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Abstract In this article, we determine all values of k when the equation x2 − kxy + ky2 + 3ny = 0

where n = 1, 2, 3 has infinitely many positive solutions.
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1. Introduction

There have been many works on the Diophantine equation of the form

x2 − kxy + ly2 +mx+ ny = 0

for different values of the integers k, l,m and n. In 2004, Marlewski and Zarzycki [1] proved
that the equation x2 − kxy + y2 + x = 0 has infinitely many positive integer solutions if
and only if k = 3. Their results are based on data obtained by computer experiments.
The results suggest that for many k there are infinitely many integer solutions. Thus,
Yuan and Hu [2] demonstrated in 2011 that x2 − kxy + y2 + 2x = 0 has infinitely many
positive integer solutions if and only if k = 3, 4 and the equation x2 − kxy + y2 + 4x = 0
has infinitely many positive integer solutions if and only if k = 3, 4, 6. Motivated by
Yuan and Hu [2], Keskin, Karaatli and Siar [3] showed that the Diophantine equation
x2 − kxy + y2 + 2n = 0 for 0 ≤ n ≤ 10 has infinitely many solutions in positive integers
and provided all positive integer solutions. Moreover, in the same year, Karaatli and Siar
[4] determined the values of k when the Diophantine equation x2 − kxy + ky2 + ly = 0
for l ∈ {1, 2, 4, 8} has infinitely many positive integers x and y. The values of such (l, k)
are (1, 5), (2, 5), (2, 6), (4, 5), (4, 6), (4, 8), (8, 5), (8, 6), (8, 8), and (8, 12).

Expanding on the work of Yuan and Hu [2] and Karaatli and Siar [4], Keskin, Karaatli
and Siar [5] showed that the Diophantine equation x2 − kxy+ y2 − 2n = 0 for 0 ≤ n ≤ 10
has infinitely many solutions in positive integers and also gave all positive integer solutions
in terms of generalized Fibonacci sequence. Moreover they formulated a conjecture when
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the Diophantine equation of the form x2−kxy+y2−2n = 0 has positive integer solutions
which was proved later by Boumahdi, Kihel, Mavecha [6] in 2018.

In 2017, Mavecha [7] studied the equation of the form the equation x2−kxy+ky2+ly =
0 for l = 2n and showed that k = 5 is the only odd integer k such that the equation has
an infinitely many solutions in positive integers. The same equations were studied again
in 2021 by Alkabouss, Benseba, Berbara, Earp-Lynch, and Luca [8]. They determined
conditions when the equation

x2 − kxy + ky2 + ly = 0 (1.1)

has infinitely many positive integer solutions. They showed that if l2 < k and equation
(1.1) has infinitely many positive integer solutions, then (l, k) ∈ {(1, 5), (2, 5), (2, 6)}.
Moreover, they also determined the values of k when l = 2s, l = pn for p ≡ 3 mod 4,
k ≡ 2 mod p, and l = 2a3b, k = 2k′ + 1 where k′ ≡ 2 mod 3.

Inspired by Mavecha [7] as well as Alkabouss, Benseba, Berbara, Earp-Lynch, and
Luca [8], we will use the techniques that we develop to determine when the equation
x2 − kxy + ky2 + 3ny = 0 where n = 1, 2, 3 has infinitely many positive solutions.

2. Preliminaries

In this section, we will review some results and provide a definition that is necessary
for the proof of our main theorems.

Lemma 2.1. [9] Let N,D be odd positive integers with D non-square.
Suppose that the equation

x2 −Dy2 = 4, gcd(x, y) = 1

is solvable and let x0 + y0
√
D be the least solution. If the equation

u2 −Dv2 = −4N, u, v ∈ Z,

where gcd(u, v) | 2, is solvable, then u2 −Dv2 = −4N has a solution u0 + v0
√
D with the

following property:

0 < v0 ≤ y0
√
N√

(x0 − 2)
, 0 ≤ u0 ≤

√
(x0 − 2)N.

Lemma 2.2. [9] Let N,D be positive integers with D non-square.

Suppose that x0 + y0
√
D is the fundamental solution of the Pell equation x2 −Dy2 = 1

and the equation

u2 −Dv2 = −N, gcd(u, v) = 1

is solvable. Then u2 −Dv2 = −N has a solution u0 + v0
√
D with the following property:

0 < v0 ≤ y0
√
N√

2(x0 − 1)
, 0 ≤ u0 ≤

√
1

2
(x0 − 2)N.

In the next section, we will consider when the Diophantine equation of the form x2 −
kxy + ky2 + ly = 0 has an infinitely many positive integer solutions. So, for the sake of
convenience, we define the following.
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Definition 2.3. For a positive integer l, let T (l) be the set of integers k for which the
equation

x2 − kxy + ky2 + ly = 0 (2.1)

has infinitely many positive integer solutions and let T ′(l) be the set of integers k for
which the equation

x2 − kxy + ky2 + l = 0 (2.2)

has infinitely many positive integer solutions (x, y) where gcd(x, y) = 1.

Some results concerning the set T (1), T (2), T (4) and T (8) are provided in [3].

Theorem 2.4. [3] T (1) = {5}, T (2) = {5, 6}, T (4) = {5, 6, 8}, and T (8) = {5, 6, 8, 12}.

3. Main Results

In this section, we will show that T (3) = {5, 7}, T (9) = {5, 7, 9, 13} and T (27) =
{5, 6, 7, 9, 13, 18, 31}. First, we give a lemma which is applied in the following theorem.

Lemma 3.1. Let k and l be positive integers. If x2 − kxy+ ky2 + ly = 0 then there exist
positive integers d, a, b such that gcd(a, b) = 1, d | l, x = dab and y = da2.

Proof. Assume that x2 − kxy + ky2 + ly = 0 for some positive integers x and y. Then
it follows that y | x2 and thus x2 = yz for some positive integer z. Let d = gcd(y, z).
Then y = dm and z = dn for some positive integers m,n and gcd(m,n) = 1. Since
x2 = yz = d2mn, we obtain m = a2 and n = b2 for some positive integers a, b and
gcd(a, b) = 1. Hence, x = dab and y = da2. Substituting the values of x and y into
equation x2 − kxy + ky2 + ly = 0, we have (dab)2 − k(dab)(da2) + k(da2)2 + lda2 = 0.
Thus, we have db2 − kdab+ kda2 + l = 0. It follows that d | l.

Our next theorem shows that the set of integers k for which the equation (2.1) has
infinitely many positive solutions can be obtained from the set of integers k for which the
equation (2.2) has infinitely many positive solutions.

Theorem 3.2. Let p be a prime and n be a positive integer. Then

T (pn) =

n⋃
k=0

T ′(pk).

Moreover, T (pn) = T (pn−1) ∪ T ′(pn).

Proof. Assume that x2 − lxy + ly2 + pny = 0 has infinitely many solutions. By Lemma
3.1, there exist positive integers d, a, b such that gcd(a, b) = 1, x = dab, y = da2 and
d | pn. Thus d = pk for some 0 ≤ k ≤ n. Suppose d = pk. Then x = pkab, y = pka2, and
gcd(a, b) = 1. Substituting the values of x and y into the equation x2−lxy+ly2+pny = 0,
we obtain b2−lab+la2+pn−k = 0. If l ∈ T (pn) then l ∈ T ′(pk) for some k ≤ n. Conversely,
suppose k ∈ T ′(pl) for some l ≤ n. Then the equation x2−kxy+ky2+pl = 0 has infinitely
many positive solutions (x, y) where gcd(x, y) = 1. Multiplying by p2n−2ly2, we obtain

(pn−lxy)2 − k(pn−lxy)(pn−ly2) + k(pn−ly2)2 + pn(pn−ly2) = 0.

Thus k ∈ T (pn) as desired.
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In the next lemma, we provide the bound for a solution a of the equation b2 − kab +
ka2 +N = 0 for given integers k and N . Later we give a lower bound for k.

Lemma 3.3. Let k > 4 be a positive integer and N be an odd integer. If b2−kab+ka2+

N = 0 and 2b− ka ̸= 0 then 0 < a ≤
√
N√

k−4
and there are infinitely many positive integers

a, b satisfying b2 − kab+ ka2 +N = 0.

Proof. Suppose b2 − kab+ ka2 +N = 0 where gcd(a, b) = 1. Then

4b2 − 4kab+ 4ka2 = −4N

(2b− ka)2 − k2a2 + 4ka2 = −4N

(2b− ka)2 − ((k − 2)2 − 4)a2 = −4N.

Let u = 2b− ka,v = a. Since gcd(a, b) = 1, gcd(u, v) = 1 or 2. We have

u2 − ((k − 2)2 − 4)v2 = −4N.

Note that (x0, y0) = (k − 2, 1) is a fundamental solution of the equation

x2 − ((k − 2)2 − 4)y2 = 4.

For k > 4, we have (k − 3)2 < (k − 2)2 − 4 < (k − 2)2. Thus (k − 2)2 − 4 is not a perfect
square. By Lemma 2.1, we have a solution (u0, v0) of equation u2−((k−2)2−4)v2 = −4N

with the following property: 0 < v0 ≤
√
N√

k−4
.

Lemma 3.4. For positive integers l and k, if an equation x2 − kxy + ky2 + l = 0 is
solvable then k > 4.

Proof. Suppose x2−kxy+ky2+ l = 0. Then (2x−ky)2+y2(4k−k2) = −4l. This implies
that 4k − k2 < 0. Since k > 0, we have k > 4.

We are now ready to prove our main theorems.

Theorem 3.5. The equation x2−kxy+ky2+3y = 0 has infinitely many positive integer
solutions x and y if and only if k = 5, 7.

Proof. By Theorem 3.2, we have that T (3) = T (1) ∪ T ′(3). By Theorem 2.4, we have
T (1) = {5}. We next find the set T ′(3). Suppose b2−kab+ka2+3 = 0 where gcd(a, b) = 1.
By Lemma 3.4, we consider the case k > 4. If 2b − ka = 0, then there are finitely
positive solutions (a, b). We now suppose that 2b − ka ̸= 0. Then by Lemma 3.3, we

have 0 < a ≤
√
3√

k−4
< 2. Thus a = 1. This implies that b2 − kb + k + 3 = 0. Hence

(k− 1− b)(−1 + b) = 4. Since b is positive, we obtain that b− 1 = 1 and k− 1− b = 4 or
b− 1 = 2 and k− 1− b = 2 or b− 1 = 4 and k− 1− b = 1. We have (b, k) = (2, 7), (3, 6)
or (5, 7). Since 2b− k ̸= 0, only the case k = 7 holds.

Theorem 3.6. The equation x2−kxy+ky2+9y = 0 has infinitely many positive integer
solutions x and y if and only if k = 5, 7, 9, 13.

Proof. By Theorem 3.2, we have that T (9) = T (3) ∪ T ′(9). By Theorem 3.5, we have
T (3) = {5, 7}. We next find the set T ′(9). By Lemma 3.4, we consider the case k > 4.
If 2b − ka = 0, then there are finitely positive solutions (a, b). We now suppose that
2b − ka ̸= 0 and b2 − kab + ka2 + 9 = 0 where gcd(a, b) = 1. By Lemma 3.3, we have

0 < a ≤
√
9√

k−4
≤ 3. Thus a = 1, 2 or 3.
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Case 1 a = 1. We have b2 − kb + k + 9 = 0. Hence (k − b − 1)(b − 1) = 10. Then
k = 10/(b− 1)+ b+1. Since b is positive and (b− 1) | 10, we have (b, k) ∈ {(2, 13), (3, 9),
(6, 9), (11, 13)}.

Case 2 a = 2. Then b2 − 2kb + 4k + 9 = 0. Hence (2k − b − 2)(b − 2) = 13. Then
k = 13/2(b− 2) + b/2 + 1. Since k is an integer and b > 0, b = 3 or b = 15. Thus k = 9.

Case 3 a = 3. Then b2 − 3kb + 9k + 9 = 0. Hence (3k − b − 3)(b − 3) = 18. Then
k = 6/(b− 3) + b/3 + 1. Since k is an integer and b > 0, we have b = 6 or b = 9. Thus
k = 5. This completes the proof.

Theorem 3.7. The equation x2−kxy+ky2+27y = 0 has infinitely many positive integer
solutions x and y if and only if k = 5, 6, 7, 9, 13, 18, 31.

Proof. By Theorem 3.2, we have that T (27) = T (9) ∪ T ′(27). By Theorem 3.6, we have
T (9) = {5, 7, 9, 13}. We next find the set T ′(27). Suppose b2 − kab+ ka2 + 27 = 0 where

gcd(a, b) = 1. By Lemma 3.3, we have 0 < a ≤
√
27√
k−4

< 6. Thus a = 1, 2, 3, 4 or 5.

Case 1 a = 1. We have b2 − kb + k + 27 = 0. Hence (k − b − 1)(b − 1) = 28. Then
k = 28/(b− 1) + b + 1. Since k is an integer and b > 0, we have b = 2, 3, 5, 8, 29. Thus
k = 13, 18, 31.

Case 2 a = 2. Then b2 − 2kb + 4k + 27 = 0. Hence (2k − b − 2)(b − 2) = 31. Then
k = 31/2(b− 2) + b/2 + 1. Since k is an integer and b > 0, we have b = 3, 33. Thus
k = 18.

Case 3 a = 3. Then b2 − 3kb + 9k + 27 = 0. Hence (3k − b − 3)(b − 3) = 36.
k = 12/(b− 3) + b/3 + 1. Since k is an integer and b > 0, we have b = 6, 9, 15. Thus
k = 6, 7.

Case 4 a = 4. Then b2 − 4kb + 16k + 27 = 0. Hence (4k − b − 4)(b − 4) = 43.
k = 43/4(b− 4) + b/4 + 1. Since k is an integer and b > 0, we have b = 5, 47. Thus
k = 13.

Case 5 a = 5. Then b2 − 5kb + 25k + 27 = 0. Hence (5k − b − 5)(b − 5) = 52.
k = 52/5(b− 5) + b/5 + 1. Since k is an integer, no such integer b satisfies.

In conclusion, we present helpful results that enable us to determine for which values
of k there exist infinitely many positive solutions to the Diophantine equation (2.1) and
we then use our tools to derive all possible values of k for l = 3, 9 and 27.
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