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of self-mappings satisfying a generalized contractive condition in a normed space
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1 Introduction

The following definitions were used in [1] and [2] respectively.

Definition 1.1 Let (N, ||.||) be a normed space. Then T1 and T2 be two self-
mappings of N called a generalized contractive pair of mappings if

||T1x − T2y|| ≤ max

{

||x − y||,
||x − T1x||[1 − ||x − T2y||]

1 + ||x − T1x||
,

||x − T2y||[1 − ||x − T1x||]

1 + ||x − T2y||
,
||T1x − y||[1 − ||y − T2y||]

1 + ||T1x − y||
,

||y − T2y||[1 − ||T1x − y||]

1 + ||y − T2y||

}

,

for all x, y in X, where 0 < q < 1.

Definition 1.2 Let T1 and T2 be two self-mappings of a Banach space B. The
Mann iterative process associated with T1 and T2 is defined in the following
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manner. Let x0 be in N and let

x2n+1 = (1 − c2n)x2n + c2nT1x2n,

x2n+2 = (1 − c2n+1)x2n+1 + c2n+1T2x2n+1,

for n = 0, 1, 2, . . . , where cn satisfies (i) c0 = 1, (ii) 0 < cn < 1, n = 1, 2, . . . and
(iii) limn→∞ cn = h > 0.

In [1], Pathak proved the following common fixed point theorem:

Theorem 1.3 Let X be a closed convex subset of a normed space N and let T1

and T2 be two continuous self mappings satisfying Definition 1.1 on X. Let x0 be
an arbitrary point in X. Then sequence of Mann iterates {xn} associated with T1

and T2 is defined by

x2n+1 = (1 − c2n)x2n + c2nT1x2n,

x2n+2 = (1 − c2n+1)x2n+1 + c2n+1T2x2n+1,

for n = 0, 1, 2, . . ., where {cn} satisfies conditions (i), (ii) and (iii) of Definition
1.2. If {xn} converges to u in X and if u is fixed point of of either T1 or T2, then
u is the common fixed point of T1 and T2.

In [2], Rashwan extended Theorem 1.3 for three mappings as follows:

Theorem 1.4 Let X be a closed convex subset of a normed space N . Let T1 and
T2 be mappings of X into X and f a continuous mapping of X into X such that

||T1x − T2y|| ≤ q max

{

||fx − fy||,
||fx − T1x||[1 − ||fx − T2y||]

1 + ||fx − T1x||
,

||fx − T2y||[1 − ||fx − T1x||]

1 + ||fx − T2y||
,
||T1x − fy||[1 − ||fy − T2y||]

1 + ||T1x − fy||
,

||fy − T2y||[1 − ||T1x − fy||]

1 + ||fy − T2y||

}

,

||fx − fy|| ≤ ||T1x − fx|| + ||T1x − T2y|| + ||T2y − fy||,

for all x, y in X, where 0 < q < 1, and the sequence {fxn} associated with T1 and
T2 is given by

fx2n+1 = (1 − c2n)fx2n + c2nT1x2n,

fx2n+2 = (1 − c2n+1)fx2n+1 + c2n+1T2x2n+1,

for n = 0, 1, 2, . . . , where {cn} satisfies conditions (i), (ii) and (iii) as given above
and x0 is an arbitrary point in X. If {fxn} converges to a point u in X, then u

is a common fixed point of T1, T2 and f .
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2 Main Results

We extend Theorem 1.4 for a quadruple of self-mappings as follows:

Theorem 2.1 Let X be a closed convex subset of a normed space N . Let T1, T2

be mappings of X into X and let f and g be injective and continuous mappings of
X into X satisfying

||T1x − T2y|| ≤ q max

{

||fx − gy||,
||fx − T1x||[1 − ||fx − T2y||]

1 + ||fx − T1x||
,

||fx − T2y||[1 − ||fx − T1x||]

1 + ||fx − T2y||
,
||T1x − gy||[1 − ||gy − T2y||]

1 + ||T1x − gy||
,

||gy − T2y||[1 − ||T1x − gy||]

1 + ||gy − T2y||

}

(2.1)

||fx − fgy|| ≤ ||T1x − fx|| + ||T1x − T2y||

+ ||T2y − gy|| + ||gy − fx|| (2.2)

||gy − gfx|| ≤ ||T1x − gy|| + ||T1x − T2y||

+ ||T2y − fx|| + ||gy − fx|| (2.3)

for all x, y in X, where 0 < q < 1,

(1 − λ)f(X) + λT1(X) ⊆ g(X), (2.4)

(1 − µ)g(X) + µT2(X) ⊆ f(X) (2.5)

for all λ, µ ∈ (0, 1], the sequence {xn} associated with the mappings T1, T2, f and
g is defined by

x2n+1 ∈ g−1[(1 − c2n)fx2n + c2nT1x2n], (2.6)

x2n+2 ∈ f−1[(1 − c2n+1)gx2n+1 + c2n+1T2x2n+1] (2.7)

n = 0, 1, 2, . . . , where x0 is an arbitrary point in X and {yn} is the sequence defined
by y2n−1 = fx2n−1 and y2n = gx2n for n = 1, 2, . . . and {cn} satisfies conditions
(i), (ii) and (iii) given above. If {yn} converges to a point u in X, then u is the
unique common fixed point of T1, T2, f and g.

Proof. Since f and g are injective and satisfy conditions (2.4) and (2.5), the
sequence {xn} defined by equations (2.6) and (2.7) is unique. Also from equation
(2.6), we have

T1x2n =
gx2n+1 − (1 − c2n)fx2n

c2n
,

and so

lim
n→∞

T1x2n = lim
n→∞

gx2n+1 − (1 − c2n)fx2n

c2n

=
u − (1 − h)u

h
= u.
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Similarly

lim
n→∞

T2x2n+1 = u.

From equation (2.2), we have

||fx2n − fgx2n+1|| ≤ ||T1x2n − fx2n|| + ||T1x2n − T2x2n+1||

+ ||T2x2n+1 − gx2n+1|| + ||gx2n+1 − fx2n||,

and so

lim
n→∞

||fx2n − fgx2n+1|| = lim
n→∞

||y2n − fy2n+1|| = ||u − fu|| ≤ 0.

It follows that u = fu.

Also from (2.3), we have

||gx2n+1 − gfx2n|| ≤ ||T1x2n − gx2n+1|| + ||T1x2n − T2x2n+1||

+ ||T2x2n+1 − fx2n|| + ||gx2n+1 − fx2n+1||,

and so

lim
n→∞

||gx2n+1 − gfx2n|| = lim
n→∞

||y2n+1 − gy2n|| = ||u − gu|| ≤ 0.

It follows that u = gu.

Further, using inequality (2.1), we have

||u − T2u|| ≤ ||u − gx2n+1|| + ||gx2n+1 − T2u||

≤ ||u − gx2n+1|| + ||(1 − c2n)fx2n + c2nT1x2n − T2u||

≤ ||u − gx2n+1|| + (1 − c2n)||fx2n − T2u|| + c2n||T1x2n − T2u||

≤ ||u − gx2n+1|| + (1 − c2n)||fx2n − T2u||

+ c2nq max

{

||fx2n − gu||,
||fx2n − T1x2n||[1 − ||fx2n − T2u||]

1 + ||fx2n − T1x2n||
,

||fx2n − T2u||[1 − ||fx2n − T1x2n||]

1 + ||fx2n − T2u||
,

||T1x2n − gu||[1 − ||gu − T2u||]

1 + ||T1x2n − gu||
,

||gu − T2u||[1 − ||T1x2n − gu||]

1 + ||gu − T2u||

}

.
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Assuming that T2u 6= u, we have on letting n tends to infinity

||u − T2u|| ≤ 0 + (1 − h)||u − T2u||

+ hq max

{

0, 0,
||u − T2u||

1 + ||u − T2u||
, 0,

||u − T2u||

1 + ||u − T2u||

}

≤ (1 − h)||u − T2u|| + hq
||u − T2u||

1 + ||u − T2u||

< (1 − h + hq)||u − T2u||

< ||u − T2u||,

a contradiction, and so u = T2u.

Similarly

‖u − T1u‖ ≤ ‖u − fx2n+2‖ + ‖fx2n+2 − T1u‖

≤ ‖u − fx2n+2‖ + ‖(1 − c2n+1)gx2n+1 + c2n+1T2x2n+1 − T1u‖

≤ ‖u − fx2n+2‖ + (1 − c2n+1)‖gx2n+1 − T1u‖

+ c2n+1‖T1u − T2x2n+1‖

≤ ‖u − fx2n+2‖ + (1 − c2n+1)‖gx2n+1 − T1u‖

+ c2n+1q max
{

||fu − gx2n+1||,

‖fu − T1u‖[1 − ‖fu − T2x2n+1‖]

1 + ‖fu − T1u‖
,

‖fu − T2x2n+1‖[1 − ‖fu − T1u‖]

1 + ‖fu − T2x2n+1‖
,

‖T1u − gx2n+1‖[1 − ‖gx2n+1 − T2x2n+1‖]

1 + ‖T1u − gx2n+1‖
,

‖gx2n+1 − T2x2n+1‖[1 − ‖T1u − gx2n+1‖]

1 + ‖gx2n+1 − T2x2n+1‖

}

.

Assuming that T1u 6= u, we have on letting n tend to infinity

||u − T1u|| ≤ 0 + (1 − h)||u − T1u||+

hmax

{

0,
||u − T1u||

1 + ||u − T1u||
, 0,

||u − T1u||

1 + ||u − T1u||

}

≤ (1 − h)||u − T1u|| +
hq||u − T1u||

1 + ||u − T1u||

< (1 − h + hq)||u − T1u||

< ||u − T1u||,

a contradiction, so that u = T1u. We have therefore proved that u is a common
fixed point of T1, T2, f and g.
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To prove the uniqueness of u, suppose that v is a second common fixed point
of T1, T2, f and g. Then

||u − v|| = ||T1u − T2v||

≤ q max

{

||fu − gv||,
||fu − T1u||[1 − ||fu − T2v||]

1 + ||fu − T1u||
,

||fu − T2v||[1 − ||fu − T1u||]

1 + ||fu − T2v||
,
||T1u − gv||[1 − ||gv − T2v||]

1 + ||T1u − gv||
,

||gv − T2v||[1 − ||T1u − gv||]

1 + ||gv − T2v||

}

= q max

{

||u − v||,
||u − u||[1 − ||u − v||]

1 + ||u − u||
,

||u − v||[1 − ||u − u||]

1 + ||u − v||
,
||u − v||[1 − ||v − v||]

1 + ||u − v||
,

||v − v||[1 − ||u − v||]

1 + ||v − v||

}

= q max

{

||u − v||, 0,
||u − v||

1 + ||u − v||
,

||u − v||

1 + ||u − v||
, 0

}

= q||u − v||,

a contradiction and so u = v. This proves the uniqueness of u. �

When f = g = IX the identity mapping on X, conditions (2.2) and (2.3) are
trivial and we have the following corollary:

Corollary 2.2 Let X be a closed convex subset of a normed vector space N . Let
T1 and T2 be mappings of X into X satisfying

||T1x − T2y|| ≤ q max

{

||x − y||,
||x − T1x||[1 − ||x − T2y||]

1 + ||x − T1x||
,

||x − T2y||[1 − ||x − T1x||]

1 + ||x − T2y||
,
||T1x − y||[1 − ||y − T2y||]

1 + ||T1x − y||
,

||y − T2y||[1 − ||T1x − y||]

1 + ||y − T2y||

}

,

for all x, y in X, where 0 < q < 1,

(1 − λ)X + λT1(X) ⊆ X,

(1 − µ)X + µT2(X) ⊆ X,

for all λ, µ ∈ (0, 1], the sequence {xn} is defined as in Theorem 1.3 and {cn}
satisfies conditions (i), (ii) and (iii), given above. If {xn} converges to a point u

in X, then u is the unique common fixed point of T1 and T2.
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Example 2.3 Let X = [0, 1] ⊂ R, where R is the set of real numbers with the
usual norm and T1, T2, f, g : X → X

T1x =
x

4
, T2x =

x2/3

4
,

fx = x1/2, gx = x1/3.

Clearly the mappings g−1 and f−1 defined by

g−1x = x3 and f−1x = x2

exist.
Suppose that {yn} is a sequence of elements of X such that

y2n+1 = gx2n+1 = (1 − c2n)fx2n + c2nT1x2n,

y2n+2 = fx2n+2 = (1 − c2n+1)gx2n+1 + c2n+1T2x2n+1,

and

cn =
n + 1

2n + 1
.

If x0 = 1
2 , then with the help of equations (2.6) and (2.7), we obtain the

sequence {xn}, where

x1 = g−1[(1 − c0)fx0 + c0T1x0]

= g−1
[

(1 − 1)f
(1

2

)

+
1

2

]

=
(1

8

)3

,

x2 = f−1[(1 − c1)gx1 + c1T2x1]

= f−1
[(

1 −
2

3

)1

8
+

2

3

(1

8

)2 1

4

]

=
( 17

3.128

)2

,

x3 = g−1[(1 − c2)fx2 + c2T1x2]

=
[ 17

3.5.128

(

2 +
17

512

)]3

,

x4 = f−1[(1 − c3)gx3 + c3T2x3]

=
[ 17

3.5.7.128

(

2 +
17

512

)(

3 +
17

3.5.128

(

2 +
17

128

))]2

,

and so on. Then

y1 = gx1 =
1

3
,

y2 = fx2 =
17

3.144
,

y3 = gx3 = (
17

3.5.128
)
(

2 +
17

512

)

,

y4 = fx4 =
17

3.5.7.128

(

2 +
17

512

)(

3 +
17

3.5.128

(

2 +
17

128

))

,
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and so on. It is evident that yn → 0 as n → ∞.

We note that T1, T2, f and g are continuous and satisfy all the conditions of
Theorem 2.1 with 0 < q = 1

2 < 1. Indeed we have

||T1x − T2y|| =
1

4
||x − y

2

3 ||

≤
(||x1/2|| + ||y1/3||)(||x1/2 − y1/3||)

4

≤
||x1/2 − y1/3||

2

≤
||fx − gy||

2
.

Further, 0 is the common fixed point of T1, T2, f and g.

3 Fixed Point Theorems with Asymptotic Regu-

larity Condition

Let R
+ denote the set of nonnegative real numbers, W : R

+ → R
+ be a continuous

function such that 0 < W (t) < t for all t ∈ R
+ and let T1, T2, f and g be selfmaps

on a metric space (X, d). For a point x0 ∈ X, if there exists a sequence {yn} in X
such that

y2n = T1x2n = gx2n+1,

y2n+1 = T2x2n+1 = fx2n+2,

for n = 0, 1, 2, . . . , then O(T1, T2, f, g, x0) = {yn : n = 1, 2, . . .} is called the orbit
of (T1, T2, f, g) at x0. T1 and T2 are said to be orbitally continuous at x0 if and
only if they are continuous on O(T1, T2, f, g, x0). X is said to be orbitally complete
at x0 if and only if every Cauchy sequence in O(T1, T2, f, g, x0) converges in X.
The pair (T1, T2) is said to be asymptotically regular (a.r.) with respect to (g, f)
at x0 if there exists a sequence {yn} in X such that

y2n = T1x2n = gx2n+1,

y2n+1 = T2x2n+1 = fx2n+2,

for n = 0, 1, 2, . . . and d(yn, yn+1) → 0 as n → ∞.
Zeqing Liu et al. [4] proved the following theorem :

Theorem 3.1 Let f, g and h be selfmaps on a metric space (X, d) and let fh = hf

or gh = hg. Suppose that there exists a point x0 ∈ X such that (f, g) is a.r. with
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respect to h at x0, X is orbitally complete at x0, and h is orbitally continuous at
x0. If

d(fx, gy) ≤ M(x, y) − W (M(x, y)) (3.1)

holds for all x, y ∈ X, then f, g and h have a unique common fixed point in X,
where

M(x, y) = max{d(hx, hy), d(hx, fx), d(hy, gy), d(hx, gy), d(hy, fx)}.

4 Main Result

Now we present our second main theorem :

Theorem 4.1 Let T1, T2, f and g be selfmaps on a metric space (X, d) and let
T1f = fT1 and T2g = gT2. Suppose that there exists a point x0 ∈ X such that
(T1, T2) is a.r. with respect to (g, f) at x0, X is orbitally complete at x0, and g, f

are orbitally continuous at x0. If

d(T1x, T2y) ≤ M
′

(x, y) − W (M
′

(x, y)) (4.1)

holds for all x, y ∈ X, then T1, T2, f and g have a unique common fixed point in
X, where

M
′

(x, y) = max{d(fx, gy), d(fx, T1x), d(fx, T2y), d(T1x, gy), d(gy, T2y)}.

Proof. Since (T1, T2) is a.r. with respect to (g, f) at x0, there exists a sequence
{yn} in X such that

y2n = T1x2n = gx2n+1,

y2n+1 = T2x2n+1 = fx2n+2,

for n = 0, 1, 2, . . . and

lim
n→∞

d(yn, yn+1) = 0. (4.2)

In order to show that {yn} is a Cauchy sequence, it is sufficient to show that
{y2n} is a Cauchy sequence. Suppose that the result is not true. Then there will
be a positive number ε such that for each even integer 2k, there are even integers
2m(k) and 2n(k) such that 2m(k) > 2n(k) > 2k and

d(y2m(k), y2n(k)) > ε. (4.3)

For each integer 2k, let 2m(k) be the least even integer exceeding 2n(k) and
satisfying (4.3) so that

d(y2m(k)−2, y2n(k)) ≤ ε. (4.4)
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Then for each even integer 2k,

d(y2m(k), y2n(k)) ≤ d(y2m(k)−2, y2n(k)) + d(y2m(k)−2, y2m(k)−1)

+ d(y2m(k)−1, y2m(k)).

From (4.2), (4.3), (4.4) and the above inequality we have,

lim
n→∞

d(y2m(k), y2n(k)) ≤ ε. (4.5)

Using the triangular inequality and putting d(yn, yn+1) = dn, we obtain

|d(y2m(k)+1, y2n(k)) − d(y2m(k), y2n(k))| ≤ d2m(k),

|d(y2m(k)+1, y2n(k)+1) − d(y2m(k)+1, y2n(k))| ≤ d2n(k),

|d(y2m(k)+2, y2n(k)+1) − d(y2m(k)+1, y2n(k)+1)| ≤ d2m(k)+1,

|d(y2m(k)+2, y2n(k)) − d(y2m(k)+1, y2n(k))| ≤ d2m(k)+1,

and from (4.2), (4.5) and the above inequalities, we have

lim
k→∞

d(y2m(k)+1, y2n(k)) ≤ ε,

lim
k→∞

d(y2m(k)+1, y2n(k)+1) ≤ ε,

lim
k→∞

d(y2m(k)+2, y2n(k)+1) ≤ ε,

lim
k→∞

d(y2m(k)+2, y2n(k)) ≤ ε.
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It follows from (4.1) that

d(y2n(k)+1, y2m(k)+2) = d(T2x2n(k)+1, T1x2m(k)+2)

= d(T2x2n(k)+1, T1x2m(k)+2)

≤ max
{

d(fx2m(k)+2, gx2n(k)+1), d(fx2m(k)+2, T1x2m(k)+2),

d(fx2m(k)+2, T2x2n(k)+1), d(T1x2m(k)+2, gx2n(k)+1),

d(gx2n(k)+1, T2x2n(k)+1)
}

− W
(

d(fx2m(k)+2, gx2n(k)+1), d(fx2m(k)+2, T1x2m(k)+2),

d(fx2m(k)+2, T2x2n(k)+1), d(T1x2m(k)+2, gx2n(k)+1),

d(gx2n(k)+1, T2x2n(k)+1)}
)

≤ max
{

d(y2m(k)+1, y2n(k)), d(y2m(k)+1, y2m(k)+2),

d(y2m(k)+1, y2n(k)+1), d(y2m(k)+2, y2n(k)),

d(y2n(k), y2n(k)+1)
}

− W
(

d(y2m(k)+1, y2n(k)), d(y2m(k)+1, y2m(k)+2),

d(y2m(k)+1, y2n(k)+1), d(y2m(k)+2, y2n(k)),

d(y2n(k), y2n(k)+1)}
)

.

As k tends to infinity, we have

ε ≤ max{ε, 0, ε, ε, 0} − W (max{ε, 0, ε, ε, 0}),

or

ε ≤ ε − W (ε).

That is, W (ε) ≤ 0, which implies ε = 0, a contradiction. Hence {y2n} is a Cauchy
sequence.

Since X is (T1, T2, f, g) orbitally complete at x0, there exists a point z such
that yn → z as n tends to ∞.

Now applying (4.1) to d(gx2n+1, T2z) and d(T1z, fx2n+2) and letting n tend
to infinity, we have

d(gx2n+1, T2z) = d(T1x2n, T2z)

≤ max{d(fx2n, gz), d(fx2n, T1x2n), d(fx2n, T2z),

d(T1x2n, gz), d(gz, T2z)}

− W (max{d(fx2n, gz), d(fx2n, T1x2n), d(fx2n, T2z),

d(T1x2n, gz), d(gz, T2z)})
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or

d(z, T2z) ≤ max{d(z, gz), d(z, z), d(z, T2z), d(z, gz), d(gz, T2z)}

− W (max{d(z, gz), d(z, z), d(z, T2z), d(z, gz), d(gz, T2z)})

or

d(z, T2z) ≤ max{d(z, gz), d(z, z), d(z, T2z), d(z, gz), d(gz, T2z)}

− W (max{d(z, gz), d(z, z), d(z, T2z), d(z, gz), d(gz, T2z)}) (4.6)

and

d(T1z, fx2n+2) = d(T1z, T2x2n+1)

≤ max{d(fz, gx2n+1), d(fz, T1z), d(fz, T2x2n+1),

d(T1z, gx2n+1), d(gx2n+1, T2x2n+1)}

− W (max{d(fz, gx2n+1), d(fz, T1z), d(fz, T2x2n+1),

d(T1z, gx2n+1), d(gx2n+1, T2x2n+1)})

or

d(T1z, z) ≤ max{d(fz, z), d(fz, T1z), d(fz, z), d(T1z, z), d(z, z)}

− W (max{d(fz, z), d(fz, T1z), d(fz, z), d(T1z, z), d(z, z)})

or

d(T1z, z) ≤ max{d(fz, z), d(fz, T1z), d(fz, z), d(T1z, z), 0}

− W (max{d(fz, z), d(fz, T1z), d(fz, z), d(T1z, z), 0}). (4.7)

Since T1f = fT1, we have T1fx2n+2 = fT1x2n+2 → fz.
Again, since T1 is orbitally continuous at x0 we have by (4.1)

d(T1fx2n+2, fx2n+2) = d(T1fx2n+2, T2x2n+1)

≤ max{d(ffx2n+2, gx2n+1), d(ffx2n+2, T1fx2n+2), d(ffx2n+2, T2x2n+1),

d(T1fx2n+2, gx2n+1), d(gx2n+1, T2x2n+1)}

− W (max{d(ffx2n+2, gx2n+1), d(ffx2n+2, T1fx2n+2),

d(ffx2n+2, T2x2n+1), d(T1fx2n+2, gx2n+1), d(gx2n+1, T2x2n+1)})

≤ max{d(fz, z), d(fz, fz), d(fz, z), d(fz, z), d(z, z)}

− W (max{d(fz, z), d(fz, fz), d(fz, z), d(fz, z), d(z, z)}).

Letting n → ∞, we have

d(fz, z) ≤ d(fz, z) − W (d(fz, z),

which implies fz = z.
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Similarly if T2g = gT2, then T2gx2n+1 = gT2x2n+1 → gz.
Since T2 is orbitally continuous on x0, then we see on applying (4.1) to

d(gx2n+1, T2gx2n+1) and letting n → ∞, we obtain gz = z.
In equation (4.6), if we put z = gz, then we get T2z = z. Again in (4.7), if we

put z = fz, then we get T1z = z. Thus z is a common fixed point of T1, T2, f and
g. Uniqueness of z is obvious. This completes the proof of the theorem. �

Remark 4.2 When f = g, Theorem 3.1 strictly extends Theorem 2.1 of Liu
Zeqing et al. [4]. Furthermore, taking W (t) = (1 − r)t : r ∈ (0, 1), we obtain
Theorem 1 of Sastry et al. [3].
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