + h(Ỹ l) <∞. Then Ỹ 0 ∈ cS0 (∇2

p, τ).

Theorem 3.18. The function h(Ỹ ) = sup
q

[
md

(∣∣∣∇2
p|Ỹq|

∣∣∣ , 0̃)] τqK satisfies the Fatou prop-

erty, when the conditions of Theorem 3.16 are satisfied.

Proof. Let {Z̃r} ⊆
(
cS0 (∇2

p, τ)
)
h

such that limr→∞ h(Z̃r − Z̃) = 0. Since
(
cS0 (∇2

p, τ)
)
h

is

a pre-quasi closed space, we have Z̃ ∈
(
cS0 (∇2

p, τ)
)
h
. For every Ỹ ∈

(
cS0 (∇2

p, τ)
)
h
, then

h(Ỹ − Z̃) = sup
q

[
md

(∣∣∣∇2
p|Ỹq − Z̃q|

∣∣∣ , 0̃)] τqK
≤ sup

q

[
md

(∣∣∣∇2
p|Ỹq − Z̃rq |

∣∣∣ , 0̃)] τqK + sup
q

[
md

(∣∣∣∇2
p|Z̃rq − Z̃q|

∣∣∣ , 0̃)] τqK
≤ sup

m
inf
r≥m

h(Ỹ − Z̃r).
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Theorem 3.19. The function h(Ỹ ) = sup
q

[
md

(∣∣∣∇2
p|Ỹq|

∣∣∣ , 0̃)]τq does not satisfy the Fatou

property, for all Ỹ ∈ cS0 (∇2
p, τ), if the conditions of Theorem 3.16 are satisfied with τ0 > 1.

Proof. Assume {Z̃r} ⊆
(
cS0 (∇2

p, τ)
)
h

such that limr→∞ h(Z̃r − Z̃) = 0. As
(
cS0 (∇2

p, τ)
)
h

is a pre-quasi closed space, we have Z̃ ∈
(
cS0 (∇2

p, τ)
)
h
. For all Z̃ ∈

(
cS0 (∇2

p, τ)
)
h
, then

h(Ỹ − Z̃) = sup
q

[
md

(∣∣∣∇2
p|Ỹq − Z̃q|

∣∣∣ , 0̃)]τq
≤ 2supq τq−1

(
sup
q

[
md

(∣∣∣∇2
p|Ỹq − Z̃rq |

∣∣∣ , 0̃)]τq+ sup
q

[
md

(∣∣∣∇2
p|Z̃rq − Z̃q|

∣∣∣ , 0̃)]τq)
≤ 2supq τq−1 sup

m
inf
r≥m

h(Ỹ − Z̃r).

Example 3.20. For (τq) ∈ [1,∞)N , the function

h(Ỹ ) = inf

{
α > 0 : sup

q

[
md

(∣∣∣∣∣∇2
p

∣∣∣∣∣ Ỹqα
∣∣∣∣∣
∣∣∣∣∣ , 0̃
)]τq

≤ 1

}
is a norm on cS0 (∇2

p, τ).

Example 3.21. The function h(Ỹ ) = sup
q

[
md

(∣∣∣∇2
p|Ỹq|

∣∣∣ , 0̃)] 3q+2
q+3

is a pre-quasi norm

(not a norm) on cS0

(
∇2
p, (

3q+2
q+3 )∞q=0

)
.

Example 3.22. The function h(Ỹ ) = sup
q

[
md

(∣∣∣∇2
p|Ỹq|

∣∣∣ , 0̃)] 3q+2
q+1

is a pre-quasi norm

(not a quasi norm) on cS0

(
∇2
p, (

3q+2
q+1 )∞q=0

)
.

4. Structure of Mappings’ Ideal

The structure of the mappings’ ideal by
(
cS0 (∇2

p, τ)
)
h
, where

h(g̃) = sup
q

[
md

(∣∣∇2
p|g̃q|

∣∣ , 0̃)] τqK ,

for all g̃ ∈ cS0 (∇2
p, τ), and extended s−soft functions have been explained. We study

enough setups on
(
cS0 (∇2

p, τ)
)
h

such that the class Ã(
cS0 (∇2

p,τ)

)
h

is complete. We inves-

tigate conditions setups (not necessary) on
(
cS0 (∇2

p, τ)
)
h

such that the closure of F =

Ãα(
cS0 (∇2

p,τ)

)
h

. This gives a negative answer of Rhoades [39] open problem about the

linearity of s− type
(
cS0 (∇2

p, τ)
)
h

spaces. We explain enough setups on
(
cS0 (∇2

p, τ)
)
h
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such that Ã(
cS0 (∇2

p,τ)

)
h

is strictly contained for different powers and backward general-

ized differences, the class Ã(
cS0 (∇2

p,τ)

)
h

is simple, and the space of every bounded linear

mappings which sequence of eigenvalues in
(
cS0 (∇2

p, τ)
)
h

equals Ã(
cS0 (∇2

p,τ)

)
h

.

Remark 4.1.

ÃU :=
{
ÃU(Ω,Λ)

}
, where ÃU(Ω,Λ) :=

{
V ∈ L(Ω,Λ) : ((s̃j(V ))∞j=0 ∈ U

}
,

ÃαU :=
{
ÃαU(Ω,Λ)

}
, where ÃαU(Ω,Λ) :=

{
V ∈ L(Ω,Λ) : ((α̃j(V ))∞j=0 ∈ U

}
,

ÃdU :=
{
ÃdU(Ω,Λ)

}
, where ÃdU(Ω,Λ) :=

{
V ∈ L(Ω,Λ) : ((d̃j(V ))∞j=0 ∈ U

}
.

Theorem 4.2. If U is a (csss), then ÃU is a mappings’ ideal.

Proof. (i) Suppose V ∈ F(Ω,Λ) and rank(V ) = n, for every n ∈ N , since b̃i ∈ U, for
every i ∈ N , and U is a linear space, then

(s̃i(V ))∞i=0 = (s̃0(V ), s̃1(V ), ..., ˜sn−1(V ), 0̃, 0̃, 0̃, ...) =
∑n−1
i=0 s̃i(V )̃bi ∈ U; for that V ∈

ÃU(Ω,Λ) then F(Ω,Λ) ⊆ ÃU(Ω,Λ).

(ii) If V1, V2 ∈ ÃU(Ω,Λ) and β1, β2 ∈ R so by Definition 3.6 condition (3) one has

( ˜s[ i2 ](V1))∞i=0 ∈ U and ( ˜s[ i2 ](V1))∞i=0 ∈ U, as i ≥ 2[ i2 ], by the definition of s−numbers and

si(V ) is decreasing, we have

˜si(β1V1+β2V2) ≤ ˜s2[ i2 ](β1V1+β2V2) ≤ ˜s[ i2 ](β1V1) + s[ i2 ](β2V2) = |β1| ˜s[ i2 ](V1)+|β2| ˜s[ i2 ](V2)

for all i ∈ N . By Definition 3.6 part (2) and U is a linear space, we get ( ˜si(β1V1 + β2V2))∞i=0

∈ U, hence β1V1 + β2V2 ∈ ÃU(Ω,Λ).

(iii) Assume P ∈ L(Ω0,Ω), T ∈ ÃU(Ω,Λ) and R ∈ L(Λ,Λ0), then

(s̃i(T ))∞i=0 ∈ U and since ˜si(RTP ) ≤ ‖R‖s̃i(T ) ‖P‖, from Definition 3.6 parts (1) and
(2), then

( ˜si(RTP ))∞i=0 ∈ U, then RTP ∈ ÃU(Ω0,Λ0).

In view of Theorem 3.16 and Theorem 4.2, one has the following theorem.

Theorem 4.3. If the conditions of Theorem 3.16 are satisfied, then Ã(
cS0 (∇2

p,τ)

)
h

is a

mappings’ ideal.

Theorem 4.4. If the conditions of Theorem 3.16 are satisfied, then the function H is

a pre-quasi norm on Ã(
cS0 (∇2

p,τ)

)
h

, with H(Z̃) = sup
q

[
md

(∣∣∣∇2
p|s̃q(Z)|

∣∣∣ , 0̃)] τqK , for every

Z̃ ∈ Ã(
cS0 (∇2

p,τ)

)
h

(Ω,Λ).
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Proof. (1): Suppose Z ∈ Ã(
cS0 (∇2

p,τ)

)
h

(Ω,Λ), H(Z) = sup
q

[
md

(∣∣∣∇2
p|s̃q(Z)|

∣∣∣ , 0̃)] τqK
≥ 0 and H(Z) = sup

q

[
md

(∣∣∣∇2
p|s̃q(Z)|

∣∣∣ , 0̃)] τqK = 0, if and only if, s̃q(Z) = 0̃, for

all q ∈ N , if and only if, Z = 0,

(2): one hasQ ≥ 1 withH(αX) = sup
q

[
md

(∣∣∣∇2
p| ˜sq(αX)|

∣∣∣ , 0̃)] τqK ≤ Q|α|H(X),

for all X ∈ Ã(
cS0 (∇2

p,τ)

)
h

(Ω,Λ) and α ∈ R,

(3): for X1, X2 ∈ Ã(
cS0 (∇2

p,τ)

)
h

(Ω,Λ), we have

H(X1 +X2) = sup
q

[
md

(∣∣∣∇2
p| ˜sq(X1 +X2)|

∣∣∣ , 0̃)] τqK
≤
(
h( ˜s[ q2 ](X1))∞q=0 + h( ˜s[ q2 ](X2))∞q=0

)
≤
(
h(s̃q(X1))∞q=0 + h(s̃q(X2))∞q=0

)
,

(4): there are % ≥ 1, if X ∈ L(Ω0,Ω), Y ∈ Ã(
cS0 (∇2

p,τ)

)
h

(Ω,Λ) and Z ∈

L(Λ,Λ0), then

H(ZY X) = sup
q

[
md

(∣∣∣∇2
p| ˜sq(ZY X)|

∣∣∣ , 0̃)] τqK ≤ h( ‖X‖ ‖Z‖s̃q(Y ))∞q=0 ≤ % ‖X‖H(Y ) ‖Z‖.

In the next theorems, we will use the notation
(
Ã(

cS0 (∇2
p,τ)

)
h

, H
)

, where H(V ) =

h
(

(s̃q(V ))∞q=0

)
, for all V ∈ Ã(

cS0 (∇2
p,τ)

)
h

.

Theorem 4.5. Assume the conditions of Theorem 3.16 are satisfied, then
(
Ã(

cS0 (∇2
p,τ)

)
h

, H
)

is a pre-quasi Banach mappings ideal.

Proof. Let (Va)a∈N be a Cauchy sequence in Ã(
cS0 (∇2

p,τ)

)
h

(Ω,Λ). Since L(Ω,Λ) ⊇

S(
cS0 (∇2

p,τ)

)
h

(Ω,Λ), then

H(Vr−Va) = sup
q

[
md

(∣∣∣∇2
p| ˜sq(Vr − Va)|

∣∣∣ , 0̃)] τqK≥ h( ˜s0(Vr − Va), 0̃, 0̃, 0̃, ...
)
≥ ‖Vr−Va‖

τ0
K ,

this implies (Va)a∈N is a Cauchy sequence in L(Ω,Λ). Since L(Ω,Λ) is a Banach space,

one has V ∈ L(Ω,Λ) such that lim
a→∞

‖Va − V ‖ = 0 and as (s̃q(Va))∞q=0 ∈
(
cS0 (∇2

p, τ)
)
h
,
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for every a ∈ N and
(
cS0 (∇2

p, τ)
)
h

is a pre-modular (csss). Then we have

H(V ) = h
(

(s̃q(V ))∞q=0

)
≤ h

(
( ˜s[ q2 ](V − Va)

)∞
q=0

) + h
(

(s̃[ q2 ](Va)∞q=0)
)

≤ h
(

( ‖Va − V ‖1̃)∞q=0

)
+ h
(

(s̃q(Va))∞q=0

)
< ε,

hence one has (s̃q(V ))∞q=0 ∈
(
cS0 (∇2

p, τ)
)
h
, then V ∈ Ã(

cS0 (∇2
p,τ)

)
h

(Ω,Λ).

Definition 4.6. A pre-quasi norm H on the ideal ÃUh
satisfies the Fatou property if for

all {Tq}q∈N ⊆ ÃUh
(Ω,Λ) such that limq→∞H(Tq − T ) = 0 and M ∈ ÃUh

(Ω,Λ), then

H(M − T ) ≤ sup
q

inf
j≥q

H(M − Tj).

Theorem 4.7. If the conditions of Theorem 3.16 are satisfied, then

Ã(
cS0 (∇2

p,τ)

)
h

, H


does not satisfy the Fatou property.

Proof. Let {Tq}q∈N ⊆ Ã(
cS0 (∇2

p,τ)

)
h

(Ω,Λ) with limq→∞H(Tq−T ) = 0. Since Ã(
cS0 (∇2

p,τ)

)
h

is a pre-quasi closed ideal, then T ∈ Ã(
cS0 (∇2

p,τ)

)
h

(Ω,Λ), hence for all M ∈ Ã(
cS0 (∇2

p,τ)

)
h

(Ω,Λ),

we have

H(M − T ) = sup
q

[
md

(∣∣∣∇2
p

˜sq(M − T )
∣∣∣ , 0̃)] τqK

≤ sup
q

[
md

(∣∣∣∇2
p

˜s[ q2 ](M − Ti)
∣∣∣ , 0̃)] τqK + sup

q

[
md

(∣∣∣∇2
p

˜s[ q2 ](Ti − T )
∣∣∣ , 0̃)] τqK

≤ sup
r

inf
i≥r

sup
q

[
md

(∣∣∣∇2
p

˜sq(M − Ti)
∣∣∣ , 0̃)] τqK .

Theorem 4.8. Ãα(
cS0 (∇2

p,τ)

)
h

(Ω,Λ) = the closure of F(Ω,Λ), if the conditions of Theo-

rem 3.16 are satisfied. But the converse is not necessarily true.

Proof. As b̃x ∈
(
cS0 (∇2

p, τ)
)
h
, for all x ∈ N and

(
cS0 (∇2

p, τ)
)
h

is a linear space. If Z ∈

F(Ω,Λ), one has (α̃x(Z))∞x=0 ∈ E. Then the closure of F(Ω,Λ) ⊆ Ãα(
cS0 (∇2

p,τ)

)
h

(Ω,Λ).

Suppose Z ∈ Ãα(
cS0 (∇2

p,τ)

)
h

(Ω,Λ), one has (α̃x(Z))∞x=0∈
(
cS0 (∇2

p, τ)
)
h
. Since h(α̃x(Z))∞x=0

<∞, if ρ ∈ (0, 1), one has x0 ∈ N − {0} so that h((α̃x(Z))∞x=x0
) < ρ

4 . As (α̃x(Z))∞x=0 is
decreasing, one gets

2x0
sup

x=x0+1

[
md

(∣∣∣∇2
p

˜α2x0
(Z)
∣∣∣ , 0̃)] τxK ≤ 2x0

sup
x=x0+1

[
md

(∣∣∣∇2
pα̃x(Z)

∣∣∣ , 0̃)] τxK
≤ ∞

sup
x=x0

[
md

(∣∣∣∇2
pα̃x(Z)

∣∣∣ , 0̃)] τxK <
ρ

4
.

(4.1)
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Then one has Y ∈ F2x0(Ω,Λ) such that rank(Y ) ≤ 2x0 and

3x0
sup

x=2x0+1

[
md

(∣∣∣∇2
p

˜‖Z − Y ‖
∣∣∣ , 0̃)] τxK ≤ 2x0

sup
x=x0+1

[
md

(∣∣∣∇2
p

˜‖Z − Y ‖
∣∣∣ , 0̃)] τxK <

ρ

4
,

(4.2)

as (τq)q∈N ∈ `∞ ∩ I with τ0 > 0, take

x0
sup
x=0

[
md

(∣∣∣∇2
p

˜‖Z − Y ‖
∣∣∣ , 0̃)] τxK <

ρ

4
. (4.3)

According to inequalities (4.1)-(4.3), then

d(Z, Y ) =
∞

sup
x=0

[
md

(∣∣∣∇2
p

˜αx(Z − Y )
∣∣∣ , 0̃)] τxK

≤ 3x0−1
sup
x=0

[
md

(∣∣∣∇2
p

˜αx(Z − Y )
∣∣∣ , 0̃)] τxK +

∞
sup
x=3x0

[
md

(∣∣∣∇2
p

˜αx(Z − Y )
∣∣∣ , 0̃)] τxK

≤ 3x0
sup
x=0

[
md

(∣∣∣∇2
p

˜‖Z − Y ‖
∣∣∣ , 0̃)] τxK +

∞
sup
x=x0

[
md

(∣∣∣∇2
p

˜αx+2x0
(Z − Y )

∣∣∣ , 0̃)] τx+2x0
K

≤ 3x0
sup
x=0

[
md

(∣∣∣∇2
p

˜‖Z − Y ‖
∣∣∣ , 0̃)] τxK +

∞
sup
x=x0

[
md

(∣∣∣∇2
pα̃x(Z)

∣∣∣ , 0̃)] τxK
≤ 3

x0
sup
x=0

[
md

(∣∣∣∇2
p

˜‖Z − Y ‖
∣∣∣ , 0̃)] τxK +

∞
sup
x=x0

[
md

(∣∣∣∇2
pα̃x(Z)

∣∣∣ , 0̃)] τxK < ρ.

This implies Ãα(
cS0 (∇2

p,τ)

)
h

(Ω,Λ) ⊆ the closure of F(Ω,Λ). Contrarily, one has a counter-

example as I3 ∈ Ãα(
cS0 (∇2

p,(0,0,1,1,··· ))
(Ω,Λ), but τ0 > 0 is not satisfied.

Theorem 4.9. Assume the conditions of Theorem 3.16 are satisfied with τ
(1)
x < τ

(2)
x , for

every x ∈ N , then

Ã(
cS0 (∇2

q,(τ
(1)
x ))

)
h

(Ω,Λ) & Ã(
cS0 (∇2,(τ

(2)
x )

)
h

(Ω,Λ) $ L(Ω,Λ).

Proof. Suppose Z ∈ Ã(
cS0 (∇2

q,(τ
(1)
x )

)
h

(Ω,Λ), then (s̃x(Z)) ∈
(
cS0 (∇2

q, (τ
(1)
x )
)
h
. We have

lim
x→∞

[
md

(∣∣∣∇2s̃x(Z)
∣∣∣ , 0̃)]τ(2)

x

= lim
x→∞

[
md

(∣∣∣∇2
q s̃x(Z)

∣∣∣ , 0̃)]τ(1)
x

= 0,

then Z ∈ Ã(
cS0 (∇2,(τ

(2)
x ))

)
h

(Ω,Λ). Next, if we take (s̃x(Z))∞x=0 = (0̃, 1̃, 2̃, · · · ), one has

Z ∈ L(Ω,Λ) so that

lim
x→∞

[
md

(∣∣∣∇2
q s̃x(Z)

∣∣∣ , 0̃)]τ(1)
x

6= 0,

and

lim
x→∞

[
md

(∣∣∣∇2s̃x(Z)
∣∣∣ , 0̃)]τ(2)

x

= 0.



460 Thai J. Math. Vol. 21 (2023) /A.A. Bakery

Therefore, Z /∈ Ã(
cS0 (∇2

q,(τ
(1)
x ))

)
h

(Ω,Λ) and Z ∈ Ã(
cS0 (∇2,(τ

(2)
x ))

)
h

(Ω,Λ).

Evidently, Ã(
cS0 (∇2,(τ

(2)
x ))

)
h

(Ω,Λ) ⊂ L(Ω,Λ). After, if we choose (s̃x(Z))∞x=0 so that(
∇2s̃x(Z)

)
= (1̃, 1̃, · · · ). One has Z ∈ L(Ω,Λ) such that Z /∈ Ã(

χF0 (∇2
q,(τ

(2)
x )

)
h

(Ω,Λ).

Lemma 4.10 ([36]). Suppose B ∈ L(Ω,Λ) and B /∈ Υ(Ω,Λ), then D ∈ L(Ω) and
M ∈ L(Λ) with MBDeb = eb, with b ∈ N .

Theorem 4.11 ([36]). In general, one has

F(Ω) & Υ(Ω) & Lc(Ω) & L(Ω).

Theorem 4.12. If the conditions of Theorem 3.16 are satisfied with τ
(1)
x < τ

(2)
x , for all

x ∈ N , then

L
(
Ã(

cS0 (∇2,(τ
(2)
x ))

)
h

(Ω,Λ), Ã(
cS0 (∇2

q,(τ
(1)
x ))

)
h

(Ω,Λ)
)

= Υ
(
Ã(

cS0 (∇2,(τ
(2)
x ))

)
h

(Ω,Λ), Ã(
cS0 (∇2

q,(τ
(1)
x ))

)
h

(Ω,Λ)
)
.

Proof. Let X ∈ L
(
Ã(

cS0 (∇2,(τ
(2)
x ))

)
h

(Ω,Λ), Ã(
cS0 (∇2

q,(τ
(1)
x ))

)
h

(Ω,Λ)
)

and

X /∈ Υ
(
Ã(

cS0 (∇2,(τ
(2)
x ))

)
h

(Ω,Λ), Ã(
cS0 (∇2

q,(τ
(1)
x ))

)
h

(Ω,Λ)
)

. In view of Lemma 4.10, one has

Y ∈ L
(
Ã(

cS0 (∇2,(τ
(2)
x ))

)
h

(Ω,Λ)
)

and Z ∈ L
(
Ã(

cS0 (∇2
q,(τ

(1)
x ))

)
h

(Ω,Λ)
)

so that ZXY Ib = Ib,

then with b ∈ N , we have

‖Ib‖Ã
(cS0 (∇2

q,(τ
(1)
x )))

h

(Ω,Λ) = sup
x

[
md

(∣∣∣∇2
q s̃x(Ib)

∣∣∣ , 0̃)]τ(1)
x

≤ ‖ZXY ‖‖Ib‖Ã
(cS0 (∇2,(τ

(2)
x )))

h

(Ω,Λ)

≤ sup
x

[
md

(∣∣∣∇2s̃x(Ib)
∣∣∣ , 0̃)]τ(2)

x

.

Which contradicts Theorem 4.9. AsX ∈ Υ
(
Ã(

cS0 (∇2,(τ
(2)
x ))

)
h

(Ω,Λ), Ã(
cS0 (∇2

q,(τ
(1)
x ))

)
h

(Ω,Λ)
)

.

Corollary 4.13. Suppose the conditions of Theorem 3.16 are satisfied with τ
(1)
x < τ

(2)
x ,

for every x ∈ N , then

L
(
Ã(

cS0 (∇2,(τ
(2)
x ))

)
h

(Ω,Λ), Ã(
cS0 (∇2

q,(τ
(1)
x ))

)
h

(Ω,Λ)
)

= Lc
(
Ã(

cS0 (∇2,(τ
(2)
x ))

)
h

(Ω,Λ), Ã(
cS0 (∇2

q,(τ
(1)
x ))

)
h

(Ω,Λ)
)
.

Proof. Obviously, since Υ ⊂ Lc.

Definition 4.14. [36] A Banach space Ω called simple if there is only one non-trivial
closed ideal in L(Ω).
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Theorem 4.15. Assume the conditions of Theorem 3.16 are verified, then Ã(
cS0 (∇2

p,τ)

)
h

is simple.

Proof. Let X ∈ Lc(Ã(
cS0 (∇2

p,τ)

)
h

(Ω,Λ)) and X /∈ Υ(Ã(
cS0 (∇2

p,τ)

)
h

(Ω,Λ)). From Lemma

4.10, there exist Y, Z ∈ L(Ã(
cS0 (∇2

p,τ)

)
h

(Ω,Λ)) with ZXY Ib = Ib. Which implies

IÃ(
cS0 (∇2

p,τ)

)
h

(Ω,Λ) ∈ Lc(Ã(
cS0 (∇2

p,τ)

)
h

(Ω,Λ)). Then

L(Ã(
cS0 (∇2

p,τ)

)
h

(Ω,Λ)) = Lc(Ã(
cS0 (∇2

p,τ)

)
h

(Ω,Λ)),

then Ã(
cS0 (∇2

p,τ)

)
h

is a simple Banach space.

Remark 4.16.(
ÃU

)λ
:=
{(
ÃU

)λ
(Ω,Λ); Ω and Λ are Banach Spaces

}
, where(

ÃU

)λ
(Ω,Λ) =

{
X ∈ L(Ω,Λ) : ((λx(X))∞x=0 ∈ U and ‖X −md(λx(X), 0̃)‖

is not invertible, with x ∈ N
}
.

Theorem 4.17. If the conditions of Theorem 3.16 are satisfied, thenÃ(
cS0 (∇2

p,τ)

)
h

λ

(Ω,Λ) = Ã(
cS0 (∇2

p,τ)

)
h

(Ω,Λ).

Proof. Let X ∈

Ã(
cS0 (∇2

p,τ)

)
h

λ

(Ω,Λ), then (λx(X))∞x=0 ∈
(
cS0 (∇2

p, τ)
)
h

and ‖X −

md(λx(X), 0̃)I‖ = 0, for all x ∈ N . Therefore, lim
q→∞

[
md

(∣∣∇2
p|λq(X)|

∣∣ , 0̃)] τqK = 0. One

has X = md(λx(X), 0̃)I, for every x ∈ N , so

md(s̃x(X), 0̃) = md(
˜sx(md(λx(X), 0̃)I), 0̃) = md(λx(X), 0̃),

for every x ∈ N . Hence (s̃x(X))∞x=0 ∈
(
cS0 (∇2

p, τ)
)
h
, then X ∈ Ã(

cS0 (∇2
p,τ)

)
h

(Ω,Λ).

After, assume X ∈ Ã(
cS0 (∇2

p,τ)

)
h

(Ω,Λ). Hence (s̃x(X))∞x=0 ∈
(
cS0 (∇2

p, τ)
)
h
. We have

lim
q→∞

[
md

(∣∣∣∇2
p|s̃q(X)|

∣∣∣ , 0̃)] τqK = 0.

As ∇2
p is continuous, then limx→∞md(s̃x(X), 0̃) = 0. Suppose ‖X − md(s̃x(X), 0̃)I‖−1

exists, with x ∈ N . Hence ‖X −md(s̃x(X), 0̃)I‖−1 exists and bounded, for every x ∈ N .
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As limx→∞ ‖X−md(s̃x(X), 0̃)I‖−1 = ‖X‖−1 exists and bounded. As
(
Ã(

cS0 (∇2
p,τ)

)
h

, H
)

is a pre-quasi Mappings ideal, one gets

I = XX−1 ∈ Ã(
cS0 (∇2

p,τ)

)
h

(Ω,Λ)⇒ (s̃x(I))∞x=0 ∈ cS0 (∇2
p, τ)⇒ lim

x→∞
md(s̃x(I), 0̃) = 0.

We have a contradiction, since limx→∞md(s̃x(I), 0̃) = 1. Then ‖X−md(s̃x(X), 0̃)I‖ = 0,

with x ∈ N . Which proves that X ∈

Ã(
cS0 (∇2

p,τ)

)
h

λ

(Ω,Λ).

Theorem 4.18. For s− type Uh :=
{
f = (s̃r(X)) ∈ ω(S) : X ∈ L(Ω,Λ) and h(f) <

∞
}
. If ÃUh

is a mappings’ ideal, then the following conditions are verified:

1. E ⊂ s− type Uh.

2. Assume
(
s̃r(X1)

)∞
r=0
∈ s− type Uh and

(
s̃r(X2)

)∞
r=0
∈ s− type Uh, then(

˜sr(X1 +X2)
)∞
r=0
∈ s− type Uh.

3. If λ ∈ R and
(
s̃r(X)

)∞
r=0
∈ s− type Uh, then |λ|

(
s̃r(X)

)∞
r=0
∈ s− type Uh.

4. The sequence space Uh is solid. i.e., if
(
s̃r(Y )

)∞
r=0
∈ s− type Uh and s̃r(X) ≤

s̃r(Y ), for all r ∈ N and X,Y ∈ L(Ω,Λ), then
(
s̃r(X)

)∞
r=0
∈ s− type Uh.

Proof. If ÃUh
is a mappings ideal.

(i): We have F(Ω,Λ) ⊂ ÃUh
(Ω,Λ). Hence for all X ∈ F(Ω,Λ), we have(

s̃r(X)
)∞
r=0
∈ E. This gives

(
s̃r(X)

)∞
r=0
∈ s − type Uh. Hence E ⊂ s− type

Uh.
(ii): The space ÃUh

(Ω,Λ) is linear over R. Hence for each λ ∈ R and X1, X2 ∈
ÃUh

(Ω,Λ), we have X1 +X2 ∈ ÃUh
(Ω,Λ) and λX1 ∈ ÃUh

(Ω,Λ). This implies(
s̃r(X1)

)∞
r=0
∈ s− type Uh and

(
s̃r(X2)

)∞
r=0
∈ s− type Uh

⇒
(

˜sr(X1 +X2)
)∞
r=0
∈ s− type Uh

and

λ ∈ R and
(
s̃r(X1)

)∞
r=0
∈ s− type Uh ⇒ |λ|

(
s̃r(X1)

)∞
r=0
∈ s− type Uh.

(iii): If A ∈ L(Ω0,Ω), B ∈ ÃUh
(Ω,Λ) and D ∈ L(Λ,Λ0), then DBA ∈

ÃUh
(Ω0,Λ0), where Ω0 and Λ0 are arbitrary Banach spaces. Therefore, since(

s̃r(B)
)∞
r=0
∈ s− type Uh, then

(
˜sr(DBA)

)∞
r=0
∈ s− type Uh.

Since ˜sr(DBA)≤̃ ‖D‖s̃r(B) ‖A‖. By using condition 3, if
(
‖D‖ ‖A‖s̃r(B)

)∞
r=0
∈

Uh, we have
(

˜sr(DBA)
)∞
r=0
∈ s− type Uh. This means s− type Uh is solid.
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In view of Theorem 4.3 and Theorem 4.18, we conclude the following properties of the
s− type

(
cS0 (∇2

p, τ)
)
h

space.

Theorem 4.19. If s−type
(
cS0 (∇2

p, τ)
)
h

:=
{
f = (s̃r(X)) ∈ ω(S) : X ∈ L(Ω,Λ) and h(f)

<∞
}
,

then the following conditions are verified:

1. E ⊂ s− type
(
cS0 (∇2

p, τ)
)
h

.

2. Assume
(
s̃r(X1)

)∞
r=0
∈ s− type

(
cS0 (∇2

p, τ)
)
h

and
(
s̃r(X2)

)∞
r=0
∈ s− type(

cS0 (∇2
p, τ)

)
h

, then
(

˜sr(X1 +X2)
)∞
r=0
∈ s− type

(
cS0 (∇2

p, τ)
)
h

.

3. If λ ∈ R and
(
s̃r(X)

)∞
r=0
∈ s− type

(
cS0 (∇2

p, τ)
)
h

, then |λ|
(
s̃r(X)

)∞
r=0
∈ s−

type
(
cS0 (∇2

p, τ)
)
h

.

4. The sequence space
(
cS0 (∇2

p, τ)
)
h

is solid. i.e., if
(
s̃r(Y )

)∞
r=0
∈ s− type

(
cS0 (∇2

p, τ)
)
h

and s̃r(X)≤̃s̃r(Y ), for all r ∈ N and X,Y ∈ L(Ω,Λ), then
(
s̃r(X)

)∞
r=0
∈ s−

type
(
cS0 (∇2

p, τ)
)
h

.

Theorem 4.20. The space Ã(cS0 (∇2
q,τ))

h

is not mappings’ ideal, if the conditions (a) and

(c) of Theorem 3.16 are satisfied

Proof. If we choose m = 1, n = 1, wk = 1̃, vk = wk for k = 3s or vk = 0̃, otherwise, for
all s, k ∈ N . We have |vk|≤̃|wk|, for all k ∈ N , w ∈

(
cS0 (∇2

p, τ)
)
h

and v /∈
(
cS0 (∇2

p, τ)
)
h
.

Hence the space
(
cS0 (∇2

p, τ)
)
h

is not solid.

5. Kannan Contraction Mapping on cS0 (∇2
p, τ)

In this section, we look at how to configure
(
cS0 (∇2

p, τ)
)
h

with different h so that there

is only one fixed point of Kannan contraction mapping. We construct the existence of a
fixed point of Kannan contraction mapping acting on this space and its associated pre-
quasi ideal. Interestingly, several numerical experiments are presented to illustrate our
results.

Definition 5.1. An operator V : Uh → Uh is said to be a Kannan h-contraction, if one

gets α ∈ [0, 1
2 ) with h(V Ỹ − V Z̃) ≤ α(h(V Ỹ − Ỹ ) + h(V Z̃ − Z̃)), for all Ỹ , Z̃ ∈ Uh.

An element Ỹ ∈ Uh is called a fixed point of V , when V (Ỹ ) = Ỹ .

Theorem 5.2. If the conditions of Theorem 3.16 are satisfied, and V :
(
cS0 (∇2

p, τ)
)
h
→(

cS0 (∇2
p, τ)

)
h

is Kannan h-contraction mapping, where h(Ỹ ) = sup
q

[
md

(∣∣∣∇2
p|Ỹq|

∣∣∣ , 0̃)] τqK ,

for all Ỹ ∈ cS0 (∇2
p, τ), then V has a unique fixed point.
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Proof. If Ỹ ∈ cS0 (∇2
p, τ), one has V pỸ ∈ cS0 (∇2

p, τ). As V is a Kannan h-contraction
mapping, one gets

h(V l+1Ỹ − V lỸ ) ≤ α
(
h(V l+1Ỹ − V lỸ ) + h(V lỸ − V l−1Ỹ )

)
⇒

h(V l+1Ỹ − V lỸ ) ≤ α

1− α
h(V lỸ − V l−1Ỹ ) ≤

(
α

1− α

)2

h(V l−1Ỹ − V l−2Ỹ ) ≤

. . . ≤
(

α

1− α

)l
h(V Ỹ − Ỹ ).

So for all l,m ∈ N with m > l, one gets

h(V lỸ − V mỸ ) ≤ α
(
h(V lỸ − V l−1Ỹ ) + h(V mỸ − V m−1Ỹ )

)
≤ α

((
α

1− α

)l−1

+

(
α

1− α

)m−1
)
h(V Ỹ − Ỹ ).

Then, {V lỸ } is a Cauchy sequence in
(
cS0 (∇2

p, τ)
)
h
. As the space

(
cS0 (∇2

p, τ)
)
h

is pre-

quasi Banach space. One has Z̃ ∈
(
cS0 (∇2

p, τ)
)
h

with liml→∞ V lỸ =̃Z̃. To prove that

V Z̃=̃Z̃. Since h has the Fatou property, one obtains

h(V Z̃ − Z̃) ≤ sup
i

inf
l≥i

h(V l+1Ỹ − V lỸ ) ≤ sup
i

inf
l≥i

(
α

1− α

)l
h(V Ỹ − Ỹ ) = 0,

then V Z̃=̃Z̃. So Z̃ is a fixed point of V . To show the uniqueness. Let Ỹ , Z̃ ∈
(
cS0 (∇2

p, τ)
)
h

be two not equal fixed points of V . One has

h(Ỹ − Z̃) ≤ h(V Ỹ − V Z̃) ≤ α
(
h(V Ỹ − Ỹ ) + h(V Z̃ − Z̃)

)
= 0.

So, Ỹ =̃Z̃.

Corollary 5.3. If the conditions of Theorem 3.16 are satisfied, and V :
(
cS0 (∇2

p, τ)
)
h
→(

cS0 (∇2
p, τ)

)
h

is Kannan h-contraction mapping, where h(Ỹ ) = sup
q

[
md

(∣∣∣∇2
p|Ỹq|

∣∣∣ , 0̃)] τqK ,

for all Ỹ ∈ cS0 (∇2
p, τ), one has V has unique fixed point Z̃ so that h(V lỸ − Z̃) ≤

α
(

α
1−α

)l−1

h(V Ỹ − Ỹ ).

Proof. In view of Theorem 5.2, one has a unique fixed point Z̃ of V . So

h(V lỸ − Z̃) = h(V lỸ − V Z̃) ≤ α
(
h(V lỸ − V l−1Ỹ ) + h(V Z̃ − Z̃)

)
= α

(
α

1− α

)l−1

h(V Ỹ − Ỹ ).
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Example 5.4. Assume V :
(
cS0

(
∇2
p,
(

2q+3
q+2

)))
h
→
(
cS0

(
∇2
p,
(

2q+3
q+2

)))
h
, where h(g̃) =

sup
q

[
md

(∣∣∇2
p|g̃q|

∣∣ , 0̃)] 2q+3
2q+4

, for every g̃ ∈ cS0
(
∇2
p,
(

2q+3
q+2

))
and

V (g̃) =

{
g̃
4 , h(g̃) ∈ [0, 1),
g̃
5 , h(g̃) ∈ [1,∞).

As for each g̃1, g̃2 ∈
(
cS0

(
∇2
p,
(

2q+3
q+2

)))
h

with h(g̃1), h(g̃2) ∈ [0, 1), one has

h(V g̃1 − V g̃2) = h(
g̃1

4
− g̃2

4
) ≤ 1

4
√

27

(
h(

3g̃1

4
) + h(

3g̃2

4
)
)

=
1

4
√

27

(
h(V g̃1 − g̃1) + h(V g̃2 − g̃2)

)
.

For all g̃1, g̃2 ∈
(
cS0

(
∇2
p,
(

2q+3
q+2

)))
h

with h(g̃1), h(g̃2) ∈ [1,∞), one has

h(V g̃1 − V g̃2) = h(
g̃1

5
− g̃2

5
) ≤ 1

4
√

64

(
h(

4g̃1

5
) + h(

4g̃2

5
)
)

=
1

4
√

64

(
h(V g̃1 − g̃1) + h(V g̃2 − g̃2)

)
.

For all g̃1, g̃2 ∈
(
cS0

(
∇2
p,
(

2q+3
q+2

)))
h

with h(g̃1) ∈ [0, 1) and h(g̃2) ∈ [1,∞), we get

h(V g̃1 − V g̃2) = h(
g̃1

4
− g̃2

5
) ≤ 1

4
√

27
h(

3g̃1

4
) +

1
4
√

64
h(

4g̃2

5
)

≤ 1
4
√

27

(
h(

3g̃1

4
) + h(

4g̃2

5
)
)

=
1

4
√

27

(
h(V g̃1 − g̃1) + h(V g̃2 − g̃2)

)
.

Hence V is Kannan h-contraction. As h satisfies the Fatou property. From Theorem 5.2,

one has V satisfies one fixed point ϑ̃ ∈
(
cS0

(
∇2
p,
(

2q+3
q+2

)))
h
.

Definition 5.5. Pick up Uh be a pre-quasi normed (csss), V : Uh → Uh and Z̃ ∈ Uh.

The operator V is called h-sequentially continuous at Z̃, if and only if, when limq→∞ h(Ỹq−
Z̃) = 0, then limq→∞ h(V Ỹq − V Z̃) = 0.

Example 5.6. Suppose

V :
(
cS0

(
∇2
p,

(
q + 1

2q + 4

)))
h
→
(
cS0

(
∇2
p,

(
q + 1

2q + 4

)))
h
,

where

h(Z̃) = sup
q

[
md

(∣∣∣∇2
p|Z̃q|

∣∣∣ , 0̃)] 4q+4
2q+4

,
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for every Z̃ ∈
(
cS0

(
∇2
p,
(
q+1
2q+4

)))
h

and

V (Z̃) =


1
18 (̃b0 + Z̃), Z̃0(a) ∈ [0, 1

17 ),
1
17 b̃0, Z̃0(a) = 1

17 ,
1
18 b̃0, Z̃0(a) ∈ ( 1

17 , 1].

V is clearly both h-sequentially continuous and discontinuous at 1
17 b̃0∈

(
cS0

(
∇2
p,
(
q+1
2q+4

)))
h
.

Example 5.7. Assume V is defined as in Example 5.4. Suppose {Z̃(n)} ⊆
(
cS0

(
∇2
p,
(

2q+3
q+2

)))
h

is such that limn→∞ h(Z̃(n)−Z̃(0)) = 0, where Z(0) ∈
(
cS0

(
∇2
p,
(

2q+3
q+2

)))
h

with h(Z(0)) = 1.

As the pre-quasi norm h is continuous, we have

lim
n→∞

h(V Z̃(n) − V Z̃(0)) = lim
n→∞

h
( Z̃(n)

4
− Z̃(0)

5

)
= h

( Z̃(0)

20

)
> 0.

Therefore, V is not h-sequentially continuous at Z̃(0).

Theorem 5.8. If the conditions of Theorem 3.16 are satisfied with τ0 > 1, and V :(
cS0 (∇2

p, τ)
)
h
→
(
cS0 (∇2

p, τ)
)
h

, where h(Ỹ ) = sup
q

[
md

(∣∣∣∇2
p|Ỹq |

∣∣∣ , 0̃)]τq , for all Ỹ ∈ cS0 (∇2
p, τ).

Suppose

(1): V is Kannan h-contraction mapping,

(2): V is h-sequentially continuous at Z̃ ∈
(
cS0 (∇2

p, τ)
)
h

,

(3): there is Ỹ ∈
(
cS0 (∇2

p, τ)
)
h

with {V lỸ } has {V lj Ỹ } converging to Z̃.

Then Z̃ ∈
(
cS0 (∇2

p, τ)
)
h

is the only fixed point of V .

Proof. Assume Z̃ is not a fixed point of V , one has V Z̃ 6= Z̃. From parts (2) and (3), we
get

lim
lj→∞

h(V lj Ỹ − Z̃) = 0 and lim
lj→∞

h(V lj+1Ỹ − V Z̃) = 0.

As V is Kannan h-contraction, one obtains

0 < h(V Z̃ − Z̃) = h
(

(V Z̃ − V lj+1Ỹ ) + (V lj Ỹ − Z̃) + (V lj+1Ỹ − V lj Ỹ )
)

≤ 22 supi τi−2h
(
V lj+1Ỹ − V Z̃

)
+ 22 supi τi−2h

(
V lj Ỹ − Z̃

)
+ 2supi τi−1α

(
α

1− α

)lj−1

h(V Ỹ − Ỹ ).

As lj → ∞, one has a contradiction. Then Z̃ is a fixed point of V . To show that the

uniqueness. Let Z̃, Ỹ ∈
(
cS0 (∇2

p, τ)
)
h

be two not equal fixed points of V . One obtains

h(Z̃ − Ỹ ) ≤ h(V Z̃ − V Ỹ ) ≤ α
(
h(V Z̃ − Z̃) + h(V Ỹ − Ỹ )

)
= 0.

Hence Z̃ = Ỹ .
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Example 5.9. Assume V is defined as in Example 5.4. Let h(Ỹ ) = sup
q

[
md

(∣∣∣∇2
p|Ỹq |

∣∣∣ , 0̃)] 2q+3
q+2

,

for all Ỹ ∈
(
cS0

(
∇2
p,
(

2q+3
q+2

)))
h
. Since for all Ỹ1, Ỹ2 ∈

(
cS0

(
∇2
p,
(

2q+3
q+2

)))
h

with

h(Ỹ1), h(Ỹ2) ∈ [0, 1), one gets

h(V Ỹ1 − V Ỹ2) = h(
Ỹ1

4
− Ỹ2

4
) ≤ 2√

27

(
h(

3Ỹ1

4
) + h(

3Ỹ2

4
)
)

=
2√
27

(
h(V Ỹ1 − Ỹ1) + h(V Ỹ2 − Ỹ2)

)
.

For all Ỹ1, Ỹ2 ∈
(
cS0

(
∇2
p,
(

2q+3
q+2

)))
h

with h(Ỹ1), h(Ỹ2) ∈ [1,∞), one gets

h(V Ỹ1 − V Ỹ2) = h(
Ỹ1

5
− Ỹ2

5
) ≤ 1

4

(
h(

4Ỹ1

5
) + h(

4Ỹ2

5
)
)

=
1

4

(
h(V Ỹ1 − Ỹ1) + h(V Ỹ2 − Ỹ2)

)
.

For all Ỹ1, Ỹ2 ∈
(
cS0

(
∇2
p,
(

2q+3
q+2

)))
h

with h(Ỹ1) ∈ [0, 1) and h(Ỹ2) ∈ [1,∞), one gets

h(V Ỹ1 − V Ỹ2) = h(
Ỹ1

4
− Ỹ2

5
) ≤ 2√

27
h(

3Ỹ1

4
) +

1

4
h(

4Ỹ2

5
)

≤ 2√
27

(
h(

3Ỹ1

4
) + h(

4Ỹ2

5
)
)

=
2√
27

(
h(V Ỹ1 − Ỹ1) + h(V Ỹ2 − Ỹ2)

)
.

So V is Kannan h-contraction and V p(Ỹ ) =

{
Ỹ
4p , h(Ỹ ) ∈ [0, 1),
Ỹ
5p , h(Ỹ ) ∈ [1,∞).

Obviously, V is h-

sequentially continuous at ϑ̃ ∈
(
cS0

(
∇2
p,
(

2q+3
q+2

)))
h

and {V pỸ } satisfies {V lj Ỹ } con-

verges to ϑ̃. By Theorem 5.8, the point ϑ̃ ∈
(
cS0

(
∇2
p,
(

2q+3
q+2

)))
h

is the only fixed point

of V .

Definition 5.10. An operator V : ÃUh
(Ω,Λ) → ÃUh

(Ω,Λ) is said to be a Kannan H-

contraction, if one has α ∈ [0, 1
2 ) with H(V T − VM) ≤ α

(
H(V T − T ) +H(VM −M)

)
,

for all T,M ∈ ÃUh
(Ω,Λ).

Definition 5.11. An operator V : ÃUh
(Ω,Λ)→ ÃUh

(Ω,Λ) is said to be H-sequentially

continuous at M , where M ∈ ÃUh
(Ω,Λ), if and only if, limr→∞H(Tr − M) = 0 ⇒

limr→∞H(V Tr − VM) = 0.

Example 5.12. If V : Ã(
cS0 (∇2

p,(
2q+3
q+2 ))

)
h

(Ω,Λ)→ Ã(
cS0 (∇2

p,(
2q+3
q+2 ))

)
h

(Ω,Λ), where

H(T ) = sup
q

[
md

(∣∣∣∇2
ps̃q(T )

∣∣∣ , 0̃)] 2q+3
2q+4

,
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for every T ∈ Ã(
cS0 (∇2

p,(
2q+3
q+2 ))

)
h

(Ω,Λ) and

V (T ) =

{
T
6 , H(T ) ∈ [0, 1),
T
7 , H(T ) ∈ [1,∞).

Evidently, V is H-sequentially continuous at the zero operator Θ ∈ Ã(
cS0 (∇2

p,(
2q+3
q+2 ))

)
h

.

Let {T (j)} ⊆ Ã(
cS0 (∇2

p,(
2q+3
q+2 ))

)
h

be such that limj→∞H(T (j) − T (0)) = 0, where

T (0) ∈ Ã(
cS0 (∇2

p,(
2q+3
q+2 ))

)
h

with H(T (0)) = 1. Since the pre-quasi norm H is continuous,

one gets

lim
j→∞

H(V T (j) − V T (0)) = lim
j→∞

H
(T (0)

6
− T (0)

7

)
= H

(T (0)

42

)
> 0.

Therefore, V is not H-sequentially continuous at T (0).

Theorem 5.13. Suppose the conditions of Theorem 3.16 are satisfied and

V : Ã(
cS0 (∇2

p,τ)

)
h

(Ω,Λ)→ Ã(
cS0 (∇2

p,τ)

)
h

(Ω,Λ). Assume

(i): V is Kannan H-contraction mapping,

(ii): V is H-sequentially continuous at an element M ∈ Ã(
cS0 (∇2

p,τ)

)
h

(Ω,Λ),

(iii): there are G ∈ Ã(
cS0 (∇2

p,τ)

)
h

(Ω,Λ) such that the sequence of iterates {V rG}

has a {V rmG} converging to M .

Then M ∈ Ã(
cS0 (∇2

p,τ)

)
h

(Ω,Λ) is the unique fixed point of V .

Proof. Let M be not a fixed point of V , hence VM 6= M . By using parts (ii) and (iii),
we get

lim
rm→∞

H(V rmG−M) = 0 and lim
rm→∞

H(V rm+1G− VM) = 0.

Since V is Kannan H-contraction, one obtains

0 < H(VM −M) = H
(
(VM − V rm+1G) + (V rmG−M) + (V rm+1G− V rmG)

)
≤ 2H

(
V rm+1G− VM

)
+ 4H (V rmG−M) + 4α

(
α

1− α

)rm−1

H(V G−G).

As rm → ∞, there is a contradiction. Hence M is a fixed point of V . To prove the
uniqueness of the fixed point M . Suppose one has two not equal fixed points M,J ∈
Ã(

cS0 (∇2
p,τ)

)
h

(Ω,Λ) of V . So, one gets

H(M − J) ≤ H(VM − V J) ≤ α
(
H(VM −M) +H(V J − J)

)
= 0. Then, M = J.
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Example 5.14. Given example 5.12. Since for all T1, T2 ∈ Ã(
cS0 (∇2

p,(
2q+3
q+2 ))

)
h

with

H(T1), H(T2) ∈ [0, 1), we have

H(V T1 − V T2) = H(
T1

6
− T2

6
) ≤ 1

4
√

125

(
H(

5T1

6
) +H(

5T2

6
)
)

=
1

4
√

125

(
H(V T1 − T1) +H(V T2 − T2)

)
.

For all T1, T2 ∈ Ã(
cS0 (∇2

p,(
2q+3
q+2 ))

)
h

with H(T1), H(T2) ∈ [1,∞), we have

H(V T1 − V T2) = H(
T1

7
− T2

7
) ≤ 1

4
√

216

(
H(

6T1

7
) +H(

6T2

7
)
)

=
1

4
√

216

(
H(V T1 − T1) +H(V T2 − T2)

)
.

For all T1, T2 ∈ Ã(
cS0 (∇2

p,(
2q+3
q+2 ))

)
h

with H(T1) ∈ [0, 1) and H(T2) ∈ [1,∞), we have

H(V T1 − V T2) = H(
T1

6
− T2

7
) ≤ 1

4
√

125
H(

5T1

6
) +

1
4
√

216
H(

6T2

7
)

≤ 1
4
√

125

(
H(V T1 − T1) +H(V T2 − T2)

)
.

Hence V is Kannan H-contraction and V r(T ) =

{
T
6r , H(T ) ∈ [0, 1),
T
7r , H(T ) ∈ [1,∞).

Obviously, V is H-sequentially continuous at Θ ∈ Ã(
cS0 (∇2

p,(
2q+3
q+2 ))

)
h

and {V rT} has a

subsequence {V rmT} converges to Θ. By Theorem 5.13, Θ is the only fixed point of G.

6. Applications

This section introduces some successful applications to the existence of solutions of
nonlinear difference equations of soft functions.

Theorem 6.1. Consider the summable equations

Ỹq = R̃q +

∞∑
r=0

D(q, r)m(r, Ỹr), (6.1)

which presented by Salimi et al. [41], and assume V :
(
cS0 (∇2

p, τ)
)
h
→
(
cS0 (∇2

p, τ)
)
h

,

where the conditions of Theorem 3.16 are satisfied and h(Ỹ ) = sup
q

[
md

(∣∣∣∇2
p|Ỹq|

∣∣∣ , 0̃)] τqK ,

for every Ỹ ∈ cS0 (∇2
p, τ), defined by

V (Ỹq)q∈N =
(
R̃q +

∞∑
r=0

D(q, r)m(r, Ỹr)
)
q∈N

. (6.2)
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The summable equation (6.1) has a unique solution in
(
cS0 (∇2

p, τ)
)
h
, if D : N 2 → R, m :

N ×R(A)→ R(A), R̃ : N → R(A), Z̃ : N → R(A), there is ε so that supq ε
τq
K ∈ [0, 0.5),

and for all q ∈ N we have∣∣∣∣∣∑
r∈N

D(q, r)(m(r, Ỹr)−m(r, Z̃r))

∣∣∣∣∣
≤̃ ε

[∣∣∣∣∣R̃q − Ỹq +

∞∑
r=0

D(q, r)m(r, Ỹr)

∣∣∣∣∣+

∣∣∣∣∣R̃q − Z̃q +

∞∑
r=0

D(q, r)m(r, Z̃r)

∣∣∣∣∣
]
.

Proof. One has

h(V Ỹ − V Z̃) = sup
q

[
md

(∣∣∣∇2
p|V Ỹq − V Z̃q|

∣∣∣ , 0̃)] τqK
= sup

q

[
md

(∣∣∣∣∣∇2
p

∣∣∣∣∣∑
r∈N

D(q, r)(m(r, Ỹr)−m(r, Z̃r))

∣∣∣∣∣
∣∣∣∣∣ , 0̃
)] τq

K

≤ sup
q
ε
τq
K sup

q

[
md

(∣∣∣∣∣∇2
p

∣∣∣∣∣R̃q − Ỹq +

∞∑
r=0

D(q, r)m(r, Ỹr)

∣∣∣∣∣
∣∣∣∣∣ , 0̃
)] τq

K

+ sup
q
ε
τq
K sup

q

[
md

(∣∣∣∣∣∇2
p

∣∣∣∣∣R̃q − Z̃q +

∞∑
r=0

D(q, r)m(r, Z̃r)

∣∣∣∣∣
∣∣∣∣∣ , 0̃
)] τq

K

= sup
q
ε
τq
K

(
h(V Ỹ − Ỹ ) + h(V Z̃ − Z̃)

)
.

By Theorem 5.2, one gets a unique solution of equation (6.1) in
(
cS0 (∇2

p, τ)
)
h
.

Example 6.2. Suppose
(
cS0

(
∇2
p,
(

2q+3
q+2

)))
h
, where h(Ỹ ) = sup

q

[
md

(∣∣∣∇2
p|Ỹq|

∣∣∣ , 0̃)] 2q+3
2q+4

,

for all Ỹ ∈ cS0
(
∇2
p,
(

2q+3
q+2

))
. Consider the summable equations

Ỹq = R̃q +

∞∑
r=0

(−1)q+r
( Ỹq
q2 + r2 + 1

)t
, (6.3)

with t > 0. Let V : cS0

(
∇2
p,
(

2q+3
q+2

))
→ cS0

(
∇2
p,
(

2q+3
q+2

))
defined by

V (Ỹq) =
(
R̃q +

∞∑
r=0

(−1)q+r
( Ỹq
q2 + r2 + 1

)t)
. (6.4)

Obviously∣∣∣∣∣
∞∑
r=0

(−1)q
( Ỹq
q2 + r2 + 1

)t(
(−1)r − (−1)r

)∣∣∣∣∣
≤̃ ε

[∣∣∣∣∣R̃q − Ỹq +

∞∑
r=0

(−1)q+r
( Ỹq
q2 + r2 + 1

)t∣∣∣∣∣+

∣∣∣∣∣R̃q − Z̃q +

∞∑
r=0

(−1)q+r
( Z̃q
q2 + r2 + 1

)t∣∣∣∣∣
]
.
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By Theorem 6.1, the summable equations (6.5) have a unique solution in cS0

(
∇2
p,
(

2q+3
q+2

))
.

Example 6.3. Suppose
(
cS0

(
∇2
p,
(
q+3
2q+4

)))
h
, where h(Ỹ ) = sup

q

[
md

(∣∣∣∇2
p|Ỹq|

∣∣∣ , 0̃)] q+3
2q+4

,

for all Ỹ ∈ cS0
(
∇2
p,
(
q+3
2q+4

))
. Consider the summable equations

Ỹq = R̃q +

∞∑
r=0

eq+r
( Ỹ 5

q

Ỹ 3
q + Ỹr

2
+ 1̃

)t
, (6.5)

with t > 0. Let V : cS0

(
∇2
p,
(
q+3
2q+4

))
→ cS0

(
∇2
p,
(
q+3
2q+4

))
defined by

V (Ỹq) =
(
R̃q +

∞∑
r=0

eq+r
( Ỹ 5

q

Ỹ 3
q + Ỹr

2
+ 1̃

)t)
. (6.6)

Obviously∣∣∣∣∣∣
∞∑
r=0

eq
( Ỹ 5

q

Ỹ 3
q + Ỹr

2
+ 1̃

)t(
er − er

)∣∣∣∣∣∣
≤̃ ε

∣∣∣∣∣∣R̃q − Ỹq +

∞∑
r=0

eq+r
( Ỹ 5

q

Ỹ 3
q + Ỹr

2
+ 1̃

)t∣∣∣∣∣∣+

∣∣∣∣∣∣R̃q − Z̃q +

∞∑
r=0

eq+r
( Z5

q

Z3
q + Z̃r

2
+ 1̃

)t∣∣∣∣∣∣
 .

By Theorem 6.1, the summable equations (6.5) have a unique solution in cS0

(
∇2
p,
(
q+3
2q+4

))
.

Example 6.4. Suppose
(
cS0

(
∇2
p,
(

2q+3
q+2

)))
h
, where h(Ỹ ) = sup

q

[
md

(∣∣∣∇2
p|Ỹq|

∣∣∣ , 0̃)] 2q+3
2q+4

,

for every Ỹ ∈ cS0
(
∇2
p,
(

2q+3
q+2

))
. Consider the non-linear difference equations:

Ỹq = R̃q +

∞∑
l=0

(−1)q+l
Ỹ rq−2

Ỹ uq−1 + l̃2 + 1
, (6.7)

with r, u > 0, Ỹ−2(a), Ỹ−1(a) > 0, for all a ∈ A, and assume V : cS0

(
∇2
p,
(

2q+3
q+2

))
→

cS0

(
∇2
p,
(

2q+3
q+2

))
, defined by

V (Ỹq)
∞
q=0 =

(
R̃q +

∞∑
l=0

(−1)q+l
Ỹ rq−2

Ỹ uq−1 + l̃2 + 1

)∞
q=0

. (6.8)

Evidently∣∣∣∣∣∣
∞∑
l=0

(−1)q
Ỹ rq−2

Ỹ uq−1 + l̃2 + 1

(
(−1)l − (−1)l

)∣∣∣∣∣∣
≤̃ ε

∣∣∣∣∣∣R̃q − Ỹq +

∞∑
l=0

(−1)q+l
Ỹ rq−2

Ỹ uq−1 + l̃2 + 1

∣∣∣∣∣∣+

∣∣∣∣∣∣R̃q − Z̃q +

∞∑
l=0

(−1)q+l
Z̃rq−2

Z̃uq−1 + l̃2 + 1

∣∣∣∣∣∣
 .
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By Theorem 6.1, the non-linear difference equations (6.7) have a unique solution in

cS0

(
∇2
p,
(

2q+3
q+2

))
.

Theorem 6.5. Consider the summable equations (6.1), and assume V :
(
cS0 (∇2

p, τ)
)
h
→(

cS0 (∇2
p, τ)

)
h

is defined by (6.2), where the conditions of Theorem 3.16 are satisfied with

τ0 > 1 and h(Ỹ ) = sup
q

[
md

(∣∣∣∇2
p|Ỹq|

∣∣∣ , 0̃)]τq , for every Ỹ ∈ cS0 (∇2
p, τ). The summable

equation (6.1) has a unique solution Z ∈
(
cS0 (∇2

p, τ)
)
h
, if the following conditions are

satisfied:

(1): If D : N 2 → R, m : N ×R(A)→ R(A), R̃ : N → R(A), Z̃ : N → R(A),
there is ε so that 2K−1 supq ε

τq ∈ [0, 0.5), and for all q ∈ N we have∣∣∣∣∣∑
r∈N

D(q, r)(m(r, Ỹr)−m(r, Z̃r))

∣∣∣∣∣
≤̃ ε

[∣∣∣∣∣R̃q − Ỹq +

∞∑
r=0

D(q, r)m(r, Ỹr)

∣∣∣∣∣+

∣∣∣∣∣R̃q − Z̃q +

∞∑
r=0

D(q, r)m(r, Z̃r)

∣∣∣∣∣
]
,

(2): V is h-sequentially continuous at Z̃ ∈
(
cS0 (∇2

p, τ)
)
h

,

(3): there is Ỹ ∈
(
cS0 (∇2

p, τ)
)
h

with {V lỸ } has {V lj Ỹ } converging to Z̃.

Proof. One has

h(V Ỹ − V Z̃) = sup
q

[
md

(∣∣∣∇2
p|V Ỹq − V Z̃q|

∣∣∣ , 0̃)]τq
= sup

q

[
md

(∣∣∣∣∣∇2
p

∣∣∣∣∣∑
r∈N

D(q, r)(m(r, Ỹr)−m(r, Z̃r))

∣∣∣∣∣
∣∣∣∣∣ , 0̃
)]τq

≤ 2K−1 sup
q
ετq sup

q

[
md

(∣∣∣∣∣∇2
p

∣∣∣∣∣R̃q − Ỹq +

∞∑
r=0

D(q, r)m(r, Ỹr)

∣∣∣∣∣
∣∣∣∣∣ , 0̃
)]τq

+ 2K−1 sup
q
ετq sup

q

[
md

(∣∣∣∣∣∇2
p

∣∣∣∣∣R̃q − Z̃q +

∞∑
r=0

D(q, r)m(r, Z̃r)

∣∣∣∣∣
∣∣∣∣∣ , 0̃
)]τq

= 2K−1 sup
q
ετq
(
h(V Ỹ − Ỹ ) + h(V Z̃ − Z̃)

)
.

By Theorem 5.8, one gets a unique solution Z̃ ∈
(
cS0 (∇2

p, τ)
)
h

of equation (6.1).

Example 6.6. Suppose
(
cS0

(
∇2
p,
(

2q+3
q+2

)))
h
, where h(Ỹ ) = sup

q

[
md

(∣∣∣∇2
p|Ỹq|

∣∣∣ , 0̃)] 2q+3
q+2

,

for all Ỹ ∈ cS0
(
∇2
p,
(

2q+3
q+2

))
. Consider the summable equations

Ỹq = R̃q +

∞∑
r=0

(−1)q+r
( Ỹq
q2 + r2 + 1

)t
, (6.9)
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with t > 0. Let V : cS0

(
∇2
p,
(

2q+3
q+2

))
→ cS0

(
∇2
p,
(

2q+3
q+2

))
defined by

V (Ỹq) =
(
R̃q +

∞∑
r=0

(−1)q+r
( Ỹq
q2 + r2 + 1

)t)
. (6.10)

Assume V is h-sequentially continuous at Z̃ ∈
(
cS0 (∇2

p, τ)
)
h
, and there is Ỹ ∈

(
cS0 (∇2

p, τ)
)
h

with {V lỸ } has {V lj Ỹ } converging to Z̃. Obviously∣∣∣∣∣
∞∑
r=0

(−1)q
( Ỹq
q2 + r2 + 1

)t(
(−1)r − (−1)r

)∣∣∣∣∣
≤̃ ε

[∣∣∣∣∣R̃q − Ỹq +

∞∑
r=0

(−1)q+r
( Ỹq
q2 + r2 + 1

)t∣∣∣∣∣+

∣∣∣∣∣R̃q − Z̃q +

∞∑
r=0

(−1)q+r
( Z̃q
q2 + r2 + 1

)t∣∣∣∣∣
]
.

By Theorem 6.5, the summable equations (6.9) have a unique solution Z̃ ∈ cS0
(
∇2
p,
(

2q+3
q+2

))
.

Example 6.7. Suppose
(
cS0

(
∇2
p,
(

5q+3
q+1

)))
h
, where h(Ỹ ) = sup

q

[
md

(∣∣∣∇2
p|Ỹq|

∣∣∣ , 0̃)] 5q+3
q+1

,

for all Ỹ ∈ cS0
(
∇2
p,
(

5q+3
q+1

))
. Consider the summable equations

Ỹq = R̃q +

∞∑
r=0

eq+r
( Ỹ 5

q

Ỹ 3
q + Ỹr

2
+ 1̃

)t
, (6.11)

with t > 0. Let V : cS0

(
∇2
p,
(

5q+3
q+1

))
→ cS0

(
∇2
p,
(

5q+3
q+1

))
defined by

V (Ỹq) =
(
R̃q +

∞∑
r=0

eq+r
( Ỹ 5

q

Ỹ 3
q + Ỹr

2
+ 1̃

)t)
. (6.12)

Assume V is h-sequentially continuous at Z̃ ∈
(
cS0 (∇2

p, τ)
)
h
, and there is Ỹ ∈

(
cS0 (∇2

p, τ)
)
h

with {V lỸ } has {V lj Ỹ } converging to Z̃. Obviously∣∣∣∣∣∣
∞∑
r=0

eq
( Ỹ 5

q

Ỹ 3
q + Ỹr

2
+ 1̃

)t(
er − er

)∣∣∣∣∣∣
≤̃ ε

∣∣∣∣∣∣R̃q − Ỹq +

∞∑
r=0

eq+r
( Ỹ 5

q

Ỹ 3
q + Ỹr

2
+ 1̃

)t∣∣∣∣∣∣+

∣∣∣∣∣∣R̃q − Z̃q +

∞∑
r=0

eq+r
( Z5

q

Z3
q + Z̃r

2
+ 1̃

)t∣∣∣∣∣∣
 .

By Theorem 6.5, the summable equations (6.11) have a unique solution Z̃ ∈ cS0
(
∇2
p,
(

5q+3
q+1

))
.

Example 6.8. Suppose
(
cS0

(
∇2
p,
(

2q+3
q+2

)))
h
, where h(Ỹ ) = sup

q

[
md

(∣∣∣∇2
p|Ỹq|

∣∣∣ , 0̃)] 2q+3
q+2

,

for every Ỹ ∈ cS0
(
∇2
p,
(

2q+3
q+2

))
. Consider the non-linear difference equations:

Ỹq = R̃q +
∞∑
l=0

(−1)q+l
Ỹ rq−2

Ỹ uq−1 + l̃2 + 1
, (6.13)
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with r, u > 0, Ỹ−2(a), Ỹ−1(a) > 0, for all a ∈ A, and assume V : cS0

(
∇2
p,
(

2q+3
q+2

))
→

cS0

(
∇2
p,
(

2q+3
q+2

))
, defined by

V (Ỹq)
∞
q=0 =

(
R̃q +

∞∑
l=0

(−1)q+l
Ỹ rq−2

Ỹ uq−1 + l̃2 + 1

)∞
q=0

. (6.14)

Suppose V is h-sequentially continuous at Z̃∈
(
cS0 (∇2

p, τ)
)
h
, and there is Ỹ ∈

(
cS0 (∇2

p, τ)
)
h

with {V lỸ } has {V lj Ỹ } converging to Z̃. Evidently∣∣∣∣∣∣
∞∑
l=0

(−1)q
Ỹ rq−2

Ỹ uq−1 + l̃2 + 1

(
(−1)l − (−1)l

)∣∣∣∣∣∣
≤̃ ε

∣∣∣∣∣∣R̃q − Ỹq +

∞∑
l=0

(−1)q+l
Ỹ rq−2

Ỹ uq−1 + l̃2 + 1

∣∣∣∣∣∣+

∣∣∣∣∣∣R̃q − Z̃q +

∞∑
l=0

(−1)q+l
Z̃rq−2

Z̃uq−1 + l̃2 + 1

∣∣∣∣∣∣
 .

By Theorem 6.5, the non-linear difference equations (6.15) have a unique solution Z̃ ∈
cS0

(
∇2
p,
(

2q+3
q+2

))
.

In this part, we search for a solution to nonlinear matrix equations (6.7) at D ∈
Ã(

cS0 (∇2
p,τ)

)
h

(Ω,Λ), where Ω and Λ are Banach spaces, the conditions of theorem 3.16

are satisfied, and

Ψ(G) = sup
q

[
md

(∣∣∣∇2
p|s̃q(G)|

∣∣∣ , 0̃)] τqK , for all G ∈ Ã(
cS0 (∇2

p,τ)

)
h

(Ω,Λ). Consider the sum-

mable equations

s̃a(G) = s̃a(P ) +

∞∑
m=0

A(a,m)f(m, s̃m(G)), (6.15)

and suppose W : Ã(
cS0 (∇2

p,τ)

)
h

(Ω,Λ)→ Ã(
cS0 (∇2

p,τ)

)
h

(Ω,Λ) is defined by

W (G) =

(
s̃a(P ) +

∞∑
m=0

A(a,m)f(m, s̃m(G))

)
I. (6.16)

Theorem 6.9. The summable equations (6.15) have one solution D ∈ Ã(
cS0 (∇2

p,τ)

)
h

(Ω,Λ),

if the following conditions are satisfied:
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(a): A : N 2 → R, f : N ×R(A) → R(A), P ∈ L(Ω,Λ), T ∈ L(Ω,Λ), and for
every a ∈ N , there is κ so that supa κ

τa ∈ [0, 0.5), with∣∣∣∣∣ ∑
m∈N

A(a,m)
(
f(m, s̃m(G))− f(m, s̃m(T ))

)∣∣∣∣∣
≤̃κK

∣∣∣∣∣s̃a(P )− s̃a(G) +
∑
m∈N

A(a,m)f(m, s̃m(G))

∣∣∣∣∣
+ κK

∣∣∣∣∣s̃a(P )− s̃a(T ) +
∑
m∈N

A(a,m)f(m, s̃m(T ))

∣∣∣∣∣ ,
(b): W is Ψ-sequentially continuous at a point D ∈ Ã(

cS0 (∇2
p,τ)

)
h

(Ω,Λ),

(c): there is B ∈ Ã(
cS0 (∇2

p,τ)

)
h

(Ω,Λ) so that the sequence of iterates {W aB}

has a subsequence {W aiB} converging to D.

Proof. Suppose the settings are verified. Consider the mappingW : Ã(
cS0 (∇2

p,τ)

)
h

(Ω,Λ)→

Ã(
cS0 (∇2

p,τ)

)
h

(Ω,Λ) defined by (6.16). We have

Ψ(WG−WT ) = sup
a

md
∣∣∣∣∣∣∇2

p

∣∣∣∣∣∣
∑
m∈N

A(a,m)
(
f(m, s̃m(G))− f(m, s̃m(T ))

)∣∣∣∣∣∣
∣∣∣∣∣∣ , 0̃


τa
K

≤ sup
a
κτa sup

a

md
∣∣∣∣∣∣∇2

p

∣∣∣∣∣∣s̃a(P )− s̃a(G) +
∑
m∈N

A(a,m)f(m, s̃m(G))

∣∣∣∣∣∣
∣∣∣∣∣∣ , 0̃


τa
K

+

sup
a
κτa sup

a

md
∣∣∣∣∣∣∇2

p

∣∣∣∣∣∣s̃a(T )− s̃a(G) +
∑
m∈N

A(a,m)f(m, s̃m(T ))

∣∣∣∣∣∣
∣∣∣∣∣∣ , 0̃


τa
K

= sup
a
κτa (Ψ(WG−G) + Ψ(WT − T )) .

In view of Theorem 5.13, one obtains a unique solution of equation (6.15) at D ∈
Ã(

cS0 (∇2
p,τ)

)
h

(Ω,Λ).

Example 6.10. Assume the class Ã(
cS0 (∇2

p,(
a+1
a+2 )∞a=0)

)
h

(Ω,Λ), where

Ψ(G) = sup
a

[
md

(∣∣∣∇2
p|s̃a(G)|

∣∣∣ , 0̃)] a+1
a+2

, for all G ∈ Ã(
cS0 (∇2

p,(
a+1
a+2 )∞a=0)

)
h

(Ω,Λ).

Consider the non-linear difference equations:

s̃a(G) = ˜e−(2a+3) +

∞∑
m=0

tan(2m+ 1) cosh(3m− a) cosr | ˜sa−2(G)|

sinhq | ˜sa−1(G)|+ s̃inma+ 1̃
, (6.17)
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where a ≥ 2 and r, q > 0 and letW : Ã(
cS0 (∇2

p,(
a+1
a+2 )∞a=0)

)
h

(Ω,Λ)→ Ã(
cS0 (∇2

p,(
a+1
a+2 )∞a=0)

)
h

(Ω,Λ)

be defined as

W (G) =

(
˜e−(2a+3) +

∞∑
m=0

tan(2m+ 1) cosh(3m− a) cosr | ˜sa−2(G)|

sinhq | ˜sa−1(G)|+ s̃inma+ 1̃

)
I. (6.18)

Suppose W is Ψ-sequentially continuous at a point D ∈ Ã(
cS0 (∇2

p,(
a+1
a+2 )∞a=0)

)
h

(Ω,Λ), and

there is B ∈ Ã(
cS0 (∇2

p,(
a+1
a+2 )∞a=0)

)
h

(Ω,Λ) so that the sequence of iterates {W aB} has a

subsequence {W aiB} converging to D. It is easy to see that

∣∣∣∣∣
∞∑
m=0

cosh(3m− a) cosr | ˜sa−2(G)|

sinhq | ˜sa−1(G)|+ s̃inma+ 1̃

(
tan(2m+ 1)− tan(2m+ 1)

)∣∣∣∣∣
a+1
a+2

≤ 1

5

∣∣∣∣∣ ˜e−(2a+3) − s̃a(G) +

∞∑
m=0

tan(2m+ 1) cosh(3m− a) cosr | ˜sa−2(G)|

sinhq | ˜sa−1(G)|+ s̃inma+ 1̃

∣∣∣∣∣
a+1
a+2

+
1

5

∣∣∣∣∣ ˜e−(2a+3) − s̃a(T ) +

∞∑
m=0

tan(2m+ 1) cosh(3m− a) cosr | ˜sa−2(T )|

sinhq | ˜sa−1(T )|+ s̃inma+ 1̃

∣∣∣∣∣
a+1
a+2

.

By Theorem 6.9, the non-linear difference equations (6.17) have one solution

D ∈ Ã(
cS0 (∇2

p,(
a+1
a+2 )∞a=0)

)
h

(Ω,Λ).

Example 6.11. Assume the class Ã(
cS0 (∇2

p,(
2a+3
a+2 )∞a=0)

)
h

(Ω,Λ), where

Ψ(G) = sup
a

[
md

(∣∣∣∇2
p|s̃a(G)|

∣∣∣ , 0̃)] 2a+3
2a+4

, for all G ∈ Ã(
cS0 (∇2

p,(
2a+3
a+2 )∞a=0)

)
h

(Ω,Λ).

Consider the non-linear difference equations (6.17) and let

W : Ã(
cS0 (∇2

p,(
2a+3
a+2 )∞a=0)

)
h

(Ω,Λ)→ Ã(
cS0 (∇2

p,(
2a+3
a+2 )∞a=0)

)
h

(Ω,Λ)

be defined as (6.18). Suppose W is Ψ-sequentially continuous at a point

D ∈ Ã(
cS0 (∇2

p,(
2a+3
a+2 )∞a=0)

)
h

(Ω,Λ), and there is B ∈ Ã(
cS0 (∇2

p,(
2a+3
a+2 )∞a=0)

)
h

(Ω,Λ) so that
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the sequence of iterates {W aB} has a subsequence {W aiB} converging to D. It is easy
to see that∣∣∣∣∣

∞∑
m=0

cosh(3m− a) cosr | ˜sa−2(G)|

sinhq | ˜sa−1(G)|+ s̃inma+ 1̃

(
tan(2m+ 1)− tan(2m+ 1)

)∣∣∣∣∣
2a+3
2a+4

≤ 1

25

∣∣∣∣∣ ˜e−(2a+3) − s̃a(G) +

∞∑
m=0

tan(2m+ 1) cosh(3m− a) cosr | ˜sa−2(G)|

sinhq | ˜sa−1(G)|+ s̃inma+ 1̃

∣∣∣∣∣
2a+3
2a+4

+
1

25

∣∣∣∣∣ ˜e−(2a+3) − s̃a(T ) +

∞∑
m=0

tan(2m+ 1) cosh(3m− a) cosr | ˜sa−2(T )|

sinhq | ˜sa−1(T )|+ s̃inma+ 1̃

∣∣∣∣∣
2a+3
2a+4

.

By Theorem 6.9, the non-linear difference equations (6.17) have one solution

D ∈ Ã(
cS0 (∇2

p,(
2a+3
a+2 )∞a=0)

)
h

(Ω,Λ).

7. Conclusion

In this paper, we have explained sufficient settings of the space cS0 (∇2
p, τ) equipped with

the definite function h to be pre-quasi Banach (csss). The Fatou property of various pre-
quasi norms h on cS0 (∇2

p, τ) has been investigated. The structure of the mappings ideal by
this space and extended s−soft functions have been explained. We study enough setups on
it such that the class Ã(

cS0 (∇2
p,τ)

)
h

is simple Banach and the closure of F = Ãα(
cS0 (∇2

p,τ)

)
h

. We

explain enough setups on it such that Ã(
cS0 (∇2

p,τ)

)
h

is strictly contained for different powers

and backward generalized differences, and the space of every bounded linear mappings
which sequence of eigenvalues in

(
cS0 (∇2

p, τ)
)
h

equals Ã(
cS0 (∇2

p,τ)

)
h

. The existing results

may be established under a wide range of flexible conditions. We construct the existence
of a fixed point of Kannan contraction mapping acting on this space and its associated
pre-quasi ideal. Interestingly, several numerical experiments are presented to illustrate
our results. Additionally, some successful applications to the existence of solutions of
nonlinear difference equations of soft functions are introduced.
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Braşov, 1998.



480 Thai J. Math. Vol. 21 (2023) /A.A. Bakery

[44] X. Yang, Q. Zhu, Existence, uniqueness, and stability of stochastic neutral functional
differential equations of Sobolev-type, Journal of Mathematical Physics 56 (2015)
Article no. 122701.

[45] T. Yaying, B. Hazarika, B.C. Tripathy, M. Mursaleen, The Spectrum of second order
quantum difference operator, Symmetry 14 (2022) 557.

[46] L.A. Zadeh, Fuzzy sets, Information and Control 8 (3) (1965) 338–353.

[47] Y. Zou, Z. Xiao, Data analysis approaches of soft sets under incomplete information,
Knowledge-Based Systems 21 (2008) 941–945.


	Introduction
	Definitions and Preliminaries:
	Some Characteristics of c0S(p2,)
	Structure of Mappings' Ideal
	Kannan Contraction Mapping on c0S(p2,)
	Applications
	Conclusion

