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Abstract : In the present paper, we investigate the perturbed rotational motions
of a symmetric gyrostat about a fixed point O, which are close to Lagrange’s case.
This gyrostat is acted upon by a central Newtonian force field arising from an
attracting centre O1 which is located on a downward fixed axis (Z− axis); a third
component of the gyrostatic moment vector ` about the moving axis (z− axis);
restoring moment and perturbing moment vector M . The moment k is introduced
to express the rotation of the body under the action of uniform magnetic field of
strength H and a point charge e located on the axis of symmetry. It is assumed
that the angular velocity is large, its direction is close to the axis of dynamic
symmetry of the body and that two projections of the perturbing moment vector
onto the principal axes of inertia of the body are small as compared to the restoring
moment k while the third one is of the same order as it. A small parameter is
introduced in a special way and the averaging method is used to obtain the first
order approximate solutions of the equations of motion. A theoretical description
for this approach in the resonant and non-resonant cases is given. The graphical
representations for these solutions are presented to describe the gyrostatic motion
at any time.
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1 Introduction

The considered problem had shed the interest of many researches. In [1], the
perturbed motion of a heavy rigid body close to Lagrange’s case was considered
when the gyrostat is acted upon by a constant restoring moment which is gener-
ated by a force of constant magnitude and direction. The analytic solutions of the
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equations of motion were obtained using the averaging method [2]-[4] up to the
first approximation. The same problem was investigated in [5] and [6] when the
restoring moment is depending on the nutation angle θ. Averaged systems of the
equations of motion are obtained in terms of the small parameter ε. The perturbed
rotational motion of a symmetric gyrostat about a fixed point was studied in [7]
when the third component of the gyrostatic moment vector `; (`1 = `2 = 0, `3 6= 0)
is acted. In these works, the mentioned problem was studied under the action of
perturbing moment vector M and some conditions that permits to introduce the
small parameter ε. The scope of this paper, is to investigate the rotational motion
of a symmetric gyrostat about a fixed point under the influence of Newtonian force
field; the third component of the gyrostatic moment vector `; some constant and
linear dissipative moments acting in the same direction of the principal axes of the
gyrostat; a variable restoring moment k which is the result of uniform electromag-
netic field of strength H and a point charge e locating on the axis of symmetry.
The equations of motion are studied under certain initial conditions which mean
that the gyrostat rotates rapidly about the axis of dynamic symmetry. This ve-
locity is very high and the magnitudes of the perturbing moments are less than or
equal to the magnitude of the restoring moment k. These conditions allow us to
introduce a small parameter ε, that causes the perturbed motion. The averaging
method [2]-[4] is used to obtain the solutions of the equations of motion in the
perturbed case up to the first approximation. A theoretical description for this
approach in both resonant and non-resonant cases is given. The graphical repre-
sentations of these solutions are performed to describe the motion of the gyrostat
at any instant. The rigid body model has found a wide range of applications in
various fields, for example the field of space research. This is because the body
provides a convenient model for satellite, spacecraft and others.

2 Statement of the problem

Consider the motion of a dynamical symmetric gyrostat relative to a fixed
point O, in response to a Newtonian force field arising from an attracting centre
O1 located at a distance from on the downward Z− axis; a gyrostatic moment
about z− axis; a variable restoring moment k and perturbing moment vector M .
Two systems of coordinates are considered at the fixed point O; a fixed one OXY Z
and another rotating one Oxyz which is fixed in the gyrostat and whose axes are
directed along the principal axes of inertia of the gyrostat with origin O. Let us
assume that

xG = yG = 0, zG = `∗, `1 = `2 = 0, `3 6= 0, A = B 6= C,

where xG, yG and zG are the coordinates of the centre of mass of the body (gyro-
stat); A, B and C are the principal moments of inertia and `1, `2 and `3 are the
components of the gyrostatic moment vector. Then the equations of motion are
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[[7] and [8]]

A
.
p+ (C −A) q r + q `3 = k sin θ cosϕ+ n (C −A) γ2 γ3 +M1,

A
.
q + (A− C) q r − p `3 = −k sin θ sinϕ+ n (A− C) γ2 γ3 +M2,

C
.
r = M3,
.

θ = p (cosϕ)− q (sinϕ) , (2.1)
.
ϕ = r − (p sinϕ+ q cosϕ) cot θ,
.

ψ = (p sinϕ+ q cosϕ) csc θ,

n = 3λ/R3, Mi = Mi(p, q, r, ψ, θ, ϕ, t) (i = 1, 2, 3).

Dynamic equations (2.1) are written in projections onto the principal axes of
inertia of the body, passing through point O . Here, (p, q, r) and Mi (i = 1, 2, 3)
are the projections of the angular velocity and the perturbing moment vectors of
the body onto the principal axes of inertia; λ is the coefficient of the attracting
centre O1; R is the distance from O to O1; and θ, ϕ and ψ are the Eulerian
angles such that θ is the nutation angle, ϕ is the self-rotations angle and ψ is the
precession angle.

Assume that the perturbing moments Mi (i = 1, 2, 3) are 2π- periodic func-
tions of the Euler’s angles. In the case of a heavy solid, k = mg`∗ where m is the
mass of the gyrostat, g is the acceleration due to gravity and `∗ is the distance
from the centre of mass of the gyrostat to the fixed point O . In this work, we
consider the following initial conditions

p2 + q2 � r2, Cr2 � k, |Mi| � k (i = 1, 2) , M3 ≈ k. (2.2)

These conditions mean that the direction of the angular velocity of the body is
close to the axis of the dynamic symmetry; the angular velocity is large, so that the
kinetic energy of the gyrostat is much greater than the potential energy resulting
from the restoring moment; and two projections of the perturbing moment vector
onto the principal axes of inertia of the body are small as compared with the
restoring moment k, while the third one is of the same order of magnitude as it.
Inequalities (2.2) allow us to introduce a small parameter ε� 1 and to set

p = εP, q = εQ, k = εK, n = εN,

Mi = ε2M∗i (P,Q, r, ψ, θ, ϕ) (i = 1, 2), (2.3)
M3 = εM∗3 (P,Q, r, ψ, θ, ϕ) .

The new variables P and Q as well as the variables and constants r, ψ, θ, ϕ,
K, N, A, C, M∗i (i = 1, 2, 3) are assumed to be bounded quantities of order unity
as ε −→ 0.

The scope of this work is to investigate the asymptotic behavior of system
(2.1) for the small parameter ε, if conditions (2.2) and (2.3) are satisfied. This
will be performed by employing the averaging method [2]-[4] on the time interval
of order ε−1.
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3 Variable restoring moment

In this section, we investigate our problem in presence of uniform electromag-
netic field of strength H (along Z- axis) and a point charge e located on the axis of
symmetry when the restoring moment depends on two components of the angular
velocity vector and further, on the Euler’s angles θ and ϕ. Thus, this gyrostat
rotates under the influence of Newtonian force field, the gyrostatic moment about
z- axis and the Lorentz force e (V ×H) [9] in which V =

(
ω × `′

)
, `′ ≡ (0, 0, `′),

where ω is the angular velocity vector of that gyrostat and `′ is the distance of the
position of the point charge e from O. Taking into account inequalities (2.2), the
restoring moment K can be written in the form

K = mg`∗ +N(C −A) cos θ + eH`′2 cos θ[p2 + q2

+ tan2 θ (q cosϕ+ p sinϕ)2]1/2. (3.1)

Making use of (2.1), (2.3) and (3.1), we obtain

A
.

P + (C −A) Q r +Q `3 = [K +N (C −A) cos θ] sin θ cosϕ+ εM∗1 ,

A
.

Q+ (A− C) P r − P `3 = − [K +N (C −A) cos θ] sin θ sinϕ+ εM∗2 ,

C
.
r = εM∗3 ,
.

θ = ε (P cosϕ−Q sinϕ) , (3.2)
.
ϕ = r − ε(P sinϕ+Q cosϕ) cot θ,
.

ψ = ε(P sinϕ+Q cosϕ) csc θ.

The zero approximate solution for last four equations of system (3.2), gives

r = r0, θ = θ0, ϕ = r0t+ ϕ0, ψ = ψ0, (3.3)

where r0, θ0, ϕ0 and ψ0 are constants and are equal to the initial values of the
corresponding ones. Substituting (3.3) into the first two equations of system (3.2)
for ε = 0, and integrating the resultant system of linear equations for P and Q to
obtain

P = a cos γ0 + b sin γ0 + E0 sin θ0 sin (r0t+ ϕ0) ,
Q = a sin γ0 − b cos γ0 + E0 sin θ0 cos (r0t+ ϕ0) ,
a = P0 − E0 sin θ0 sinϕ0, b = −Q0 + E0 sin θ0 cosϕ0,

γ0 = y0t, y0 = n0 +A−1`3 6= 0, (3.4)

n0 = (C −A)A−1r0, E0 = z0
[k0 +N (C −A) cos θ0]

(y2
0 − r20)

,

z0 = (n0 − r0)A−1 +A−2`3, k0 = K0,

∣∣∣∣y0r0
∣∣∣∣ ≤ 1.
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Here P0 and Q0 are the initial values of the variables P and Q introduced in ac-
cordance with (2.3), while the variable γ0 has the meaning of the oscillation phase
of the generating system. System (3.2) is essentially non-linear, and therefore we
introduce an additional variable γ , defined as

dγ

dt
= y, γ(0) = 0. (3.5)

For ε = 0, we have γ = γ0 = y0t , in accordance with (3.4). Equations (3.3)
and (3.4) define the general solution of (3.2) and (3.5) when ε = 0. Eliminating the
constants with allowance of (3.3), the first two equations in (3.4) can be rewritten
in equivalent form as

P = a cos γ + b sin γ + E sin θ sinϕ,
Q = a sin γ − b cos γ + E sin θ cosϕ, (3.6)

which can be solved for a and b, to get

a = P cos γ +Q sin γ − E sin θ sin (γ + ϕ) ,
b = P sin γ −Q cos γ + E sin θ cos (γ + ϕ) . (3.7)

Let us consider system (3.2) for ε 6= 0 and expressions (3.6) and (3.7) as change
of variable formulas (containing the variable γ), which specify the conversion from
variables P and Q to the Van der Pol variables a and b, and vice versa [2]. Using
these formulas in system (3.2) and (3.5), we convert from the variables P , Q, r,
ψ, θ, ϕ, γ to the new ones a, b, r, ψ, θ, α, γ where

α = γ + ϕ. (3.8)

After some manipulation, we have the following system

.
a = εA−1

[
M0

1 cos γ +M0
2 sin γ

]
+ εEb{2N(C −A)[K +N(C −A)

× cos θ]−1 sin2 θ sin2 α− cos θ}+ εE2(ACz)−1{2[y(C −A)
−rA][K +N(C −A) cos θ]−1 − (CA−1 − 2)}M0

3 sin θ sinα

− 1
2E

εeH`′2b sin2 α cos2 θ[K +N(C −A) cos θ]−1{(EA)−1

×[K +N(C −A) cos θ]−1{(2a2 − b2) cos2 α− a2 sin2 α

+[2E2 − (a2 + b2) cot2 θ]}+ (y + r)
tan2 θ

sin θ
[((2a2 − b2)

× sin2 θ + 4a2 + b2) cos2 α+ (2E tan2 θ − a2 − b2) cos2 θ
−a2(2 + sin2 θ) sin2 α]},
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.

b = εA−1
[
M0

1 sin γ −M0
2 cos γ

]
− εEa{2N(C −A)[K +N(C −A)

× cos θ]−1 sin2 θ cos2 α− cos θ}+ εE2(ACz)−1{2[y(C −A)
−rA][K +N(C −A) cos θ]−1 − (CA−1 − 2)}M0

3 sin θ cosα

+
1

2E
εeH`′2a cos2 α cos2 θ[K +N(C −A) cos θ]−1{(EA)−1 (3.9)

×[K +N(C −A) cos θ]−1{(2a2 − b2) sin2 α− b2 cos2 α

+[2E2 − (a2 + b2) cot2 θ]}+ (y + r)
tan2 θ

sin θ
[((2b2 − a2)

× sin2 θ + 4b2 + a2) sin2 α+ (2E tan2 θ − a2 − b2) cos2 θ
−b2(2 + sin2 θ) cos2 α]},

.
r = εC−1M0

3 ,
.

ψ = ε[(a sinα− b cosα) csc θ + E],
.

θ = ε(a cosα+ b sinα),
.
ϕ = r − ε(a sinα− b cosα+ E sin θ) cot θ,
.
α = A−1(Cr + `3)− ε(a sinα− b cosα+ E sin θ) cot θ,
.
γ = A−1[(C −A)r + `3].

Here, M0
i denote functions obtained from M∗i as a result of substitution (3.6)-

(3.8), i.e.,

M0
i (a, b, r, ψ, θ, α, γ, t) = M∗i (P,Q, r, ψ, θ, ϕ, t) ; (i = 1, 2, 3). (3.10)

We note that, the change from the two variables P and Q to the three variables
a, b and γ is due to the sake of convenience; for ε = 0,the system for P and Q has
the form of a linear system while substitution (3.6) is non-singular for all a and b.
Let us consider a vector-valued function x whose components are provided by the
slow variables a, b, r, ψ and θ of system (3.9). Thus, this system can be written
as

.
x = εX(x, α, γ, t),
.
α = A−1(Cr + `3) + εY (x, α), (3.11)
.
γ = A−1[(C −A)r + `3],

x(0) = x0, α(0) = α0, γ(0) = 0.

Here the vector-valued function X and the scalar function Y are defined by
the right-hand sides of (3.9) whose initial values can be obtained in accordance
with equations (3.3) to (3.5) and (3.8).

Let us consider the system (3.9) or (3.11) from the stand point of employing
the averaging method of [2], [3] and [10]. System (3.9) contains the slow variables
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a, b, r, ψ, θ and fast variables namely the phases α, γ and the time t , with γ
appearing only in the first three equations of (3.9). This system is essentially non-
linear and it is extremely difficult to employ the averaging method directly [11].
For simplicity, we will assume that the perturbing moments M∗i are independent
of t. Since M∗i (i = 1, 2, 3) are 2π- periodic in ϕ, in accordance with substitutions
(3.6)-(3.8) we have that functions M0

i from (3.10) will be 2π- periodic functions
of α and γ. Then system (3.11) contains two rotating phases α and γ, and the
corresponding frequencies A−1(Cr + `3) and A−1[(C − A)r + `3] are variables.
In the averaging system (3.9) or (3.11), two cases should be distinguished [11];
the non-resonant case, when the frequencies A−1(Cr + `3) and A−1[(C − A)r +
`3] are non-commensurable and the resonant case, when these frequencies are
commensurable. A very important feature of system (3.11) is the fact that the
ratio A−1[(C −A)r+ `3]/A−1(Cr+ `3) = 1− [Ar/(Cr+ `3)], of the frequencies is
, and the resonant case occurs for

(Cr + `3) /Ar = i/j ≤ 2, (3.12)

where i and j are relatively prime natural numbers while in the non-resonant
case (Cr + `3)/Ar is an irrational number.

As a result of (3.12), averaging of the non-linear system (3.11), in which X is
independent of t, is equivalent to averaging of a quasilinear system with constant
frequencies. This can be achieved by introducing the independent variable γ.
In the non-resonant case (Cr + `3)/Ar 6= i/j, we obtain the first approximation
averaged system by independent averaging of the right-hand sides of the system
(3.9) with respect to the fast variables α and γ. As a result, we obtain the following
equations for the slow variables

.
a = εA−1µ1 − εEb cos θ + εEbN(C −A)[K +N(C −A)

× cos θ]−1 sin2 θ sin2 α+ εE2(Cz)−1{2[y(CA−1 − 1)
−r][K +N(C −A) cos θ]−1 −A−1(CA−1 − 2)}
× sin θ µ4 + µk1 ,

.

b = εA−1µ2 + εEa cos θ − εEaN(C −A)[K +N(C −A) (3.13)
× cos θ]−1 sin2 θ cos2 α− εE2(Cz)−1{2[y(CA−1 − 1)
−r][K +N(C −A) cos θ]−1 −A−1(CA−1 − 2)}
× sin θ µ5 + µk2 ,

.
r = εC−1µ3,

.

ψ = εE,
.

θ = 0,
.
ϕ = r − εE cos θ,

where
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µ1 (a, b, r, ψ, θ) =
1

4π2

∫ 2π

0

∫ 2π

0

[
M0

1 cos γ +M0
2 sin γ

]
dαdγ,

µ2 (a, b, r, ψ, θ) =
1

4π2

∫ 2π

0

∫ 2π

0

[
M0

1 sin γ −M0
2 cos γ

]
dαdγ,

µ3 (a, b, r, ψ, θ) =
1

4π2

∫ 2π

0

∫ 2π

0

M0
3 dαdγ,

µ4 (a, b, r, ψ, θ) =
1

4π2

∫ 2π

0

∫ 2π

0

M0
3 sinαdαdγ,

µ5 (a, b, r, ψ, θ) =
1

4π2

∫ 2π

0

∫ 2π

0

M0
3 cosαdαdγ,

µk1 (a, b, r, ψ, θ) =
1

4π2

∫ 2π

0

∫ 2π

0

K1dαdγ,

µk2 (a, b, r, ψ, θ) =
1

4π2

∫ 2π

0

∫ 2π

0

K2dαdγ,

K1 = εEbN(C −A)[K +N(C −A) cos θ]−1 sin2 θ sin2 α

− ε

2E2
A−1eH`′2b sin θ cos2 θ sin2 α[(2E2 − a2 + b2

tan2 θ
)

+(2a2 − b2) cos2 α− a2 sin2 α]− ε

E
eH`′2b(y + r)

×[K +N(C −A) cos θ]−1 sin2 α{[a2(1 + sin θ)− b2]

× cos2 α− a2 sin θ sin2 α+
sin3 θ

2
[(2E2 − a2 + b2

tan2 θ
)

+(2a2 − b2) cos2 α− a2 sin2 α]},

K2 = −εEaN(C −A)[K +N(C −A) cos θ]−1 sin2 θ cos2 α

+
ε

2E2
A−1eH`′2a sin θ cos2 θ cos2 α[(2E2 − a2 + b2

tan2 θ
)

+(2b2 − a2) sin2 α− b2 cos2 α] +
ε

E
eH`′2a(y + r)

×[K +N(C −A) cos θ]−1 cos2 α{[b2(1 + sin θ)− a2]

× sin2 α− b2 sin θ cos2 α+
sin3 θ

2
[(2E2 − a2 + b2

tan2 θ
)

+(2b2 − a2) sin2 α− b2 cos2 α]}.

Solving the averaged system (3.13) for perturbing moments of specific form,
we can determine the motion of the gyrostat in the non-resonant case with an
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error of order ε on an interval of time variation of order ε−1. The last equation
in the system (3.13) can be integrated; it yields θ = constant = θ0. The above
system is equivalent to a two-frequency system with constant frequencies, since
both frequencies are proportional to the axial component r of the angular velocity
vector. Therefore, the applicability of the averaging method can be shown in the
same way as for a quasi-linear system.

In the resonant case (3.12), system (3.11) is a single frequency system. We
replace α by a new slow variable that comprises a linear combination of the phases
with integer coefficients

λ = α− iγ(i− j)−1, i/j 6= 1, i/j ≤ 2; i.j > 0. (3.14)

System (3.11), assumes the form of a standard system with rotating phase

.
x = εX(x, iγ(i− j)−1 + λ, γ),
.

λ = εY (x, iγ(i− j)−1 + λ), (3.15)
.
γ = A−1[(C −A)r + `3],

where its right hand sides being (2 |i− j|π- periodic in γ. We set up the
first approximation by averaging the right-hand sides of (3.15) with respect to the
above period of variation of the argument γ. As a result, we obtain the following
system of relations for the slow variables

.
a = εA−1µ∗1 − εEb cos θ + εEbN(C −A)[K +N(C −A)

× cos θ]−1 sin2 θ sin2 α+ εE2(Cz)−1{2[y(CA−1 − 1)
−r][K +N(C −A) cos θ]−1 −A−1(CA−1 − 2)}
× sin θ µ∗4 + µ∗k1 ,

.

b = εA−1µ∗2 + εEa cos θ − εEaN(C −A)[K +N(C −A) (3.16)
× cos θ]−1 sin2 θ cos2 α− εE2(Cz)−1{2[y(CA−1 − 1)
−r][K +N(C −A) cos θ]−1 −A−1(CA−1 − 2)}
× sin θ µ∗5 + µ∗k2 ,

.
r = εC−1µ∗3,

.

ψ = εE,
.

θ = 0,
.
ϕ = r − εE cos θ,

.

λ = −εE cos θ,

where
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µ∗1 (a, b, r, ψ, θ, λ) =
1

2π |i− j|

∫ 2π|i−j|

0

[
M0

1 cos γ +M0
2 sin γ

]
dγ,

µ∗2 (a, b, r, ψ, θ, λ) =
1

2π |i− j|

∫ 2π|i−j|

0

[
M0

1 sin γ −M0
2 cos γ

]
dγ,

µ∗3 (a, b, r, ψ, θ, λ) =
1

2π |i− j|

∫ 2π|i−j|

0

M0
3 dγ,

µ∗4 (a, b, r, ψ, θ, λ) =
1

2π |i− j|

∫ 2π|i−j|

0

M0
3 sinαdγ,

µ∗5 (a, b, r, ψ, θ, λ) =
1

2π |i− j|

∫ 2π|i−j|

0

M0
3 cosαdγ,

µ∗k1 (a, b, r, ψ, θ, λ) =
1

2π |i− j|

∫ 2π|i−j|

0

K1dγ,

µ∗k2 (a, b, r, ψ, θ, λ) =
1

2π |i− j|

∫ 2π|i−j|

0

K2dγ,

It is assumed that, the variable α in the integrands is to be replaced by λ in
accordance with (3.14). Solving the previous averaged system (3.16) for perturbing
moments of a particular form, we can determine the motion of the body in the
resonant case with an error of order ε on a time interval of order ε−1.

4 Linear dissipative perturbed moments

Let us consider the perturbed motion of the gyrostat analogous to that of the
Lagrange’s case with allowance for the moments acting on our gyrostat from the
external medium and the shape of the gyrostat. We assume that the perturbing
moments having linear dissipative form as

M1 = −εI1p, M2 = −εI1q, M3 = −εI3r; I1, I3 > 0, (4.1)

where I1 and I3 are constant proportionality factors that depend on the prop-
erties of the medium and the shape of the gyrostat. For the case of constant small
moment along the axis of symmetry, the perturbed moments Mi (i = 1, 2, 3) take
the form

M1 = M2 = 0, M3 = εM∗3 = const. (4.2)

Each of equations (4.1) and (4.2), has been studied separately in [1] and [6]
when K ≡ K(θ) only. Now, we consider the motion of the gyrostat acted upon by
the sum of the two cases together. So, we write

M1 = −εI1p, M2 = −εI1q, M3 = −εI3r + εM∗3 ; I1, I3 > 0, (4.3)
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Substituting from (2.3) into (4.3), we get

M1 = −ε2I1P, M2 = −ε2I1Q, M3 = −εI3r + εM∗3 ; I1, I3 > 0, (4.4)

In accordance with the previous section, for the non-resonant case, we change
over to new slow variables a, b, r, ψ and θ, so that the averaged system (3.13) has
the forms

.
a = −εaI1A−1 − εb cos θ + εEbN(C −A)[K +N(C −A)

× cos θ]−1 sin2 θ − ε

16E2
eH`′2b sin θ{A−1 cos2 θ[8E2

−(a2 + b2)(4 cot2 θ + 1)] + E(y + r)[K +N(C −A)
cos θ]−1[8E2 sin2 θ − 3(a2 + b2)(cos2 θ + 1)]},

.

b = −εbI1A−1 + εa cos θ − εEaN(C −A)[K +N(C −A) (4.5)

× cos θ]−1 sin2 θ +
ε

16E2
eH`′2a sin θ{A−1 cos2 θ[8E2

−(a2 + b2)(4 cot2 θ + 1)] + E(y + r)[K +N(C −A)
cos θ]−1[8E2 sin2 θ − 3(a2 + b2)(cos2 θ + 1)]},

.
r = −εC−1(I3r −M∗3 ),

.

ψ = εE,
.

θ = 0,
.
ϕ = r − εE cos θ.

Integrating the third equation in (4.5), we obtain:

r = (r0 − I−1
3 M∗3 )e−εI3C

−1t + I−1
3 M∗3 . (4.6)

Making use of (4.5) and (4.6),
.

ψ,
.
ϕ can be integrated to have

ψ = ψ0 −
C[K +N(C −A) cos θ0]

(`3I3 + CM∗3 )

× ln{ I3(Cr0 + `3)e−εI3C
−1t

C(r0I3 −M∗3 )e−εI3C−1t + `3I3 + CM∗3
},

ϕ = ϕ0 +
C(M∗3 − r0I3)

εI2
3

(e−εI3C
−1t − 1) + I−1

3 M∗3 t (4.7)

+
ε cos θ0[K +N(C −A) cos θ0]

(`3I3 + CM∗3 )

× ln{ I3(Cr0 + `3)e−εI3C
−1t

C(r0I3 −M∗3 )e−εI3C−1t + `3I3 + CM∗3
}.

In addition, as can be seen from (4.5), the nutation angle maintains constant
value i.e.,

θ = θ0. (4.8)
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Here r0, ψ0, ϕ0 and θ0 were obtained in (3.3). Making use of (4.6), (4.8) and
the first two equations of (4.5), one obtains

a = e−εI1A
−1t[P0 cos η +Q0 sin η − E0 sin θ0 sin(η + ϕ0)],

b = e−εI1A
−1t[P0 sin η −Q0 cos η + E0 sin θ0 cos(η + ϕ0)], (4.9)

η = E0CI
−1
3 cos θ0(e−εI3C

−1t − 1).

As a results of substitution of the expressions for a and b from (4.9), and for
r from (4.6) into expressions (3.6) and (2.3) for P , Q, p, q, we obtain

P = e−εI1A
−1t[P0 cos(γ − η)−Q0 sin(γ − η) + E0 sin θ0

× sin(γ − η − ϕ0)] + E0 sin θ0 sinϕ0,

Q = e−εI1A
−1t[P0 sin(γ − η) +Q0 cos(γ − η)− E0 sin θ0

× cos(γ − η − ϕ0)] + E0 sin θ0 cosϕ0, (4.10)

γ = A−1{(C −A)[(r0 − I−1
3 M∗3 )e−εI3C

−1t + I−1
3 M∗3 ] + `3}t,

p0 = εP0, q0 = εQ0, k = εK0, n = εN.

Now we have developed the solution of the first approximation system for the
slow variables in the case of dissipative moment. If the resonance relation (3.12)
is satisfied, the averaging should be performed in accordance with the scheme
(3.16). In this case, all the integrals µ∗i are equal to the corresponding integrals
µi of (3.13). Therefore, the resonance in effect does not appear and the resultant
solution is suitable for describing the motion for any ratio (Cr + `3)/Ar 6= 1.
One can see that the axial rotational velocity r decreases monotonically in an
exponential fashion in accordance with (4.6). It is obvious from (4.10) that the
terms representing the projections P and Q resulting from the initial values P0 and
Q0, attenuate exponentially. At the same time, the projections P and Q contain
exponential increasing terms that are proportional to the restoring moment and
the third component of gyrostatic moment `3 We conclude also from (4.7) and
(4.8) that the precession angle ψ and the self-rotations angle ϕ are functionally
dependent on the time t and behave in logarithmic manner while the nutation
angle θ remains constant during the motion. For zero order approximation of ε,
we note that

.

ψ = 0,
.
ϕ = r0,

.

θ = 0. (4.11)

The case of rotation with fast spin r0 about the symmetry axis is then obtained.

5 The graphical representations

This section is given to discuss the obtained results through the graphical
representations. For the concerned problem, the following data are used
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A = B = 6 kg.mm2, C = 10 kg.mm2, r0 = 2 mm,
M = 300 kg, m∗3 = 2.5, H = 20, `∗ = 25 mm,
`′ = 13 mm, I1 = 0.2, I3 = 0.6, ε = 0.0001,
` = (100, 300, 500) kg.mm2 s−1, θ0 = (π/6, π/4, π/3),
T = 12.566371

Consider p and q to denote the obtained solutions for the considered problem.
The graphical representations of these solutions via t are represented in figures
(5.1)-(5.4) and (5.5)-(5.8) respectively. The phase plane diagrams describing the
stability for the solutions p and q are given in figures (5.9)-(5.12) and (5.13)-(5.16).

It is obvious that, when ` increases the frequency numbers increase while
the amplitude of the waves decreases, see figures (5.1)-(5.4) and (5.5)-(5.8). On
other hand, when e increases, the amplitude of the waves increases and the num-
bers of waves remain unchanged, for example see figures [(5.1),(5.2)]; [(5.3),(5.4)];
and [(5.5),(5.6)]; [(5.7),(5.8)]. Also, when increases, the amplitude of the waves
increases and the numbers of waves remain unchanged, for example see figures
[(5.1),(5.3)]; [(5.2),(5.4)]; and [(5.5),(5.7)]; [(5.6),(5.8)].

6 Conclusion

The averaging method is applied to obtain the first order approximate periodic
solutions of the problem of perturbed motions of a rotating symmetric gyrostat
about a fixed point in terms of the small parameter ε. These solutions can be
considered as a generalization of previously obtained ones as by Akulenko et al.
[1] (in the case when n = 0, k = constant and `3 = 0), as by Ismail, et al [7]
(in the case when n = 0), as Cid et al. [12] (in the case when the perturbing
moments Mi = 0, i = 1, 2, 3 and n = 0), and as Leshchenko et al. [13] (in the case
when n = 0, |Mi| � k, k=constant and `3 = 0). The methodological treatment of
this technique is presented in the resonant and the non-resonant cases. The axial
rotational velocity r is shown decrease monotonically in an exponential fashion
in accordance with (4.6). It is obvious from (4.10) that the terms representing
the projections P and Q resulting from the initial values P0 and Q0, attenuate
exponentially. On other hand, the projections P and Q contain terms of exponen-
tial forms that are proportional to the restoring moment and the third gyrostatic
moment. The precession angle ψ and the self-rotations angle ϕ are functionally
dependent on the time t and behave in logarithmic manner while the nutation
angle θ remains stationary during the motion. The case of rotation with fast spin
r0 about the symmetry axis is obtained.
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Captions of Figures
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The graphical representation of the solution p via t when θ = 300, e =
100 gauss with different values of the gyrostatic moment `.

The graphical representation of the solution p via t when θ = 300, e =
500 gauss with different values of the gyrostatic moment `.

The graphical representation of the solution p via t when θ = 600, e =
100 gauss with different values of the gyrostatic moment `.
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The graphical representation of the solution p via t when θ = 600, e =
500 gauss with different values of the gyrostatic moment `.

The graphical representation of the solution q via t when θ = 300, e =
100 gauss with different values of the gyrostatic moment `.

The graphical representation of the solution q via t when θ = 300, e =
500 gauss with different values of the gyrostatic moment `.
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The graphical representation of the solution q via t when θ = 600, e =
100 gauss with different values of the gyrostatic moment `.

The graphical representation of the solution q via t when θ = 600, e =
500 gauss with different values of the gyrostatic moment `.

The phase plane diagram of the solution p when ` = 300 kg.mm2.s−1, θ = 300,
e = 100 gauss.
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The phase plane diagram of the solution p when ` = 500 kg.mm2.s−1, θ = 300,
e = 100 gauss.

The phase plane diagram of the solution p when ` = 300 kg.mm2.s−1, θ = 300,
e = 500 gauss.

The phase plane diagram of the solution p when ` = 500 kg.mm2.s−1, θ = 300,
e = 500 gauss.
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The phase plane diagram of the solution q when ` = 300 kg.mm2.s−1, θ = 600,
e = 100 gauss.

The phase plane diagram of the solution q when ` = 500 kg.mm2.s−1, θ = 600,
e = 100 gauss.

The phase plane diagram of the solution q when ` = 300 kg.mm2.s−1, θ = 600,
e = 500 gauss.
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The phase plane diagram of the solution q when ` = 500 kg.mm2.s−1, θ = 600,
e = 100 gauss.
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