Common Fixed Point Theorems

B. Fisher, H. K. Pathak and R. Tiwari

Abstract

In this note we establish a common fixed point theorem for a quadruple of self-mappings satisfying a generalized contractive condition in a normed space which extends the result of Rashwan [2]. We also prove some fixed point theorems with asymptotic regularity condition for a quadruple of mappings. These theorems generalize and extend results of Sastry et al. [3] and Zeqing Liu et al. [4].

Keywords : Common fixed points; Generalized contractive; Mann iteration; Normed spaces; Orbit; Orbitally continuous; Orbitally complete; Asymptotically regular.
2000 Mathematics Subject Classification : $54 \mathrm{H} 25,47 \mathrm{H} 10$.

1 Introduction

The following definitions were used in [1] and [2] respectively.
Definition 1.1 Let $(N,\|\cdot\|)$ be a normed space. Then T_{1} and T_{2} be two selfmappings of N called a generalized contractive pair of mappings if

$$
\begin{aligned}
\left\|T_{1} x-T_{2} y\right\| \leq & \max \left\{\|x-y\|, \frac{\left\|x-T_{1} x\right\|\left[1-\left\|x-T_{2} y\right\|\right]}{1+\left\|x-T_{1} x\right\|},\right. \\
& \frac{\left\|x-T_{2} y\right\|\left[1-\left\|x-T_{1} x\right\|\right]}{1+\left\|x-T_{2} y\right\|}, \frac{\left\|T_{1} x-y\right\|\left[1-\left\|y-T_{2} y\right\|\right]}{1+\left\|T_{1} x-y\right\|}, \\
& \left.\frac{\left\|y-T_{2} y\right\|\left[1-\left\|T_{1} x-y\right\|\right]}{1+\left\|y-T_{2} y\right\|}\right\},
\end{aligned}
$$

for all x, y in X, where $0<q<1$.

Definition 1.2 Let T_{1} and T_{2} be two self-mappings of a Banach space B. The Mann iterative process associated with T_{1} and T_{2} is defined in the following

[^0]manner. Let x_{0} be in N and let
\[

$$
\begin{aligned}
& x_{2 n+1}=\left(1-c_{2 n}\right) x_{2 n}+c_{2 n} T_{1} x_{2 n} \\
& x_{2 n+2}=\left(1-c_{2 n+1}\right) x_{2 n+1}+c_{2 n+1} T_{2} x_{2 n+1}
\end{aligned}
$$
\]

for $n=0,1,2, \ldots$, where c_{n} satisfies (i) $c_{0}=1$, (ii) $0<c_{n}<1, n=1,2, \ldots$ and (iii) $\lim _{n \rightarrow \infty} c_{n}=h>0$.

In [1], Pathak proved the following common fixed point theorem:
Theorem 1.3 Let X be a closed convex subset of a normed space N and let T_{1} and T_{2} be two continuous self mappings satisfying Definition 1.1 on X. Let x_{0} be an arbitrary point in X. Then sequence of Mann iterates $\left\{x_{n}\right\}$ associated with T_{1} and T_{2} is defined by

$$
\begin{aligned}
& x_{2 n+1}=\left(1-c_{2 n}\right) x_{2 n}+c_{2 n} T_{1} x_{2 n} \\
& x_{2 n+2}=\left(1-c_{2 n+1}\right) x_{2 n+1}+c_{2 n+1} T_{2} x_{2 n+1}
\end{aligned}
$$

for $n=0,1,2, \ldots$, where $\left\{c_{n}\right\}$ satisfies conditions (i), (ii) and (iii) of Definition 1.2. If $\left\{x_{n}\right\}$ converges to u in X and if u is fixed point of of either T_{1} or T_{2}, then u is the common fixed point of T_{1} and T_{2}.

In [2], Rashwan extended Theorem 1.3 for three mappings as follows:
Theorem 1.4 Let X be a closed convex subset of a normed space N. Let T_{1} and T_{2} be mappings of X into X and f a continuous mapping of X into X such that

$$
\begin{aligned}
\left\|T_{1} x-T_{2} y\right\| \leq & q \max \left\{\|f x-f y\|, \frac{\left\|f x-T_{1} x\right\|\left[1-\left\|f x-T_{2} y\right\|\right]}{1+\left\|f x-T_{1} x\right\|}\right. \\
& \frac{\left\|f x-T_{2} y\right\|\left[1-\left\|f x-T_{1} x\right\|\right]}{1+\left\|f x-T_{2} y\right\|}, \frac{\left\|T_{1} x-f y\right\|\left[1-\left\|f y-T_{2} y\right\|\right]}{1+\left\|T_{1} x-f y\right\|} \\
& \left.\frac{\left\|f y-T_{2} y\right\|\left[1-\left\|T_{1} x-f y\right\|\right]}{1+\left\|f y-T_{2} y\right\|}\right\} \\
\|f x-f y\| \leq & \left\|T_{1} x-f x\right\|+\left\|T_{1} x-T_{2} y\right\|+\left\|T_{2} y-f y\right\|
\end{aligned}
$$

for all x, y in X, where $0<q<1$, and the sequence $\left\{f x_{n}\right\}$ associated with T_{1} and T_{2} is given by

$$
\begin{aligned}
& f x_{2 n+1}=\left(1-c_{2 n}\right) f x_{2 n}+c_{2 n} T_{1} x_{2 n} \\
& f x_{2 n+2}=\left(1-c_{2 n+1}\right) f x_{2 n+1}+c_{2 n+1} T_{2} x_{2 n+1}
\end{aligned}
$$

for $n=0,1,2, \ldots$, where $\left\{c_{n}\right\}$ satisfies conditions (i), (ii) and (iii) as given above and x_{0} is an arbitrary point in X. If $\left\{f x_{n}\right\}$ converges to a point u in X, then u is a common fixed point of T_{1}, T_{2} and f.

2 Main Results

We extend Theorem 1.4 for a quadruple of self-mappings as follows:
Theorem 2.1 Let X be a closed convex subset of a normed space $N . \operatorname{Let} T_{1}, T_{2}$ be mappings of X into X and let f and g be injective and continuous mappings of X into X satisfying

$$
\begin{align*}
\left\|T_{1} x-T_{2} y\right\| \leq & q \max \left\{\|f x-g y\|, \frac{\left\|f x-T_{1} x\right\|\left[1-\left\|f x-T_{2} y\right\|\right]}{1+\left\|f x-T_{1} x\right\|}\right. \\
& \frac{\left\|f x-T_{2} y\right\|\left[1-\left\|f x-T_{1} x\right\|\right]}{1+\left\|f x-T_{2} y\right\|}, \frac{\left\|T_{1} x-g y\right\|\left[1-\left\|g y-T_{2} y\right\|\right]}{1+\left\|T_{1} x-g y\right\|} \\
& \left.\frac{\left\|g y-T_{2} y\right\|\left[1-\left\|T_{1} x-g y\right\|\right]}{1+\left\|g y-T_{2} y\right\|}\right\} \tag{2.1}\\
\|f x-f g y\| \leq & \left\|T_{1} x-f x\right\|+\left\|T_{1} x-T_{2} y\right\| \\
& +\left\|T_{2} y-g y\right\|+\|g y-f x\| \tag{2.2}\\
\|g y-g f x\| \leq & \left\|T_{1} x-g y\right\|+\left\|T_{1} x-T_{2} y\right\| \\
& +\left\|T_{2} y-f x\right\|+\|g y-f x\| \tag{2.3}
\end{align*}
$$

for all x, y in X, where $0<q<1$,

$$
\begin{gather*}
(1-\lambda) f(X)+\lambda T_{1}(X) \subseteq g(X) \tag{2.4}\\
(1-\mu) g(X)+\mu T_{2}(X) \subseteq f(X) \tag{2.5}
\end{gather*}
$$

for all $\lambda, \mu \in(0,1]$, the sequence $\left\{x_{n}\right\}$ associated with the mappings T_{1}, T_{2}, f and g is defined by

$$
\begin{align*}
& x_{2 n+1} \in g^{-1}\left[\left(1-c_{2 n}\right) f x_{2 n}+c_{2 n} T_{1} x_{2 n}\right] \tag{2.6}\\
& x_{2 n+2} \in f^{-1}\left[\left(1-c_{2 n+1}\right) g x_{2 n+1}+c_{2 n+1} T_{2} x_{2 n+1}\right] \tag{2.7}
\end{align*}
$$

$n=0,1,2, \ldots$, where x_{0} is an arbitrary point in X and $\left\{y_{n}\right\}$ is the sequence defined by $y_{2 n-1}=f x_{2 n-1}$ and $y_{2 n}=g x_{2 n}$ for $n=1,2, \ldots$ and $\left\{c_{n}\right\}$ satisfies conditions (i), (ii) and (iii) given above. If $\left\{y_{n}\right\}$ converges to a point u in X, then u is the unique common fixed point of T_{1}, T_{2}, f and g.

Proof. Since f and g are injective and satisfy conditions (2.4) and (2.5), the sequence $\left\{x_{n}\right\}$ defined by equations (2.6) and (2.7) is unique. Also from equation (2.6), we have

$$
T_{1} x_{2 n}=\frac{g x_{2 n+1}-\left(1-c_{2 n}\right) f x_{2 n}}{c_{2 n}}
$$

and so

$$
\begin{aligned}
\lim _{n \rightarrow \infty} T_{1} x_{2 n} & =\lim _{n \rightarrow \infty} \frac{g x_{2 n+1}-\left(1-c_{2 n}\right) f x_{2 n}}{c_{2 n}} \\
& =\frac{u-(1-h) u}{h}=u
\end{aligned}
$$

Similarly

$$
\lim _{n \rightarrow \infty} T_{2} x_{2 n+1}=u
$$

From equation (2.2), we have

$$
\begin{aligned}
\left\|f x_{2 n}-f g x_{2 n+1}\right\| \leq & \left\|T_{1} x_{2 n}-f x_{2 n}\right\|+\left\|T_{1} x_{2 n}-T_{2} x_{2 n+1}\right\| \\
& +\left\|T_{2} x_{2 n+1}-g x_{2 n+1}\right\|+\left\|g x_{2 n+1}-f x_{2 n}\right\|
\end{aligned}
$$

and so

$$
\lim _{n \rightarrow \infty}\left\|f x_{2 n}-f g x_{2 n+1}\right\|=\lim _{n \rightarrow \infty}\left\|y_{2 n}-f y_{2 n+1}\right\|=\|u-f u\| \leq 0
$$

It follows that $u=f u$.
Also from (2.3), we have

$$
\begin{aligned}
\left\|g x_{2 n+1}-g f x_{2 n}\right\| \leq & \left\|T_{1} x_{2 n}-g x_{2 n+1}\right\|+\left\|T_{1} x_{2 n}-T_{2} x_{2 n+1}\right\| \\
& +\left\|T_{2} x_{2 n+1}-f x_{2 n}\right\|+\left\|g x_{2 n+1}-f x_{2 n+1}\right\|
\end{aligned}
$$

and so

$$
\lim _{n \rightarrow \infty}\left\|g x_{2 n+1}-g f x_{2 n}\right\|=\lim _{n \rightarrow \infty}\left\|y_{2 n+1}-g y_{2 n}\right\|=\|u-g u\| \leq 0
$$

It follows that $u=g u$.
Further, using inequality (2.1), we have

$$
\begin{aligned}
\left\|u-T_{2} u\right\| \leq & \left\|u-g x_{2 n+1}\right\|+\left\|g x_{2 n+1}-T_{2} u\right\| \\
\leq & \left\|u-g x_{2 n+1}\right\|+\left\|\left(1-c_{2 n}\right) f x_{2 n}+c_{2 n} T_{1} x_{2 n}-T_{2} u\right\| \\
\leq & \left\|u-g x_{2 n+1}\right\|+\left(1-c_{2 n}\right)\left\|f x_{2 n}-T_{2} u\right\|+c_{2 n}\left\|T_{1} x_{2 n}-T_{2} u\right\| \\
\leq & \left\|u-g x_{2 n+1}\right\|+\left(1-c_{2 n}\right)\left\|f x_{2 n}-T_{2} u\right\| \\
& +c_{2 n} q \max \left\{\left\|f x_{2 n}-g u\right\|, \frac{\left\|f x_{2 n}-T_{1} x_{2 n}\right\|\left[1-\left\|f x_{2 n}-T_{2} u\right\|\right]}{1+\left\|f x_{2 n}-T_{1} x_{2 n}\right\|},\right. \\
& \frac{\left\|f x_{2 n}-T_{2} u\right\|\left[1-\left\|f x_{2 n}-T_{1} x_{2 n}\right\|\right]}{1+\left\|f x_{2 n}-T_{2} u\right\|}, \\
& \frac{\left\|T_{1} x_{2 n}-g u\right\| \|\left[1-\left\|g u-T_{2} u\right\| \|\right]}{1+\left\|T_{1} x_{2 n}-g u\right\|} \\
& \left.\frac{\left\|g u-T_{2} u\right\|\left[1-\left\|T_{1} x_{2 n}-g u\right\|\right]}{1+\left\|g u-T_{2} u\right\|}\right\} .
\end{aligned}
$$

Assuming that $T_{2} u \neq u$, we have on letting n tends to infinity

$$
\begin{aligned}
\left\|u-T_{2} u\right\| \leq & 0+(1-h)\left\|u-T_{2} u\right\| \\
& +h q \max \left\{0,0, \frac{\left\|u-T_{2} u\right\|}{1+\left\|u-T_{2} u\right\|}, 0, \frac{\left\|u-T_{2} u\right\|}{1+\left\|u-T_{2} u\right\|}\right\} \\
\leq & (1-h)\left\|u-T_{2} u\right\|+h q \frac{\left\|u-T_{2} u\right\|}{1+\left\|u-T_{2} u\right\|} \\
< & (1-h+h q)\left\|u-T_{2} u\right\| \\
< & \left\|u-T_{2} u\right\|
\end{aligned}
$$

a contradiction, and so $u=T_{2} u$.
Similarly

$$
\begin{aligned}
\left\|u-T_{1} u\right\| \leq & \left\|u-f x_{2 n+2}\right\|+\left\|f x_{2 n+2}-T_{1} u\right\| \\
\leq & \left\|u-f x_{2 n+2}\right\|+\left\|\left(1-c_{2 n+1}\right) g x_{2 n+1}+c_{2 n+1} T_{2} x_{2 n+1}-T_{1} u\right\| \\
\leq & \left\|u-f x_{2 n+2}\right\|+\left(1-c_{2 n+1}\right)\left\|g x_{2 n+1}-T_{1} u\right\| \\
& +c_{2 n+1}\left\|T_{1} u-T_{2} x_{2 n+1}\right\| \\
\leq & \left\|u-f x_{2 n+2}\right\|+\left(1-c_{2 n+1}\right)\left\|g x_{2 n+1}-T_{1} u\right\| \\
& +c_{2 n+1} q \max \left\{\left\|f u-g x_{2 n+1}\right\|\right. \\
& \frac{\left\|f u-T_{1} u\right\|\left[1-\left\|f u-T_{2} x_{2 n+1}\right\|\right]}{1+\left\|f u-T_{1} u\right\|}, \\
& \frac{\left\|f u-T_{2} x_{2 n+1}\right\|\left[1-\left\|f u-T_{1} u\right\|\right]}{1+\left\|f u-T_{2} x_{2 n+1}\right\|}, \\
& \frac{\left\|T_{1} u-g x_{2 n+1}\right\|\left[1-\left\|g x_{2 n+1}-T_{2} x_{2 n+1}\right\|\right]}{1+\left\|T_{1} u-g x_{2 n+1}\right\|} \\
& \left.\frac{\left\|g x_{2 n+1}-T_{2} x_{2 n+1}\right\|\left[1-\left\|T_{1} u-g x_{2 n+1}\right\|\right]}{1+\left\|g x_{2 n+1}-T_{2} x_{2 n+1}\right\|}\right\} .
\end{aligned}
$$

Assuming that $T_{1} u \neq u$, we have on letting n tend to infinity

$$
\begin{aligned}
\left\|u-T_{1} u\right\| \leq & 0+(1-h)\left\|u-T_{1} u\right\|+ \\
& h \max \left\{0, \frac{\left\|u-T_{1} u\right\|}{1+\left\|u-T_{1} u\right\|}, 0, \frac{\left\|u-T_{1} u\right\|}{1+\left\|u-T_{1} u\right\|}\right\} \\
\leq & (1-h)\left\|u-T_{1} u\right\|+\frac{h q\left\|u-T_{1} u\right\|}{1+\left\|u-T_{1} u\right\|} \\
< & (1-h+h q)\left\|u-T_{1} u\right\| \\
< & \left\|u-T_{1} u\right\|
\end{aligned}
$$

a contradiction, so that $u=T_{1} u$. We have therefore proved that u is a common fixed point of T_{1}, T_{2}, f and g.

To prove the uniqueness of u, suppose that v is a second common fixed point of T_{1}, T_{2}, f and g. Then

$$
\begin{aligned}
\|u-v\|= & \left\|T_{1} u-T_{2} v\right\| \\
\leq & q \max \left\{\|f u-g v\|, \frac{\left\|f u-T_{1} u\right\|\left[1-\left\|f u-T_{2} v\right\|\right]}{1+\left\|f u-T_{1} u\right\|},\right. \\
& \frac{\left\|f u-T_{2} v\right\|\left[1-\left\|f u-T_{1} u\right\|\right]}{1+\left\|f u-T_{2} v\right\|}, \frac{\left\|T_{1} u-g v\right\|\left[1-\left\|g v-T_{2} v\right\|\right]}{1+\left\|T_{1} u-g v\right\|}, \\
& \left.\frac{\left\|g v-T_{2} v\right\|\left[1-\left\|T_{1} u-g v\right\|\right]}{1+\left\|g v-T_{2} v\right\|}\right\} \\
= & q \max \left\{\|u-v\|, \frac{\|u-u\|[1-\|u-v\|]}{1+\|u-u\|},\right. \\
& \frac{\|u-v\|[1-\|u-u\|]]}{1+\|u-v\|}, \frac{\|u-v\|[1-\|v-v\| \|]}{1+\|u-v\|}, \\
& \left.\frac{\|v-v\|[1-\|u-v\|]}{1+\|v-v\|}\right\} \\
= & q \max \left\{\|u-v\|, 0, \frac{\|u-v\|}{1+\|u-v\|}, \frac{\|u-v\|}{1+\|u-v\|}, 0\right\} \\
= & q\|u-v\|,
\end{aligned}
$$

a contradiction and so $u=v$. This proves the uniqueness of u.
When $f=g=I_{X}$ the identity mapping on X, conditions (2.2) and (2.3) are trivial and we have the following corollary:
Corollary 2.2 Let X be a closed convex subset of a normed vector space N. Let T_{1} and T_{2} be mappings of X into X satisfying

$$
\begin{aligned}
\left\|T_{1} x-T_{2} y\right\| \leq & q \max \left\{\|x-y\|, \frac{\left\|x-T_{1} x\right\|\left[1-\left\|x-T_{2} y\right\|\right]}{1+\left\|x-T_{1} x\right\|},\right. \\
& \frac{\left\|x-T_{2} y\right\|\left[1-\left\|x-T_{1} x\right\|\right]}{1+\left\|x-T_{2} y\right\|}, \frac{\left\|T_{1} x-y\right\|\left[1-\left\|y-T_{2} y\right\|\right]}{1+\left\|T_{1} x-y\right\|}, \\
& \left.\frac{\left\|y-T_{2} y\right\|\left[1-\left\|T_{1} x-y\right\|\right]}{1+\left\|y-T_{2} y\right\|}\right\},
\end{aligned}
$$

for all x, y in X, where $0<q<1$,

$$
\begin{aligned}
& (1-\lambda) X+\lambda T_{1}(X) \subseteq X, \\
& (1-\mu) X+\mu T_{2}(X) \subseteq X,
\end{aligned}
$$

for all $\lambda, \mu \in(0,1]$, the sequence $\left\{x_{n}\right\}$ is defined as in Theorem 1.3 and $\left\{c_{n}\right\}$ satisfies conditions (i), (ii) and (iii), given above. If $\left\{x_{n}\right\}$ converges to a point u in X, then u is the unique common fixed point of T_{1} and T_{2}.

Example 2.3 Let $X=[0,1] \subset \mathbb{R}$, where \mathbb{R} is the set of real numbers with the usual norm and $T_{1}, T_{2}, f, g: X \rightarrow X$

$$
\begin{aligned}
T_{1} x & =\frac{x}{4}, \quad T_{2} x=\frac{x^{2 / 3}}{4} \\
f x & =x^{1 / 2}, \quad g x=x^{1 / 3}
\end{aligned}
$$

Clearly the mappings g^{-1} and f^{-1} defined by

$$
g^{-1} x=x^{3} \quad \text { and } \quad f^{-1} x=x^{2}
$$

exist.
Suppose that $\left\{y_{n}\right\}$ is a sequence of elements of X such that

$$
\begin{aligned}
& y_{2 n+1}=g x_{2 n+1}=\left(1-c_{2 n}\right) f x_{2 n}+c_{2 n} T_{1} x_{2 n} \\
& y_{2 n+2}=f x_{2 n+2}=\left(1-c_{2 n+1}\right) g x_{2 n+1}+c_{2 n+1} T_{2} x_{2 n+1}
\end{aligned}
$$

and

$$
c_{n}=\frac{n+1}{2 n+1}
$$

If $x_{0}=\frac{1}{2}$, then with the help of equations (2.6) and (2.7), we obtain the sequence $\left\{x_{n}\right\}$, where

$$
\begin{aligned}
x_{1} & =g^{-1}\left[\left(1-c_{0}\right) f x_{0}+c_{0} T_{1} x_{0}\right] \\
& =g^{-1}\left[(1-1) f\left(\frac{1}{2}\right)+\frac{1}{2}\right]=\left(\frac{1}{8}\right)^{3}, \\
x_{2} & =f^{-1}\left[\left(1-c_{1}\right) g x_{1}+c_{1} T_{2} x_{1}\right] \\
& =f^{-1}\left[\left(1-\frac{2}{3}\right) \frac{1}{8}+\frac{2}{3}\left(\frac{1}{8}\right)^{2} \frac{1}{4}\right] \\
& =\left(\frac{17}{3.128}\right)^{2}, \\
x_{3} & =g^{-1}\left[\left(1-c_{2}\right) f x_{2}+c_{2} T_{1} x_{2}\right] \\
& =\left[\frac{17}{3.5 .128}\left(2+\frac{17}{512}\right)\right]^{3}, \\
x_{4} & =f^{-1}\left[\left(1-c_{3}\right) g x_{3}+c_{3} T_{2} x_{3}\right] \\
& =\left[\frac{17}{3.5 .7 .128}\left(2+\frac{17}{512}\right)\left(3+\frac{17}{3.5 .128}\left(2+\frac{17}{128}\right)\right)\right]^{2}
\end{aligned}
$$

and so on. Then

$$
\begin{aligned}
& y_{1}=g x_{1}=\frac{1}{3} \\
& y_{2}=f x_{2}=\frac{17}{3.144} \\
& y_{3}=g x_{3}=\left(\frac{17}{3.5 .128}\right)\left(2+\frac{17}{512}\right) \\
& y_{4}=f x_{4}=\frac{17}{3.5 .7 .128}\left(2+\frac{17}{512}\right)\left(3+\frac{17}{3.5 .128}\left(2+\frac{17}{128}\right)\right)
\end{aligned}
$$

and so on. It is evident that $y_{n} \rightarrow 0$ as $n \rightarrow \infty$.
We note that T_{1}, T_{2}, f and g are continuous and satisfy all the conditions of Theorem 2.1 with $0<q=\frac{1}{2}<1$. Indeed we have

$$
\begin{aligned}
\left\|T_{1} x-T_{2} y\right\| & =\frac{1}{4}\left\|x-y^{\frac{2}{3}}\right\| \\
& \leq \frac{\left(\left\|x^{1 / 2}\right\|+\left\|y^{1 / 3}\right\|\right)\left(\left\|x^{1 / 2}-y^{1 / 3}\right\|\right)}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{\left\|x^{1 / 2}-y^{1 / 3}\right\|}{2} \\
& \leq \frac{\|f x-g y\|}{2} .
\end{aligned}
$$

Further, 0 is the common fixed point of T_{1}, T_{2}, f and g.

3 Fixed Point Theorems with Asymptotic Regularity Condition

Let \mathbb{R}^{+}denote the set of nonnegative real numbers, $W: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be a continuous function such that $0<W(t)<t$ for all $t \in \mathbb{R}^{+}$and let T_{1}, T_{2}, f and g be selfmaps on a metric space (X, d). For a point $x_{0} \in X$, if there exists a sequence $\left\{y_{n}\right\}$ in X such that

$$
\begin{aligned}
y_{2 n} & =T_{1} x_{2 n}=g x_{2 n+1} \\
y_{2 n+1} & =T_{2} x_{2 n+1}=f x_{2 n+2}
\end{aligned}
$$

for $n=0,1,2, \ldots$, then $O\left(T_{1}, T_{2}, f, g, x_{0}\right)=\left\{y_{n}: n=1,2, \ldots\right\}$ is called the orbit of (T_{1}, T_{2}, f, g) at $x_{0} . T_{1}$ and T_{2} are said to be orbitally continuous at x_{0} if and only if they are continuous on $O\left(T_{1}, T_{2}, f, g, x_{0}\right)$. X is said to be orbitally complete at x_{0} if and only if every Cauchy sequence in $O\left(T_{1}, T_{2}, f, g, x_{0}\right)$ converges in X. The pair (T_{1}, T_{2}) is said to be asymptotically regular (a.r.) with respect to (g, f) at x_{0} if there exists a sequence $\left\{y_{n}\right\}$ in X such that

$$
\begin{aligned}
y_{2 n} & =T_{1} x_{2 n}=g x_{2 n+1} \\
y_{2 n+1} & =T_{2} x_{2 n+1}=f x_{2 n+2}
\end{aligned}
$$

for $n=0,1,2, \ldots$ and $d\left(y_{n}, y_{n+1}\right) \rightarrow 0$ as $n \rightarrow \infty$.
Zeqing Liu et al. [4] proved the following theorem :
Theorem 3.1 Let f, g and h be selfmaps on a metric space (X, d) and let $f h=h f$ or $g h=h g$. Suppose that there exists a point $x_{0} \in X$ such that (f, g) is a.r. with
respect to h at x_{0}, X is orbitally complete at x_{0}, and h is orbitally continuous at x_{0}. If

$$
\begin{equation*}
d(f x, g y) \leq M(x, y)-W(M(x, y)) \tag{3.1}
\end{equation*}
$$

holds for all $x, y \in X$, then f, g and h have a unique common fixed point in X, where

$$
M(x, y)=\max \{d(h x, h y), d(h x, f x), d(h y, g y), d(h x, g y), d(h y, f x)\}
$$

4 Main Result

Now we present our second main theorem :
Theorem 4.1 Let T_{1}, T_{2}, f and g be selfmaps on a metric space (X, d) and let $T_{1} f=f T_{1}$ and $T_{2} g=g T_{2}$. Suppose that there exists a point $x_{0} \in X$ such that $\left(T_{1}, T_{2}\right)$ is a.r. with respect to (g, f) at x_{0}, X is orbitally complete at x_{0}, and g, f are orbitally continuous at x_{0}. If

$$
\begin{equation*}
d\left(T_{1} x, T_{2} y\right) \leq M^{\prime}(x, y)-W\left(M^{\prime}(x, y)\right) \tag{4.1}
\end{equation*}
$$

holds for all $x, y \in X$, then T_{1}, T_{2}, f and g have a unique common fixed point in X, where

$$
M^{\prime}(x, y)=\max \left\{d(f x, g y), d\left(f x, T_{1} x\right), d\left(f x, T_{2} y\right), d\left(T_{1} x, g y\right), d\left(g y, T_{2} y\right)\right\}
$$

Proof. Since $\left(T_{1}, T_{2}\right)$ is a.r. with respect to (g, f) at x_{0}, there exists a sequence $\left\{y_{n}\right\}$ in X such that

$$
\begin{aligned}
y_{2 n} & =T_{1} x_{2 n}=g x_{2 n+1}, \\
y_{2 n+1} & =T_{2} x_{2 n+1}=f x_{2 n+2},
\end{aligned}
$$

for $n=0,1,2, \ldots$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(y_{n}, y_{n+1}\right)=0 \tag{4.2}
\end{equation*}
$$

In order to show that $\left\{y_{n}\right\}$ is a Cauchy sequence, it is sufficient to show that $\left\{y_{2 n}\right\}$ is a Cauchy sequence. Suppose that the result is not true. Then there will be a positive number ϵ such that for each even integer $2 k$, there are even integers $2 m(k)$ and $2 n(k)$ such that $2 m(k)>2 n(k)>2 k$ and

$$
\begin{equation*}
d\left(y_{2 m(k)}, y_{2 n(k)}\right)>\epsilon \tag{4.3}
\end{equation*}
$$

For each integer $2 k$, let $2 m(k)$ be the least even integer exceeding $2 n(k)$ and satisfying (4.3) so that

$$
\begin{equation*}
d\left(y_{2 m(k)-2}, y_{2 n(k)}\right) \leq \epsilon \tag{4.4}
\end{equation*}
$$

Then for each even integer $2 k$,

$$
\begin{aligned}
d\left(y_{2 m(k)}, y_{2 n(k)}\right) \leq & d\left(y_{2 m(k)-2}, y_{2 n(k)}\right)+d\left(y_{2 m(k)-2}, y_{2 m(k)-1}\right) \\
& +d\left(y_{2 m(k)-1}, y_{2 m(k)}\right) .
\end{aligned}
$$

From (4.2), (4.3), (4.4) and the above inequality we have,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(y_{2 m(k)}, y_{2 n(k)}\right) \leq \epsilon \tag{4.5}
\end{equation*}
$$

Using the triangular inequality and putting $d\left(y_{n}, y_{n+1}\right)=d_{n}$, we obtain

$$
\begin{aligned}
\left|d\left(y_{2 m(k)+1}, y_{2 n(k)}\right)-d\left(y_{2 m(k)}, y_{2 n(k)}\right)\right| & \leq d_{2 m(k)}, \\
\left|d\left(y_{2 m(k)+1}, y_{2 n(k)+1}\right)-d\left(y_{2 m(k)+1}, y_{2 n(k)}\right)\right| & \leq d_{2 n(k)}, \\
\left|d\left(y_{2 m(k)+2}, y_{2 n(k)+1}\right)-d\left(y_{2 m(k)+1}, y_{2 n(k)+1}\right)\right| & \leq d_{2 m(k)+1}, \\
\left|d\left(y_{2 m(k)+2}, y_{2 n(k)}\right)-d\left(y_{2 m(k)+1}, y_{2 n(k)}\right)\right| & \leq d_{2 m(k)+1},
\end{aligned}
$$

and from (4.2), (4.5) and the above inequalities, we have

$$
\begin{aligned}
\lim _{k \rightarrow \infty} d\left(y_{2 m(k)+1}, y_{2 n(k)}\right) & \leq \epsilon \\
\lim _{k \rightarrow \infty} d\left(y_{2 m(k)+1}, y_{2 n(k)+1}\right) & \leq \epsilon \\
\lim _{k \rightarrow \infty} d\left(y_{2 m(k)+2}, y_{2 n(k)+1}\right) & \leq \epsilon \\
\lim _{k \rightarrow \infty} d\left(y_{2 m(k)+2}, y_{2 n(k)}\right) & \leq \epsilon .
\end{aligned}
$$

It follows from (4.1) that

$$
\begin{aligned}
d\left(y_{2 n(k)+1}, y_{2 m(k)+2}\right)= & d\left(T_{2} x_{2 n(k)+1}, T_{1} x_{2 m(k)+2}\right) \\
= & d\left(T_{2} x_{2 n(k)+1}, T_{1} x_{2 m(k)+2}\right) \\
\leq & \max \left\{d\left(f x_{2 m(k)+2}, g x_{2 n(k)+1}\right), d\left(f x_{2 m(k)+2}, T_{1} x_{2 m(k)+2}\right),\right. \\
& d\left(f x_{2 m(k)+2}, T_{2} x_{2 n(k)+1}\right), d\left(T_{1} x_{2 m(k)+2}, g x_{2 n(k)+1}\right), \\
& \left.d\left(g x_{2 n(k)+1}, T_{2} x_{2 n(k)+1}\right)\right\} \\
& -W\left(d\left(f x_{2 m(k)+2}, g x_{2 n(k)+1}\right), d\left(f x_{2 m(k)+2}, T_{1} x_{2 m(k)+2}\right),\right. \\
& d\left(f x_{2 m(k)+2}, T_{2} x_{2 n(k)+1}\right), d\left(T_{1} x_{2 m(k)+2}, g x_{2 n(k)+1}\right), \\
& \left.\left.d\left(g x_{2 n(k)+1}, T_{2} x_{2 n(k)+1}\right)\right\}\right) \\
\leq & \max \left\{d\left(y_{2 m(k)+1}, y_{2 n(k)}\right), d\left(y_{2 m(k)+1}, y_{2 m(k)+2}\right)\right. \\
& d\left(y_{2 m(k)+1}, y_{2 n(k)+1}\right), d\left(y_{2 m(k)+2}, y_{2 n(k)}\right) \\
& \left.d\left(y_{2 n(k)}, y_{2 n(k)+1}\right)\right\} \\
& -W\left(d\left(y_{2 m(k)+1}, y_{2 n(k)}\right), d\left(y_{2 m(k)+1}, y_{2 m(k)+2}\right),\right. \\
& d\left(y_{2 m(k)+1}, y_{2 n(k)+1}\right), d\left(y_{2 m(k)+2}, y_{2 n(k)}\right), \\
& \left.\left.d\left(y_{2 n(k)}, y_{2 n(k)+1}\right)\right\}\right) .
\end{aligned}
$$

As k tends to infinity, we have

$$
\epsilon \leq \max \{\epsilon, 0, \epsilon, \epsilon, 0\}-W(\max \{\epsilon, 0, \epsilon, \epsilon, 0\})
$$

or

$$
\epsilon \leq \epsilon-W(\epsilon)
$$

That is, $W(\epsilon) \leq 0$, which implies $\epsilon=0$, a contradiction. Hence $\left\{y_{2 n}\right\}$ is a Cauchy sequence.

Since X is $\left(T_{1}, T_{2}, f, g\right)$ orbitally complete at x_{0}, there exists a point z such that $y_{n} \rightarrow z$ as n tends to ∞.

Now applying (4.1) to $d\left(g x_{2 n+1}, T_{2} z\right)$ and $d\left(T_{1} z, f x_{2 n+2}\right)$ and letting n tend to infinity, we have

$$
\begin{aligned}
d\left(g x_{2 n+1}, T_{2} z\right)= & d\left(T_{1} x_{2 n}, T_{2} z\right) \\
\leq & \max \left\{d\left(f x_{2 n}, g z\right), d\left(f x_{2 n}, T_{1} x_{2 n}\right), d\left(f x_{2 n}, T_{2} z\right)\right. \\
& \left.d\left(T_{1} x_{2 n}, g z\right), d\left(g z, T_{2} z\right)\right\} \\
& -W\left(\operatorname { m a x } \left\{d\left(f x_{2 n}, g z\right), d\left(f x_{2 n}, T_{1} x_{2 n}\right), d\left(f x_{2 n}, T_{2} z\right)\right.\right. \\
& \left.\left.d\left(T_{1} x_{2 n}, g z\right), d\left(g z, T_{2} z\right)\right\}\right)
\end{aligned}
$$

or

$$
\begin{aligned}
d\left(z, T_{2} z\right) \leq & \max \left\{d(z, g z), d(z, z), d\left(z, T_{2} z\right), d(z, g z), d\left(g z, T_{2} z\right)\right\} \\
& -W\left(\max \left\{d(z, g z), d(z, z), d\left(z, T_{2} z\right), d(z, g z), d\left(g z, T_{2} z\right)\right\}\right)
\end{aligned}
$$

or

$$
\begin{align*}
d\left(z, T_{2} z\right) \leq & \max \left\{d(z, g z), d(z, z), d\left(z, T_{2} z\right), d(z, g z), d\left(g z, T_{2} z\right)\right\} \\
& -W\left(\max \left\{d(z, g z), d(z, z), d\left(z, T_{2} z\right), d(z, g z), d\left(g z, T_{2} z\right)\right\}\right) \tag{4.6}
\end{align*}
$$

and

$$
\begin{aligned}
d\left(T_{1} z, f x_{2 n+2}\right)= & d\left(T_{1} z, T_{2} x_{2 n+1}\right) \\
\leq & \max \left\{d\left(f z, g x_{2 n+1}\right), d\left(f z, T_{1} z\right), d\left(f z, T_{2} x_{2 n+1}\right)\right. \\
& \left.d\left(T_{1} z, g x_{2 n+1}\right), d\left(g x_{2 n+1}, T_{2} x_{2 n+1}\right)\right\} \\
& -W\left(\operatorname { m a x } \left\{d\left(f z, g x_{2 n+1}\right), d\left(f z, T_{1} z\right), d\left(f z, T_{2} x_{2 n+1}\right),\right.\right. \\
& \left.\left.d\left(T_{1} z, g x_{2 n+1}\right), d\left(g x_{2 n+1}, T_{2} x_{2 n+1}\right)\right\}\right)
\end{aligned}
$$

or

$$
\begin{aligned}
d\left(T_{1} z, z\right) \leq & \max \left\{d(f z, z), d\left(f z, T_{1} z\right), d(f z, z), d\left(T_{1} z, z\right), d(z, z)\right\} \\
& -W\left(\max \left\{d(f z, z), d\left(f z, T_{1} z\right), d(f z, z), d\left(T_{1} z, z\right), d(z, z)\right\}\right)
\end{aligned}
$$

or

$$
\begin{align*}
d\left(T_{1} z, z\right) \leq & \max \left\{d(f z, z), d\left(f z, T_{1} z\right), d(f z, z), d\left(T_{1} z, z\right), 0\right\} \\
& -W\left(\max \left\{d(f z, z), d\left(f z, T_{1} z\right), d(f z, z), d\left(T_{1} z, z\right), 0\right\}\right) \tag{4.7}
\end{align*}
$$

Since $T_{1} f=f T_{1}$, we have $T_{1} f x_{2 n+2}=f T_{1} x_{2 n+2} \rightarrow f z$.
Again, since T_{1} is orbitally continuous at x_{0} we have by (4.1)

$$
\begin{aligned}
& d\left(T_{1} f x_{2 n+2}, f x_{2 n+2}\right)=d\left(T_{1} f x_{2 n+2}, T_{2} x_{2 n+1}\right) \\
& \quad \leq \max \left\{d\left(f f x_{2 n+2}, g x_{2 n+1}\right), d\left(f f x_{2 n+2}, T_{1} f x_{2 n+2}\right), d\left(f f x_{2 n+2}, T_{2} x_{2 n+1}\right)\right. \\
& \left.\quad d\left(T_{1} f x_{2 n+2}, g x_{2 n+1}\right), d\left(g x_{2 n+1}, T_{2} x_{2 n+1}\right)\right\} \\
& \quad-W\left(\operatorname { m a x } \left\{d\left(f f x_{2 n+2}, g x_{2 n+1}\right), d\left(f f x_{2 n+2}, T_{1} f x_{2 n+2}\right)\right.\right. \\
& \left.\left.\quad d\left(f f x_{2 n+2}, T_{2} x_{2 n+1}\right), d\left(T_{1} f x_{2 n+2}, g x_{2 n+1}\right), d\left(g x_{2 n+1}, T_{2} x_{2 n+1}\right)\right\}\right) \\
& \quad \leq \max \{d(f z, z), d(f z, f z), d(f z, z), d(f z, z), d(z, z)\} \\
& \quad-W(\max \{d(f z, z), d(f z, f z), d(f z, z), d(f z, z), d(z, z)\})
\end{aligned}
$$

Letting $n \rightarrow \infty$, we have

$$
d(f z, z) \leq d(f z, z)-W(d(f z, z)
$$

which implies $f z=z$.

Similarly if $T_{2} g=g T_{2}$, then $T_{2} g x_{2 n+1}=g T_{2} x_{2 n+1} \rightarrow g z$.
Since T_{2} is orbitally continuous on x_{0}, then we see on applying (4.1) to $d\left(g x_{2 n+1}, T_{2} g x_{2 n+1}\right)$ and letting $n \rightarrow \infty$, we obtain $g z=z$.

In equation (4.6), if we put $z=g z$, then we get $T_{2} z=z$. Again in (4.7), if we put $z=f z$, then we get $T_{1} z=z$. Thus z is a common fixed point of T_{1}, T_{2}, f and g. Uniqueness of z is obvious. This completes the proof of the theorem.

Remark 4.2 When $f=g$, Theorem 3.1 strictly extends Theorem 2.1 of Liu Zeqing et al. [4]. Furthermore, taking $W(t)=(1-r) t: r \in(0,1)$, we obtain Theorem 1 of Sastry et al. [3].

References

[1] H. K. Pathak, Some fixed point theorems on contractive mappings, Bull. Calcutta. Math. Soc., 80(3)(1988), 183-188.
[2] R. A. Rashwan, Extension of a common fixed point theorem of Pathak, Advances in Modelling and Analysis, A, AMSE Press, 23(2)(1995), 19-21.
[3] K. P. R. Sastry, S. V. R. Naidu , I. H. N. Rao and K. P. R. Rao, Common fixed points for asymptotically regular mappings,Indian J. Pure Appl. Math., 15(8)(1984), 849-854.
[4] L. Zeqing, M. S. Khan and H. K. Pathak, On Common Fixed Points, Georgian Math. J., 9(2)(2002), 325-330.

Brian Fisher
Department Of Mathematics, University of Leicester,
Leicester, LE1 7RH, England.
email:fbr@le.ac.uk
H. K. Pathak

School of Studies in Mathematics,
Pt. Ravishankar Shukla University,
Raipur(C.G.) 492010, India.
email: hkpathak@sify.com
Rakesh Tiwari
Department Of Mathematics,
${ }^{a}$ Govt.VYTPG. Autonomous College, Durg, 491001,
${ }^{b}$ Kalyan Mahavidyalaya, Bhilai Nagar, 490007,
Chhattisgarh, India.
email: rakeshtiwari66@gmail.com

[^0]: Copyright (c) 2009 by the Mathematical Association of Thailand. All rights reserved.

