Thai Journal of Mathematics Volume 22 Number 3 (2024) Pages 503–508

http://thaijmath.in.cmu.ac.th

On the Diophantine Equation

 $x^2 - kxy + ky^2 + 3^n y = 0, \space n = 1, 2, 3$

Supawadee Prugsapitak[∗] **and Nattaporn Thongngam**

Division of Computational Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand e-mail : supawadee.p@psu.ac.th (S. Prugsapitak); 6510230021@psu.ac.th (N. Thongngam)

Abstract In this article, we determine all values of k when the equation $x^2 - kxy + ky^2 + 3^ny = 0$ where $n = 1, 2, 3$ has infinitely many positive solutions.

MSC: 11D45; 11D72

Keywords: Diophantine equation; Pell equation; quadratic Diophantine equation

Submission date: 22.12.2023 / Acceptance date: 16.08.2024

1. Introduction

There have been many works on the Diophantine equation of the form

$$
x^2 - kxy + ly^2 + mx + ny = 0
$$

for different values of the integers k, l, m and n. In 2004, Marlewski and Zarzycki [\[1\]](#page-4-0) proved that the equation $x^2 - kxy + y^2 + x = 0$ has infinitely many positive integer solutions if and only if $k = 3$. Their results are based on data obtained by computer experiments. The results suggest that for many k there are infinitely many integer solutions. Thus, Yuan and Hu [\[2\]](#page-4-1) demonstrated in 2011 that $x^2 - kxy + y^2 + 2x = 0$ has infinitely many positive integer solutions if and only if $k = 3, 4$ and the equation $x^2 - kxy + y^2 + 4x = 0$ has infinitely many positive integer solutions if and only if $k = 3, 4, 6$. Motivated by Yuan and Hu [\[2\]](#page-4-1), Keskin, Karaatli and Siar [\[3\]](#page-4-2) showed that the Diophantine equation $x^2 - kxy + y^2 + 2^n = 0$ for $0 \le n \le 10$ has infinitely many solutions in positive integers and provided all positive integer solutions. Moreover, in the same year, Karaatli and Siar [\[4\]](#page-5-0) determined the values of k when the Diophantine equation $x^2 - kxy + ky^2 + ly = 0$ for $l \in \{1, 2, 4, 8\}$ has infinitely many positive integers x and y. The values of such (l, k) are $(1, 5), (2, 5), (2, 6), (4, 5), (4, 6), (4, 8), (8, 5), (8, 6), (8, 8),$ and $(8, 12).$

Expanding on the work of Yuan and Hu [\[2\]](#page-4-1) and Karaatli and Siar [\[4\]](#page-5-0), Keskin, Karaatli and Siar [\[5\]](#page-5-1) showed that the Diophantine equation $x^2 - kxy + y^2 - 2^n = 0$ for $0 \le n \le 10$ has infinitely many solutions in positive integers and also gave all positive integer solutions in terms of generalized Fibonacci sequence. Moreover they formulated a conjecture when

^{*}Corresponding author. Published by The Mathematical Association of Thailand. Copyright © 2024 by TJM. All rights reserved.

the Diophantine equation of the form $x^2 - kxy + y^2 - 2^n = 0$ has positive integer solutions which was proved later by Boumahdi, Kihel, Mavecha [\[6\]](#page-5-2) in 2018.

In 2017, Mavecha [\[7\]](#page-5-3) studied the equation of the form the equation $x^2 - kxy + ky^2 + ly =$ 0 for $l = 2^n$ and showed that $k = 5$ is the only odd integer k such that the equation has an infinitely many solutions in positive integers. The same equations were studied again in 2021 by Alkabouss, Benseba, Berbara, Earp-Lynch, and Luca [\[8\]](#page-5-4). They determined conditions when the equation

$$
x^2 - kxy + ky^2 + ly = 0
$$
\n(1.1)

has infinitely many positive integer solutions. They showed that if $l^2 < k$ and equation [\(1.1\)](#page-1-0) has infinitely many positive integer solutions, then $(l, k) \in \{(1, 5), (2, 5), (2, 6)\}.$ Moreover, they also determined the values of k when $l = 2^s$, $l = p^n$ for $p \equiv 3 \mod 4$, $k \equiv 2 \mod p$, and $l = 2^a 3^b$, $k = 2k' + 1$ where $k' \equiv 2 \mod 3$.

Inspired by Mavecha [\[7\]](#page-5-3) as well as Alkabouss, Benseba, Berbara, Earp-Lynch, and Luca [\[8\]](#page-5-4), we will use the techniques that we develop to determine when the equation $x^2 - kxy + ky^2 + 3^ny = 0$ where $n = 1, 2, 3$ has infinitely many positive solutions.

2. Preliminaries

In this section, we will review some results and provide a definition that is necessary for the proof of our main theorems.

Lemma 2.1. [\[9\]](#page-5-5) Let N, D be odd positive integers with D non-square. Suppose that the equation

> $x^2 - Dy^2 = 4$, $gcd(x, y) = 1$ √

is solvable and let $x_0 + y_0$ D be the least solution. If the equation

$$
u^2 - Dv^2 = -4N, u, v \in \mathbb{Z},
$$

where $gcd(u, v) \mid 2$, is solvable, then $u^2 - Dv^2 = -4N$ has a solution $u_0 + v_0 \sqrt{2}$ D with the following property:

$$
0 < v_0 \le \frac{y_0 \sqrt{N}}{\sqrt{(x_0 - 2)}}, \quad 0 \le u_0 \le \sqrt{(x_0 - 2)N}.
$$

Lemma 2.2. [\[9\]](#page-5-5) Let N, D be positive integers with D non-square. Suppose that $x_0 + y_0\sqrt{D}$ is the fundamental solution of the Pell equation $x^2 - Dy^2 = 1$ and the equation

$$
u^2 - Dv^2 = -N, \gcd(u, v) = 1
$$

is solvable. Then $u^2 - Dv^2 = -N$ has a solution $u_0 + v_0 \sqrt{N}$ D with the following property:

$$
0 < v_0 \le \frac{y_0 \sqrt{N}}{\sqrt{2(x_0 - 1)}}, \quad 0 \le u_0 \le \sqrt{\frac{1}{2}(x_0 - 2)N}.
$$

In the next section, we will consider when the Diophantine equation of the form x^2 $kxy + ky^2 + ly = 0$ has an infinitely many positive integer solutions. So, for the sake of convenience, we define the following.

Definition 2.3. For a positive integer l, let $T(l)$ be the set of integers k for which the equation

$$
x^2 - kxy + ky^2 + ly = 0
$$
\n(2.1)

has infinitely many positive integer solutions and let $T'(l)$ be the set of integers k for which the equation

$$
x^2 - kxy + ky^2 + l = 0
$$
\n(2.2)

has infinitely many positive integer solutions (x, y) where $gcd(x, y) = 1$.

Some results concerning the set $T(1), T(2), T(4)$ and $T(8)$ are provided in [\[3\]](#page-4-2).

Theorem 2.4. [\[3\]](#page-4-2) $T(1) = \{5\}$, $T(2) = \{5, 6\}$, $T(4) = \{5, 6, 8\}$, and $T(8) = \{5, 6, 8, 12\}$.

3. Main Results

In this section, we will show that $T(3) = \{5, 7\}$, $T(9) = \{5, 7, 9, 13\}$ and $T(27) =$ $\{5, 6, 7, 9, 13, 18, 31\}$. First, we give a lemma which is applied in the following theorem.

Lemma 3.1. Let k and l be positive integers. If $x^2 - kxy + ky^2 + ly = 0$ then there exist positive integers d, a, b such that $gcd(a, b) = 1, d | l, x = dab$ and $y = da^2$.

Proof. Assume that $x^2 - kxy + ky^2 + ly = 0$ for some positive integers x and y. Then it follows that $y \mid x^2$ and thus $x^2 = yz$ for some positive integer z. Let $d = \gcd(y, z)$. Then $y = dm$ and $z = dn$ for some positive integers m, n and $gcd(m, n) = 1$. Since $x^2 = yz = d^2mn$, we obtain $m = a^2$ and $n = b^2$ for some positive integers a, b and $gcd(a, b) = 1$. Hence, $x = dab$ and $y = da^2$. Substituting the values of x and y into equation $x^2 - kxy + ky^2 + ly = 0$, we have $(dab)^2 - k(dab)(da^2) + k(da^2)^2 + Ida^2 = 0$. Thus, we have $db^2 - kdab + kda^2 + l = 0$. It follows that $d | l$. \blacksquare

Our next theorem shows that the set of integers k for which the equation (2.1) has infinitely many positive solutions can be obtained from the set of integers k for which the equation [\(2.2\)](#page-2-1) has infinitely many positive solutions.

Theorem 3.2. Let p be a prime and n be a positive integer. Then

$$
T(p^n) = \bigcup_{k=0}^n T'(p^k).
$$

Moreover, $T(p^n) = T(p^{n-1}) \cup T'(p^n)$.

Proof. Assume that $x^2 - lxy + ly^2 + p^n y = 0$ has infinitely many solutions. By Lemma [3.1,](#page-2-2) there exist positive integers d, a, b such that $gcd(a, b) = 1$, $x = dab, y = da^2$ and $d | pⁿ$. Thus $d = p^k$ for some $0 \le k \le n$. Suppose $d = p^k$. Then $x = p^kab$, $y = p^ka²$, and $gcd(a, b) = 1$. Substituting the values of x and y into the equation $x^2 - lxy + ly^2 + p^ny = 0$, we obtain $b^2 - lab + la^2 + p^{n-k} = 0$. If $l \in T(p^n)$ then $l \in T'(p^k)$ for some $k \leq n$. Conversely, suppose $k \in T'(p^l)$ for some $l \leq n$. Then the equation $x^2 - kxy + ky^2 + p^l = 0$ has infinitely many positive solutions (x, y) where $gcd(x, y) = 1$. Multiplying by $p^{2n-2l}y^2$, we obtain

$$
(p^{n-l}xy)^2 - k(p^{n-l}xy)(p^{n-l}y^2) + k(p^{n-l}y^2)^2 + p^n(p^{n-l}y^2) = 0.
$$

Thus $k \in T(p^n)$ as desired.

 \blacksquare

In the next lemma, we provide the bound for a solution a of the equation $b^2 - kab +$ $ka^2 + N = 0$ for given integers k and N. Later we give a lower bound for k.

Lemma 3.3. Let $k > 4$ be a positive integer and N be an odd integer. If $b^2 - kab + ka^2 +$ $N = 0$ and $2b - ka \neq 0$ then $0 < a \leq \frac{\sqrt{k}}{\sqrt{k}}$ $\frac{\sqrt{N}}{N}$ $\frac{N}{k-4}$ and there are infinitely many positive integers a, b satisfying $b^2 - kab + ka^2 + N = 0$.

Proof. Suppose $b^2 - kab + ka^2 + N = 0$ where $gcd(a, b) = 1$. Then

$$
4b2 - 4kab + 4ka2 = -4N
$$

$$
(2b - ka)2 - k2a2 + 4ka2 = -4N
$$

$$
(2b - ka)2 - ((k - 2)2 - 4)a2 = -4N.
$$

Let $u = 2b - ka, v = a$. Since $gcd(a, b) = 1$, $gcd(u, v) = 1$ or 2. We have $u^2 - ((k-2)^2 - 4)v^2 = -4N.$

Note that $(x_0, y_0) = (k - 2, 1)$ is a fundamental solution of the equation

$$
x^2 - ((k - 2)^2 - 4)y^2 = 4.
$$

For $k > 4$, we have $(k-3)^2 < (k-2)^2 - 4 < (k-2)^2$. Thus $(k-2)^2 - 4$ is not a perfect square. By Lemma [2.1,](#page-1-1) we have a solution (u_0, v_0) of equation $u^2 - ((k-2)^2-4)v^2 = -4N$ with the following property: $0 < v_0 \leq \frac{\sqrt{N}}{\sqrt{k-1}}$ $\frac{\sqrt{N}}{k-4}$. п

Lemma 3.4. For positive integers l and k, if an equation $x^2 - kxy + ky^2 + l = 0$ is solvable then $k > 4$.

Proof. Suppose $x^2 - kxy + ky^2 + l = 0$. Then $(2x - ky)^2 + y^2(4k - k^2) = -4l$. This implies that $4k - k^2 < 0$. Since $k > 0$, we have $k > 4$.

We are now ready to prove our main theorems.

Theorem 3.5. The equation $x^2 - kxy + ky^2 + 3y = 0$ has infinitely many positive integer solutions x and y if and only if $k = 5, 7$.

Proof. By Theorem [3.2,](#page-2-3) we have that $T(3) = T(1) \cup T'(3)$. By Theorem [2.4,](#page-2-4) we have $T(1) = \{5\}$. We next find the set $T'(3)$. Suppose $b^2 - kab + ka^2 + 3 = 0$ where $gcd(a, b) = 1$. By Lemma [3.4,](#page-3-0) we consider the case $k > 4$. If $2b - ka = 0$, then there are finitely positive solutions (a, b) . We now suppose that $2b - ka \neq 0$. Then by Lemma [3.3,](#page-2-5) we have $0 < a \leq \frac{\sqrt{b}}{\sqrt{b}}$ $\frac{\sqrt{3}}{2}$ $\frac{\sqrt{3}}{k-4}$ < 2. Thus $a = 1$. This implies that $b^2 - kb + k + 3 = 0$. Hence $(k-1-b)(-1+b) = 4$. Since b is positive, we obtain that $b-1=1$ and $k-1-b=4$ or $b-1=2$ and $k-1-b=2$ or $b-1=4$ and $k-1-b=1$. We have $(b, k) = (2, 7), (3, 6)$ or (5,7). Since $2b - k \neq 0$, only the case $k = 7$ holds. \blacksquare

Theorem 3.6. The equation $x^2 - kxy + ky^2 + 9y = 0$ has infinitely many positive integer solutions x and y if and only if $k = 5, 7, 9, 13$.

Proof. By Theorem [3.2,](#page-2-3) we have that $T(9) = T(3) \cup T'(9)$. By Theorem [3.5,](#page-3-1) we have $T(3) = \{5, 7\}$. We next find the set $T'(9)$. By Lemma [3.4,](#page-3-0) we consider the case $k > 4$. If $2b - ka = 0$, then there are finitely positive solutions (a, b) . We now suppose that $2b - ka \neq 0$ and $b^2 - kab + ka^2 + 9 = 0$ where $gcd(a, b) = 1$. By Lemma [3.3,](#page-2-5) we have $0 < a \leq \frac{\sqrt{9}}{\sqrt{b}}$ $\frac{\sqrt{9}}{k-4} \leq 3$. Thus $a = 1, 2$ or 3.

Case 1 $a = 1$. We have $b^2 - kb + k + 9 = 0$. Hence $(k - b - 1)(b - 1) = 10$. Then $k = 10/(b-1) + b + 1$. Since b is positive and $(b-1) | 10$, we have $(b, k) \in \{(2, 13), (3, 9),\}$ $(6, 9), (11, 13)\}.$

Case 2 $a = 2$. Then $b^2 - 2kb + 4k + 9 = 0$. Hence $(2k - b - 2)(b - 2) = 13$. Then $k = 13/2(b-2) + b/2 + 1$. Since k is an integer and $b > 0$, $b = 3$ or $b = 15$. Thus $k = 9$.

Case 3 $a = 3$. Then $b^2 - 3kb + 9k + 9 = 0$. Hence $(3k - b - 3)(b - 3) = 18$. Then $k = 6/(b-3) + b/3 + 1$. Since k is an integer and $b > 0$, we have $b = 6$ or $b = 9$. Thus $k = 5$. This completes the proof.

Theorem 3.7. The equation $x^2 - kxy + ky^2 + 27y = 0$ has infinitely many positive integer solutions x and y if and only if $k = 5, 6, 7, 9, 13, 18, 31$.

Proof. By Theorem [3.2,](#page-2-3) we have that $T(27) = T(9) \cup T'(27)$. By Theorem [3.6,](#page-3-2) we have $T(9) = \{5, 7, 9, 13\}$. We next find the set $T'(27)$. Suppose $b^2 - kab + ka^2 + 27 = 0$ where $gcd(a, b) = 1$. By Lemma [3.3,](#page-2-5) we have $0 < a \leq \frac{\sqrt{a}}{\sqrt{b}}$ $\frac{\sqrt{27}}{2}$ $\frac{\sqrt{27}}{k-4}$ < 6. Thus $a = 1, 2, 3, 4$ or 5.

Case 1 $a = 1$. We have $b^2 - kb + k + 27 = 0$. Hence $(k - b - 1)(b - 1) = 28$. Then $k = 28/(b-1) + b + 1$. Since k is an integer and $b > 0$, we have $b = 2, 3, 5, 8, 29$. Thus $k = 13, 18, 31.$

Case 2 $a = 2$. Then $b^2 - 2kb + 4k + 27 = 0$. Hence $(2k - b - 2)(b - 2) = 31$. Then $k = 31/2(b-2) + b/2 + 1$. Since k is an integer and $b > 0$, we have $b = 3, 33$. Thus $k = 18$.

Case 3 $a = 3$. Then $b^2 - 3kb + 9k + 27 = 0$. Hence $(3k - b - 3)(b - 3) = 36$. $k = 12/(b-3) + b/3 + 1$. Since k is an integer and $b > 0$, we have $b = 6, 9, 15$. Thus $k = 6, 7.$

Case 4 $a = 4$. Then $b^2 - 4kb + 16k + 27 = 0$. Hence $(4k - b - 4)(b - 4) = 43$. $k = 43/4(b-4) + b/4 + 1$. Since k is an integer and $b > 0$, we have $b = 5, 47$. Thus $k = 13$.

Case 5 $a = 5$. Then $b^2 - 5kb + 25k + 27 = 0$. Hence $(5k - b - 5)(b - 5) = 52$. $k = 52/5(b-5) + b/5 + 1$. Since k is an integer, no such integer b satisfies.

In conclusion, we present helpful results that enable us to determine for which values of k there exist infinitely many positive solutions to the Diophantine equation (2.1) and we then use our tools to derive all possible values of k for $l = 3, 9$ and 27.

Acknowledgements

We would like to thank the referees for their valuable comments and suggestions on the manuscript.

REFERENCES

- [1] A. Marlewski, P. Marzycki, Infinitely many positive solutions of Diophantine equation $x^2 - kxy + y^2 + x = 0$, Comp. Math. Appl. 47 (2004) 115–121.
- [2] P. Yuan, Y. Hu, On the Diophantine equation $x^2 - kxy + y^2 + lx = 0, l \in \{1, 2, 4\}$, Comp. Math. Appl. 61 (2011) 573–577.
- [3] R. Keskin, O. Karaatli, Z. Siar, On the Diophantine equation $x^2 - kxy + y^2 + 2^n = 0$, Miskolc Mathematical Notes 13 (2012) 375–388.
- [4] O. Karaatli, Z. Siar, On the Diophantine equation $x^2 - kxy + ky^2 + ly = 0, l \in$ {1, 2, 4, 8}, Afr. Diaspora J. Math. 14 (2012) 24–29.
- [5] R. Keskin, Z. Siar, O. Karaatli, On the Diophantine equation $x^2 - kxy + y^2 - 2^n = 0$, Czechoslovak Mathematical Journal 63 (2013) 783–797.
- [6] R. Boumahdi, O. Kihel, S. Mavechan, Proof of the conjecture of Keskin, Siar and Karaatli, Annales Fennici Mathematici 43 (2018) 557–561.
- [7] S. Mavechan, On the Diophantine equation $x^2 - kxy + y^2 + ly = 0, l = 2ⁿ$, An. Univ. Vest Timiss. Ser. Mat-Inform. LV (2017) 115–118.
- [8] S.A. Alkabouss, B. Benseba, N. Berbara, S. Earp-Lynch, F. Luca, A note on the Diophantine equation $x^2 - kxy + ky^2 + ly = 0$, Mathematica 63 (2021) 151-157.
- [9] T. Nagell, Introduction to Number Theory, Chelsea, 1981.