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On the Diophantine Equation
2 —kay+ky? + 3"y =0 n=1,23
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Abstract In this article, we determine all values of k when the equation 2 — kxy + ky2 + 3"y = 0
where n = 1, 2, 3 has infinitely many positive solutions.
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1. INTRODUCTION
There have been many works on the Diophantine equation of the form
2 —kry+ 1y  +ma+ny=0

for different values of the integers k, I, m and n. In 2004, Marlewski and Zarzycki [1] proved
that the equation 22 — kxy + y? + 2 = 0 has infinitely many positive integer solutions if
and only if £ = 3. Their results are based on data obtained by computer experiments.
The results suggest that for many k there are infinitely many integer solutions. Thus,
Yuan and Hu [2] demonstrated in 2011 that 22 — kay + y? + 2z = 0 has infinitely many
positive integer solutions if and only if k = 3,4 and the equation 2% — kxy + y? + 42 = 0
has infinitely many positive integer solutions if and only if k¥ = 3,4,6. Motivated by
Yuan and Hu [2], Keskin, Karaatli and Siar [3] showed that the Diophantine equation
22 — kxy + 9%+ 2" = 0 for 0 < n < 10 has infinitely many solutions in positive integers
and provided all positive integer solutions. Moreover, in the same year, Karaatli and Siar
[4] determined the values of k when the Diophantine equation x? — kxy + ky? + ly = 0
for I € {1,2,4,8} has infinitely many positive integers = and y. The values of such (I, k)
are (1,5),(2,5),(2,6),(4,5), (4,6),(4,8),(8,5),(8,6), (8,8), and (8,12).

Expanding on the work of Yuan and Hu [2] and Karaatli and Siar [1], Keskin, Karaatli
and Siar [5] showed that the Diophantine equation 22 — kay +y? —2" =0 for 0 <n < 10
has infinitely many solutions in positive integers and also gave all positive integer solutions
in terms of generalized Fibonacci sequence. Moreover they formulated a conjecture when
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the Diophantine equation of the form 22 — kxy+y? — 2" = 0 has positive integer solutions
which was proved later by Boumahdi, Kihel, Mavecha [6] in 2018.

In 2017, Mavecha [7] studied the equation of the form the equation x? —kxy+ky?+1ly =
0 for [ = 2" and showed that & = 5 is the only odd integer k£ such that the equation has
an infinitely many solutions in positive integers. The same equations were studied again
in 2021 by Alkabouss, Benseba, Berbara, Earp-Lynch, and Luca [8]. They determined
conditions when the equation

22 —kxy +ky? +ly=0 (1.1)
has infinitely many positive integer solutions. They showed that if [? < k and equation
(1.1) has infinitely many positive integer solutions, then (I,k) € {(1,5),(2,5),(2,6)}.
Moreover, they also determined the values of &k when [ = 2%, | = p™ for p = 3 mod 4,
k=2 mod p, and [ = 293, k = 2k’ 4+ 1 where ¥’ =2 mod 3.

Inspired by Mavecha [7] as well as Alkabouss, Benseba, Berbara, Earp-Lynch, and

Luca [3], we will use the techniques that we develop to determine when the equation
2% — kay + ky? + 3"y = 0 where n = 1,2, 3 has infinitely many positive solutions.

2. PRELIMINARIES

In this section, we will review some results and provide a definition that is necessary
for the proof of our main theorems.

Lemma 2.1. [9] Let N, D be odd positive integers with D non-square.
Suppose that the equation

z? — Dy? =4, gcd(z,y) = 1
is solvable and let o + yov/'D be the least solution. If the equation

u? — Dv? = —4N,u,v € Z,

where ged(u,v) | 2, is solvable, then u> — Dv? = —4N has a solution ug + voV/D with the
following property:

N
0<’U()§\/z%7 OSUOS\/(:L‘()—Q)N.
0—

Lemma 2.2. [9] Let N, D be positive integers with D non-square.
Suppose that xo + yoV'D is the fundamental solution of the Pell equation x> — Dy? = 1
and the equation

u? — Dv* = =N, ged(u,v) = 1
is solvable. Then u? — Dv? = —N has a solution ug + vov/D with the following property:

YoV N 0 1

0<y < <ug <4/ =(zo—2)N.

R E

In the next section, we will consider when the Diophantine equation of the form x* —
kxy + ky? 4+ ly = 0 has an infinitely many positive integer solutions. So, for the sake of
convenience, we define the following.
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Definition 2.3. For a positive integer [, let T'(I) be the set of integers k for which the
equation

22 —kaxy +ky? +ly=0 (2.1)

has infinitely many positive integer solutions and let T”(I) be the set of integers k for
which the equation

2 —kay+ky? +1=0 (2.2)

has infinitely many positive integer solutions (z,y) where ged(x,y) = 1.

Some results concerning the set 7°(1),7(2),T(4) and T'(8) are provided in [3].
Theorem 2.4. [3] T(1) = {5}, T(2) = {5,6}, T'(4) = {5,6,8}, and T(8) = {5,6,8,12}.

3. MAIN RESULTS

In this section, we will show that T'(3) = {5,7}, T(9) = {5,7,9,13} and T(27) =
{5,6,7,9,13,18,31}. First, we give a lemma which is applied in the following theorem.

Lemma 3.1. Let k and [ be positive integers. If x> — kxy + ky? + 1y = 0 then there exist
positive integers d, a,b such that ged(a,b) =1, d | I, x = dab and y = da?.

Proof. Assume that x? — kxy + ky? + ly = 0 for some positive integers x and y. Then
it follows that y | 2% and thus 2? = yz for some positive integer z. Let d = ged(y, 2).
Then y = dm and z = dn for some positive integers m,n and ged(m,n) = 1. Since
22 = yz = d’mn, we obtain m = a? and n = b for some positive integers a,b and
ged(a,b) = 1. Hence, * = dab and y = da®. Substituting the values of z and y into
equation x? — kxy + ky? + ly = 0, we have (dab)? — k(dab)(da?) + k(da?)? + lda? = 0.
Thus, we have db® — kdab + kda? + 1 = 0. It follows that d | [. [

Our next theorem shows that the set of integers k for which the equation (2.1) has
infinitely many positive solutions can be obtained from the set of integers k for which the
equation (2.2) has infinitely many positive solutions.

Theorem 3.2. Let p be a prime and n be a positive integer. Then
T(p") = |J T'(").
k=0

Moreover, T(p™) = T(p™~ 1) UT'(p").

Proof. Assume that 2% — lzy + ly? + p™y = 0 has infinitely many solutions. By Lemma,
3.1, there exist positive integers d,a,b such that ged(a,b) = 1, * = dab,y = da® and
d | p™. Thus d = p* for some 0 < k < n. Suppose d = p*. Then z = p*ab, y = p*a?, and
ged(a,b) = 1. Substituting the values of  and y into the equation 2% —lzy+1y?+p"y = 0,
we obtain b2 —lab+la?+p"~F = 0. If | € T(p") then [ € T"(p*) for some k < n. Conversely,
suppose k € T'(p') for some I < n. Then the equation 22 —kxy+ky?+p' = 0 has infinitely

many positive solutions (z,y) where ged(z,y) = 1. Multiplying by p?" 242, we obtain

(" tay)® — k(" ) (") + k("R + 0 (0" ) = 0.
Thus k € T(p™) as desired. m
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In the next lemma, we provide the bound for a solution a of the equation b? — kab +
ka? + N = 0 for given integers k and N. Later we give a lower bound for k.

Lemma 3.3. Let k > 4 be a positive integer and N be an odd integer. If b> — kab+ ka® +
N =0and2b—ka #0 then 0 < a < \/‘% and there are infinitely many positive integers
a,b satisfying b*> — kab + ka® + N = 0.
Proof. Suppose b? — kab + ka? + N = 0 where ged(a,b) = 1. Then
4b® — dkab + 4ka® = —4N
(20 — ka)? — k*a® + 4ka® = —4AN
(20 — ka)? — ((k — 2)* — 4)a® = —4N.
Let uw = 2b — ka,v = a. Since ged(a,b) = 1, ged(u,v) =1 or 2. We have
u? — ((k —2)? — 4)v? = —4N.
Note that (zo,y0) = (k — 2,1) is a fundamental solution of the equation
22— ((k—2)? — 4)y* = 4.
For k > 4, we have (k — 3)? < (k—2)? —4 < (k—2)%. Thus (k —2)? — 4 is not a perfect

square. By Lemma 2.1, we have a solution (ug, vo) of equation u? — ((k—2)?—4)v? = —4N
with the following property: 0 < vg < N ]

Lemma 3.4. For positive integers | and k, if an equation x> — kxy + ky> +1 = 0 is
solvable then k > 4.

Proof. Suppose 2% — kxy+ky?+1 = 0. Then (2x — ky)? +y?(4k — k?) = —4l. This implies
that 4k — k2 < 0. Since k > 0, we have k > 4. ]

We are now ready to prove our main theorems.

Theorem 3.5. The equation x> — kxy + ky? + 3y = 0 has infinitely many positive integer
solutions x and y if and only if kK =5,7.

Proof. By Theorem 3.2, we have that T'(3) = T(1) UT’(3). By Theorem 2.4, we have
T(1) = {5}. We next find the set 7"(3). Suppose b*>—kab+ka?+3 = 0 where ged(a,b) = 1.
By Lemma 3.4, we consider the case k > 4. If 2b — ka = 0, then there are finitely
positive solutions (a,b). We now suppose that 2b — ka # 0. Then by Lemma 3.3, we

have 0 < a < \/‘k/% < 2. Thus @ = 1. This implies that b> — kb + k + 3 = 0. Hence
(k—1—="0b)(—1+b) = 4. Since b is positive, we obtain that b—1=1and k—1—-b=4or
b—1=2andk—1—-b=2o0orb—1=4and k—1—-b=1. We have (b,k) = (2,7), (3,6)

or (5,7). Since 2b — k # 0, only the case k = 7 holds. [

Theorem 3.6. The equation x> — kxy +ky? + 9y = 0 has infinitely many positive integer
solutions x and y if and only if k =5,7,9,13.

Proof. By Theorem 3.2, we have that T'(9) = T(3) UT’(9). By Theorem 3.5, we have
T(3) = {5,7}. We next find the set 77(9). By Lemma 3.4, we consider the case k > 4.
If 2b — ka = 0, then there are finitely positive solutions (a,b). We now suppose that
2b — ka # 0 and b* — kab + ka® + 9 = 0 where ged(a,b) = 1. By Lemma 3.3, we have

0<a§¢%§3. Thus a = 1,2 or 3.
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Case 1 a = 1. We have b — kb+ k + 9 = 0. Hence (k—b —1)(b— 1) = 10. Then
k=10/(b—1)+b+1. Since b is positive and (b—1) | 10, we have (b, k) € {(2,13),(3,9),
(6,9), (11,13)}.

Case 2 a = 2. Then b? — 2kb + 4k + 9 = 0. Hence (2k — b — 2)(b — 2) = 13. Then
k=13/2(b—2)+b/2+ 1. Since k is an integer and b > 0, b =3 or b = 15. Thus k = 9.

Case 3 a = 3. Then b? — 3kb+ 9k + 9 = 0. Hence (3k — b — 3)(b — 3) = 18. Then
k=6/(b—3)+b/3+1. Since k is an integer and b > 0, we have b = 6 or b = 9. Thus
k = 5. This completes the proof. [

Theorem 3.7. The equation x2 — kxy+ky? +27y = 0 has infinitely many positive integer
solutions x and y if and only if kK =5,6,7,9,13,18, 31.

Proof. By Theorem 3.2, we have that T(27) = T(9) UT’(27). By Theorem 3.6, we have
T(9) = {5,7,9,13}. We next find the set T"(27). Suppose b* — kab + ka? + 27 = 0 where

ged(a,b) = 1. By Lemma 3.3, we have 0 < a < jg < 6. Thus a = 1,2,3,4 or 5.

Case 1 a = 1. We have b — kb+ k + 27 = 0. Hence (k —b—1)(b — 1) = 28. Then
k=28/(b—1)+ b+ 1. Since k is an integer and b > 0, we have b = 2,3,5,8,29. Thus
k=13,18,31.

Case 2 a = 2. Then b* — 2kb + 4k + 27 = 0. Hence (2k — b — 2)(b — 2) = 31. Then
k =31/2(b—2) +b/2 + 1. Since k is an integer and b > 0, we have b = 3,33. Thus
k=18.

Case 3 a = 3. Then b® — 3kb + 9k + 27 = 0. Hence (3k — b — 3)(b — 3) = 36.
k=12/(b—3)+b/3+ 1. Since k is an integer and b > 0, we have b = 6,9,15. Thus
k=6,7.

Case 4 a = 4. Then b? — 4kb + 16k + 27 = 0. Hence (4k — b — 4)(b — 4) = 43.
k = 43/4(b—4) + b/4 + 1. Since k is an integer and b > 0, we have b = 5,47. Thus
k= 13.

Case 5 a = 5. Then b? — 5kb + 25k + 27 = 0. Hence (5k — b — 5)(b — 5) = 52.
k=52/5(b—5)+b/5+ 1. Since k is an integer, no such integer b satisfies. L]

In conclusion, we present helpful results that enable us to determine for which values
of k there exist infinitely many positive solutions to the Diophantine equation (2.1) and
we then use our tools to derive all possible values of k for [ = 3,9 and 27.
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