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Abstract The second wave of the COVID-19 outbreak in Surabaya resulted in significant casualties

and losses across a range of sectors. The epidemic mathematical model is used as a mitigation strategy

in controlling the spread of the COVID-19 infection outbreak, through the provision of control in the

form of vaccination to the community. The objective of this study is to ascertain the impact of the

efficacy of the COVID-19 vaccine through the utilization of the enhanced SEIR mathematical epidemic

model. The COVID-19 data from Surabaya is employed as a case study, as this region of Indonesia has

a significant impact on mortality rates. The model used has unstable characteristics at the disease-free

equilibrium ξ0 = (10790.5498, 0, 0, 0), however, this model is stable at the endemic equilibrium point

ξ1 = (1100.7897, 1.9526, 0.4642, 36.9607). It is known from the basic reproduction numbers R0 = 9.79, It

is predicted that the outbreak will stop the epidemic on February 20, 2024. The government has taken

control efforts by providing vaccines to the public. The simulation results with the addition of vaccine

parameters produce the basic reproduction numbers with controlled treatment Rt < 5 The outbreak

stopped 533-592 days earlier. The simulation results from the model used have errors in the range of 16%

to 40%.
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1. Introduction

The disease caused by the SARS-CoV-2 virus, designated as “COVID-19”, was first
identified in Wuhan, Hubei Province, China, in December 2019 [1]. As of December
2021, the disease has been endemic throughout the world for approximately two years. In
Indonesia, the disease has been endemic for one year and nine months. The COVID-19
outbreak in Indonesia has occurred in two waves. The first outbreak began in early March
2020 and continued until mid-May 2021. The second outbreak occurred starting from May
14 to the end of November 2021, with a total of 2,633 cases [2]. This number continued
to increase, reaching 56,757 cases [3]. Upon the occurrence of the second outbreak, five
provinces were identified as having the highest number of cases of the spread of COVID-
19 in Indonesia. These provinces were DKI Jakarta, West Java, Central Java, East Java,
and East Kalimantan [4].

In the initial phase of the COVID-19 outbreak in Indonesia, East Java Province held
the highest number of cases in the country. This was largely due to the large number of
individuals infected with COVID-19 in Surabaya. The high number of confirmed cases
of infection led to the designation of Surabaya as a dangerous area or black zone. The
transmission of this virus can occur through human contact, through the emission of
droplets, and via airborne transmission, which can result in the rapid spread and increase
in the number of infected individuals in multiple locations [5], [6]. One of the causes
of the high number of cases is the lack of awareness among the Surabaya community
regarding the importance of maintaining cleanliness and implementing health protocols
set by the government. This behavior enables the virus that causes COVID-19 to become
stronger, thus allowing it to fight antibodies and mutate into a new variant that is more
dangerous [7], [8]. The mutated SARS-CoV-2 virus, which causes COVID-19, caused
the second wave of COVID-19 infections in Indonesia. The previous SARS-CoV-2 virus
variant that had spread in the community mutated and became more dangerous, resulting
in the emergence of a new variant, the delta variant [9], [10].

As the capital city in East Java Province, Surabaya, which was also affected by the
second wave of attacks, resulted in numerous residents becoming victims of COVID-
19. On May 14, 2021, there were 6,110 cases of residents exposed to COVID-19 and
23,739 cases of Surabaya residents who were confirmed infected. The high number of
recorded cases indicates that the spread is occurring at a rapid pace within the Surabaya
community, particularly given that many individuals have not yet received the full dose
of the COVID-19 vaccination [11], [12]. The impact of the COVID-19 pandemic has
resulted in significant losses for Surabaya in various sectors, including health, the economy,
tourism, education, and psychology.

The prolonged and intensive loss of human resources due to the COVID-19 pandemic
has resulted in Surabaya experiencing a decline in the quality of its human resources, in-
creased community inequality, and the imposition of restrictions on community activities
(PPKM) to prevent the further spread of the outbreak [13]. An analysis of the growth
pattern of COVID-19 cases in Surabaya based on the available confirmed data can be
employed as a countermeasure or mitigation strategy. The analysis method that can
be employed is the use of a mathematical model, which will then be simulated using a
numerical approach [14]. The mathematical model was then adjusted to reflect the condi-
tions and circumstances of the second wave of the COVID-19 outbreak in Surabaya. The
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numerical simulation generated from the mathematical model provides a visual represen-
tation of the conditions and situations that occur when the second wave of the COVID-19
pandemic attacks in Surabaya.

The utilization of mathematical models for epidemics is, in fact, flexible, contingent
upon the researchers themselves to employ the desired model equation. Furthermore,
mathematical models can be combined or modified according to the needs and data ob-
tained [15]. The objective is to rectify inappropriate parameters, unforeseen parameters,
or errors that arise from the use of a simple model, thereby yielding invalid and less precise
results or visualizations. The SEIR epidemic model is a commonly employed mathemat-
ical model for analyzing the dynamics of disease spread. The SEIR acronym stands for
the four main variables that comprise the model: susceptible, exposed, infected, and
recovered.

One of the studies that discusses the mathematical epidemic model of the spread of
COVID-19 infection [16] case study in Tuban which focused on parameter estimation.
The mathematical model used is the SEIR epidemic model, where the model used is
assumed to be exposed to individuals who are still likely not to be infected, so there are
new parameters added to the model, the MAPE value obtained makes the mathematical
model used quite good. Research with the same focus and using assumptions similar
to the previous one in the model used was also carried out [17], the difference in the
model used is that exposed individuals are still likely to be uninfected, considered cured
immediately, and not susceptible again. In the SEIR epidemic model used, there are
additional parameters with the assumption that individuals who recover from COVID-
19 can still be re-infected so that recovered individuals become susceptible individuals.
The next study which also discusses the mathematical epidemic model of the spread of
COVID-19 infection, was carried out [18] with a case study in the Province of Lambordia
which focused on deterministic analysis of epidemic models and numerical simulations,
with the epidemic model used was SEIR.

In this study, the SEIR epidemic mathematical model will be used, with modifications
made to the mortality rates in each variable. It is assumed that individuals who have
recovered can still be susceptible to infection. As the epidemic model is expressed in the
form of a mathematical equation, a simulation method employing a numerical approach
is required to visualize the condition of the outbreak. One such method is the 5th-order
Runge-Kutta method, which is still relatively underutilized. The fourth-order Runge-
Kutta method is demonstrably superior to the Euler and Heun methods in terms of
accuracy and precision [19].

2. Mathematical Model and Parameters

2.1. SEIR Epidemic Model

The basic epidemic model used is the SIR (Susceptible, Infected, and Recovery) model,
in this study the model was developed by adding a delay factor for infection, namely Ex-
posed so that the epidemic model was modified to SEIR (Susceptible, Exposed, Infected,
and Recovery) [20], [21]. In the case of COVID-19, individuals who are included in the
exposed population are individuals who are suspected of being infected with COVID-19,
have the status of a person under surveillance, and have the possibility of not being in-
fected so that they are again vulnerable and enter the susceptible population [16], [22].
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The condition of the cases in Indonesia, individuals who have recovered can still be in-
fected with COVID-19 again, so that individuals from the recovery population can become
vulnerable again so that they enter the susceptible population [23], [24]. Based on the
conditions and situations described previously, the epidemic model can be formulated
mathematically into the following form:

Figure 1. SEIR epidemic model compartment

Based on the compartment diagram in Figure 1, the SEIR COVID-19 epidemic model
in the Surabaya can be compiled into a mathematical form as follows:

dS(t)

dt
= Λ+ τE(t) + αR(t)− (βI(t) + µS)S(t) (2.1)

dE(t)

dt
= βS(t)I(t)− (γ + τ + µE − θ)E(t) (2.2)

dI(t)

dt
= γE(t)− (δ + µI) I(t) (2.3)

dR(t)

dt
= δI(t)− (α+ µR)R(t) (2.4)

In equations (2.1), (2.2), (2.3), and (2.4) there are several parameters that are used as a
reference in analyzing the model used. To get parameter values, probability, mortality,
and epidemiology can be used based on the data we have. In general, the description of
the mathematical model can be described as follows:

Table 1. Model parameter estimation

Parameters Description Value
Λ Natural birth rate 0.267605634

α
The rate of individuals who have recovered 0.008685
is vulnerable

β
The rate at which susceptible individuals 0.0021215
become exposed

τ
The rate at which individuals are re-exposed 0.26776
vulnerable

θ
Rate of increase in exposed individuals migrating 0.000812
into cities

γ
The rate at which an exposed individual becomes 0.2245
sick from infection

δ Rate of recovered infected individuals 0.9192
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µS
Mortality rate in susceptible individual 0.0000248
population

µE Death rate in the population of exposed individuals 0.06376

µI
Death rate in the population of infected individuals 0.025189
due to COVID-19

µR Death rate in a population of recovered individuals 0.00286

2.2. SEIR Epidemic Model with Control Treatment

In the SEIR epidemic model used in equation (2.1) to equation (2.4), it will show
the dynamics of the spread of the COVID-19 outbreak without any treatment given to
the community. In order to control the spread of the outbreak, the population rate of
infected individuals should be reduced as much as possible. One method that can be
used to control the outbreak is to give vaccines to the community so that they have
immunity to prevent viral infections due to COVID-19 [25]. Based on the description
previously, the SEIR epidemic model will be mathematically developed by modifying the
parameters used in equation (2.1) and equation (2.2) [26]. The reason for modifying the
two equations is, to reduce the rate of population increase which is directly related to
the infected population in the compartment diagram, the development of the modified
mathematical model of the SEIR epidemic model can be written as follows [27]:

Figure 2. SEIR epidemic model compartment with vaccine effectiveness

Based on the compartment diagram in Figure 2, the SEIR epidemic model can be
compiled into a mathematical form as follows:

dS(t)

dt
= Λ+ τE(t) + αR(t)− (β (1− v) I(t) + µS)S(t) (2.5)

dE(t)

dt
= β (1− v)S(t)I(t)− (γ + τ + µE − θ)E(t) (2.6)

It is presumed that all residents of Surabaya have received a complete vaccination regi-
men against the COVID-19, comprising two doses of vaccine. The incorporation of the
parameter v into equations (2.6) and (2.6) represents the effectiveness of the vaccine.
The majority of vaccines administered to the residents of Surabaya were Sinovac and
AstraZeneca vaccines. The efficacy of the vaccine will be determined by the Sinovac and
AstraZeneca vaccines in accordance with the regulations of the Indonesian Food and Drug
Supervisory Agency (BPOM). The efficacy of the Sinovac and AstraZeneca vaccines is
presented in Table 2 as follows [28], [29]:



490 Thai J. Math. Vol. 22 (2024) /F. Akbar et al.

Table 2. Control parameters with vaccine

Parameters Description Value
Percentage of
Vaccine Ability

vS
The effectiveness of the

0.501 50.1%
Sinovac vaccine

vA
The effectiveness of the

0.621 62.1%
AstraZeneca vaccine

3. System Equilibrium Point

3.1. Global Equilibrium Point

In the epidemic model to analyze the dynamics of the spread of epidemic diseases in
an area, there are at least two local equilibrium points, namely the equilibrium point in
disease free conditions, and the equilibrium point in endemic conditions. Before starting
the process of looking for a local equilibrium point, the first thing that needs to be done
is to find the global equilibrium point, so that by using the global equilibrium point,
it is easier to enter assumptions under various conditions given to the model [30]. In
finding the equilibrium point of each main variable, equations (2.1) to (2.4) are used,

assuming dS(t)
dt = dE(t)

dt = dI(t)
dt = dR(t)

dt = 0 so that so that the global equilibrium point
ξt = (St, Et, It, Rt) is obtained from this epidemic model as follows:

St =
Λ+ τEt + αRt

βIt + µS
(3.1)

Et =
βStIt

γ + τ + µE − θ
(3.2)

It =
γEt

δ + µI
(3.3)

Rt =
δIt

α+ µR
(3.4)

Armed with equations (3.1), (3.2), (3.3), and (3.4), it will then be used to find the equi-
librium point for each condition, namely disease free conditions and endemic conditions.

3.2. Disease Free Equilibrium Point

This disease free equilibrium point can occur if it is assumed that in a population
there is no epidemic of infectious disease. In simple terms it can be said that there are no
exposed or infected individuals, meaning the population is at E = 0 and the population
is at I = 0 [31]. By substituting this example into equations (3.1) and (3.4), we get a
disease free equilibrium point ξ0 = (S0, E0, I0, R0) as follows:

R0 =
δI0

α+ µR
=

δ · 0
α+ µR

= 0

S0 =
Λ+ τE0 + αR0

βI0 + µS
=
Λ+ (τ · 0) + (α · 0)

(β · 0) + µS
=

Λ

µS

Based on the above solution, the equilibrium point at the disease free condition is ξ0 =
(10790.5498, 0, 0, 0).



Vaccine Effectiveness Impact on the COVID-19 Dynamics ... 491

3.3. Endemic Equilibrium Point

The equilibrium point in this endemic condition can occur if it is assumed that there
is an epidemic of infectious disease. Simply put, it can be said that there are individuals
who are exposed or infected, meaning the population is at E ̸= 0 and the population is at
I ̸= 0 [31]. With this example equations (3.2) and (3.4) will be used by substituting into
equations (2.1) and (2.3) to get the points S1 and I1, after that S1 and I1 will be used
by substituting them into equations (3.2) and (3.4), the disease free equilibrium point is
obtained ξ1 = (S1, E1, I1, R1) as follows:

S1 =
(δ + µI) (γ + τ + µE − θ)

γβ

I1 =
(µSS1 − Λ) (α+ µR) (γ + τ + µE − θ)

τβS1 (α+ µR) + αδ (γ + τ + µE − θ)− βS1 (α+ µR) (γ + τ + µE − θ)

E1 =
(δ + µI) (µSS1 − Λ) (α+ µR) (γ + τ + µE − θ)

γ (τβS1 (α+ µR) + αδ (γ + τ + µE − θ)− βS1 (α+ µR) (γ + τ + µE − θ))

R1 =
δ (µSS1 − Λ) (α+ µR) (γ + τ + µE − θ)

τβS1 (α+ µR)αδ (γ + τ + µE − θ)− βS1 (α+ µR) (γ + τ + µE − θ)

Based on the above solution, the equilibrium point at the disease free condition is ξ1 =
(1100.7897, 1.9526, 0.4642, 36.9607).

4. Basic Reproduction Number

R0 or commonly known as the notation of the basic reproduction number, is the
average number of susceptible individuals population that can be directly infected by
other infected individuals, this is caused by the presence of infected individuals who enter
the population of susceptible individuals [30]. To get the basic reproduction number, you
can use the Driessche and Watmough method, by finding the largest eigenvalue of the
next generation matrix obtained from the population sample in which there are infected
individuals. The next generation matrix can be formed from the equations for the exposed
and infected populations (E and I), each of which is linearized using the Jacobian matrix
method, then substituted with the equilibrium point in disease free conditions [16].

4.1. Natural Basic Reproduction Number (R0)

The natural basic reproduction number is obtained by using equations (2.2) and (2.3)
which are entered into the next generation matrix which will then look for the eigenvalues.
Based on the analysis and calculations performed, the matrix F is obtained which is the
rate of emergence of new infections in population I, and matrix V is also obtained which
is the rate of movement of individuals out of population I minus the rate of movement of
individuals into population I, as follows:

φ =

[
βSI + θE

0

]
, ψ =

[
(γ + τ + µE)E

−γE + (δ + µI) I

]
J (φ) =

[
∂(βSI+θE)

dE
∂(βSI+θE)

dI
∂(0)
dE

∂(0)
dI

]
, J (ψ) =

[
∂((γ+τ+µE)E)

dE
∂((γ+τ+µE)E)

dI
∂(−γE+(δ+µI)I)

dE
∂(−γE+(δ+µI)I)

dI

]

F =

[
θ βS0

0 0

]
, V =

[
γ + τ + µE 0

−γ δ + µI

]
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Then look for the next generation matrix
(
K = FV −1

)
, where V −1 is the inverse matrix

of the V matrix.

V −1 =

[
1

γ+τ+µE
0

γ
(γ+τ+µE)(δ+µI)

1
δ+µI

]
The next generation matrix K is obtained as follows:

K = FV −1

=

[
θµS(δ+µI)+βΛγ

µS(γ+τ+µE)(δ+µI)
βΛ

µS(δ+µI)

0 0

]
(4.1)

The next generation K matrix that has been obtained is then searched for its eigen-
values such that it obtains the characteristic equation that is used to obtain the basic
reproduction number value as follows:

R0 =
θµS (δ + µI) + βΛγ

µS (γ + τ + µE) (δ + µI)

= 9.79

(4.2)

4.2. Basic Reproduction Numbers with Controlled Treatment (Rt)

The basic reproduction number in this condition can be obtained in the same way
as before, except that the equations used are not equations (2.2) and (2.3), but using
equations (2.3) and (2.6). The value of the basic reproduction number by giving Sinovac
vaccine (Rt) to the community, is obtained from the characteristic equation with the
following form:

Rt =
θµS (δ + µI) + β (1− vS)Λγ

µS (γ + τ + µE) (δ + µI)

= 4.88

(4.3)

As for the value of the basic reproduction number by administering the AstraZeneca
vaccine (R∗

t ) to the community, it is obtained from the characteristic equation with the
following form:

R∗
t =

θµS (δ + µI) + β (1− vA)Λγ

µS (γ + τ + µE) (δ + µI)

= 3.71

(4.4)

5. Stability Analysis of Equilibrium Points

The purpose of doing a stability analysis on an epidemic model is to determine the rate
of spread of a disease that is endemic in an area. One method that can be used to perform
stability analysis is to use the Routh-Hurwitz criterion, this criterion uses a special table
to obtain stable conditions and eigenvalues in fairly complex and long equations such as
polynomials. Under this criterion, the model is said to be stable when all the first columns
in the table are positive. The table used in the Routh-Hurwitz criteria is presented as
follows [11]:
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Table 3. Arrangement of polynomials in the Routh-Hurwitz table

λn a0 a2 a4 · · · a2n
λn−1 a1 a3 a5 · · · a2n+1

λn−2 b1 b2 b3 · · · bn
λn−3 c1 c2 b3 · · · cn
...

...
...

...
. . .

...
λ0 q · · · · · · · · · qn

From the table above, we will get b1, b2, c1, c2, and q in the following way:

b1 =
a1a2 − a0a3

a1
, b2 =

a1a4 − a0a5
a1

, · · · , bn =
a1a2n − a0a2n+1

a1

and

c1 =
b1a3 − a1b2

b1
, c2 =

b1a5 − a1a3
b1

, · · · , cn =
b1a2n+1 − a1bn

b1

In this study, local stability analysis was carried out at the disease free equilibrium
point (ξ0), as well as at the endemic equilibrium point (ξ1). Equations (2.1) to (2.4) are
used to analyze by first linearizing the equation using the Jacobian matrix as follows:

J (ξt) =


− (βIt + µS)

βIt
0
0

τ
−(γ + τ + µE − θ)

γ
0

−βSt

βSt

− (δ + µI)
δ

α
0
0

− (α+ µR)


(5.1)

Matrix (5.1) will be used to perform a stability analysis around the disease free equilibrium
point. By substituting the disease free equilibrium point ξ0 = (S0, E0, I0, R0) into the
matrix (5.1), we get the Jacobian matrix for the disease free equilibrium point (J (ξ0)) as
follows:

J (ξ0) =


−µS

0
0
0

τ
−(γ + τ + µE − θ)

γ
0

−βΛ
µS

βΛ
µS

− (δ + µI)
δ

α
0
0

− (α+ µR)

 (5.2)

Based on the characteristic equation obtained from the Jacobian matrix in equation
(5.2) in the form of a polynomial, the criteria table obtained from the results of the poly-
nomial arrangement is as follows:

Table 4. Routh-Hurwitz table disease free equilibrium points

λ4 1.0000 −4.5980 0.0000
λ3 1.5111 −0.0534 0
λ2 −4.5627 0.0000 0
λ1 −0.0534 0 0
λ0 0.0000 0 0

From the criteria in Table 4, there are four eigenvalues, each of which is λ1 = −0.00002,
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λ2 = −0.0115, λ3 = −3.0252, and λ4 = 1.5256. The next step using the same method,
to perform a stability analysis around the endemic equilibrium point, the endemic equi-
librium point ξ1 = (S1, E1, I1, R1) is substituted. We get the Jacobian matrix for the
disease free equilibrium point (J (ξ1)) as follows:

J (ξ1) =


− (βI1 + µS)

βI1
0
0

τ
−(γ + τ + µE − θ)

γ
0

−βS1

βS1

− (δ + µI)
δ

α
0
0

− (α+ µR)


(5.3)

Based on the characteristic equation obtained from the jacobian matrix in equation
(5.3) in polynomial form, the criteria table obtained from the results of the polynomial
arrangement is as follows:

Table 5. Routh-Hurwitz table of endemic equilibrium points

λ4 1.0000 1.0680 0.0000
λ3 1.5121 0.0124 0
λ2 1.0597 0.0000 0
λ1 0.0124 0 0
λ0 0.0000 0 0

Based on the criteria in Table 5, there are four eigenvalues, each of which is λ1 = −1.4999+
0.0000i, λ2 = −0.0026 + 0.0117i, λ3 = −0.0026− 0.0117i, and λ4 = −0.0061 + 0.0000i.

6. Numerical Simulation

To visualize the conditions in the mathematical model formed from the equations of the
epidemic model used, one way that can be utilized is simulation with numerical methods
[32]. The numerical method that is often used is 4th Order Runge-Kutta, to improve the
simulation results so that the visualization is closer to actual conditions, 4th Order Runge-
Kutta is developed to 5th order [19]. All parameter values listed in Table 1, along with
the vaccine effectiveness values contained in Table 2, are substituted into all equations
from (2.1) to (2.6) which will be processed and then simulated. As the basis of the 5th
order Runge-Kutta method, there are at least seven basic processes that must be carried
out from the general form, the general form of 5th order Runge-Kutta can be described
as in equation (6.1) as follows [33]:

yi+1 = yi +
1

90
(7k1 + 32k3 + 12k4 + 32k5 + 7k6) (6.1)

By following the rules of the steps as follows:

k1 = hf (ti, yi)

k2 = hf

(
ti +

h

2
, yi +

k1
2

)
k3 = hf

(
ti +

h

4
, yi +

3k1 + k2
16

) (6.2)
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k4 = hf

(
ti +

h

2
, yi +

k3
2

)
k5 = hf

(
ti +

3h

4
, yi +

−3k2 + 6k3 + 9k4
16

)
k6 = hf

(
ti + h, yi +

k1 + 4k2 + 6k3 − 12k4 + 8k5
7

)
If equations (6.1) and (6.2) are used for simulations in equations (2.1) to (2.4), it will
produce a visualization of the dynamic state of the spread of the second wave of COVID-
19 infection in Surabaya without any mitigation measures to control the outbreak. Then
equations (6.1) and (6.2) can also be used to visualize the dynamics of the spread of the
second wave of COVID-19 infection in Surabaya with the existence of mitigation measures
for epidemic control with vaccines, if used to simulate equations (2.6), (2.6), (2.3) , and
(2.4). The simulation results are obtained as follows:

(a) Not using vaccine (b) Using Sinovac vaccine

(c) Using AstraZeneca vaccine

Figure 3. Model numerical simulation results

Figures 3a, 3b, and 3c are comparisons obtained from the three conditions given to the
model. In the first condition, the COVID-19 outbreak was not given any treatment in
its handling, so the second wave of the COVID-19 outbreak will last for 1013 days, it is
predicted that the outbreak will stop on February 20, 2024. This condition is compared
to when all Surabaya people were given the Sinovac vaccine, the outbreak will lasts 480
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days, and will be completed on September 5, 2022. The next condition is when compared
to when all Surabaya people were given the AstraZeneca vaccine, the outbreak will last
421 days and will end on July 8, 2022.

7. Error Analysis

In this study, the accuracy of the model will be analyzed based on the magnitude of
the error obtained from the simulation results, so it is hoped that the model used can be
used to predict the rate of spread dynamics. The smaller the resulting error, the closer
the simulation results to the actual, so that the model can be said to be more accurate
and has good predictive results. To find the resulting error value, the Means Absolute
Percentage Error (MAPE) method is used. MAPE reviews errors based on the difference
from the average value of the data, the standard measurement accuracy of MAPE can be
grouped into four categories. Each category can be presented in Table 6 as follows [34]:

Table 6. MAPE value interpretation

MAPE Value (%) Interpretation
0− 10 Very Accurate Prediction Results
10− 20 Good Prediction Results
20− 50 Prediction Results Quite Accurate / Decent
> 50 Less Accurate Prediction Results

This method has a general mathematical form as follows:

MAPE =

(
1

n

n∑
1

∣∣∣∣yi − ŷi
yi

∣∣∣∣
)

× 100 (7.1)

where:

n : Amount of data
yi : Actual data at time to i, i = 1, 2, 3, . . .
ŷi : Prediction data at time to i, i = 1, 2, 3, . . .

If equations (6.2) are substituted by the actual data and the simulation results, the
error for each variable presented in Table 6 will be as follows:

Table 7. Error values from simulation results of the model without
vaccination compared with actual data

Value S E I R
MAPE 16.68% 23.20% 30.79% 16.11%

Judging from the error value in Table 7, it is known that the variables S and R have
model simulations with good predictive results. The model simulation on variables E and
I shows that the prediction results are quite accurate, in other words the overall model
has quite accurate results, so the model can be used as one of the mitigation methods
that can be done.
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8. Discussion

Based on the local stability conditions analyzed around the two equilibrium points, it
was found that the SEIR epidemic mathematical model used was unstable at the disease
free equilibrium point. In contrast to the endemic equilibrium point from the SEIR
epidemic mathematical model used, the mathematical model at the endemic equilibrium
point can be said to be asymptotically stable. Stability conditions in this model are also
experienced by research conducted by Arifin and Achamyelesh, where the model point
is unstable at the disease free equilibrium point, but stable at the endemic equilibrium
point [16], [20]. The next review after the stable condition of the model is known, namely
reviewing the analysis of the basic reproduction number, it is obtained the value of the
basic reproduction number of each which indicates the condition of one individual’s ability
to infect other individuals.

When people don’t get the vaccine, every individual infected with COVID-19 can infect
9-10 people. Meanwhile, when the public is given the Sinovac vaccine, the ability of one
individual infected with COVID-19 to be able to infect other individuals will decrease
to 4-5 people. When the public is given the AstraZeneca vaccine, the ability of one
individual infected with COVID-19 to be able to infect other individuals will decrease to
3-4 people. Simply put, R0 > Rt > R∗

t > 1, which indicates that COVID-19 will still
exist in Surabaya with or without giving vaccines to the public. Although COVID-19 will
still exist, but the outbreak can be controlled more so that the spread of transmission
does not occur, so that there is no situation that is very dangerous to the community, the
government’s decision is right by giving vaccines to the community as a form of mitigation,
even though it is not optimal.

The situation is very dangerous with this kind of transmission capability in the capital
city of a province with a population of close to three million, as well as a city with the
second largest industrial and corporate center in Indonesia. As a form of mitigation to
control the outbreak, giving vaccines to the community has proven to be quite effective,
where the R0 value has been reduced to three to five. The use of vaccines with the
parameters used is still not said to be optimal, because R0 ≥ 1 which indicates there
is still transmission that causes the spread of infection, so it is necessary to use more
optimal parameters so that the spread of COVID-19 transmission can be overcome. As
a suggestion for future research, optimal vaccine parameters can be searched using the
Phontryargin Minimum Principle (PMP) or Linear Quadratic Regulator (LQR).

For comparison, the total population of each variable is presented in Table 8 as follows:

Table 8. Total population of each variable comparison

Variables Day(t)
Condition of the Vaccine Given

No vaccine Sinovac AstraZeneca

S

50 2880752 2906552 2911377
100 2858613 2903658 2910528
150 2844818 2902302 2909887
200 2835688 2900620 2908386

E

50 5401 1766 1209
100 3340 614 361
150 2055 213 108
200 1261 74 32
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I

50 14399 8648 7603
100 8963 3012 2276
150 5540 1048 681
200 3409 365 204

R

50 20034 18493 18183
100 15965 12533 11981
150 11905 7815 7290
200 8508 4677 4280

If the total population is represented in a graph, it will look as follows:

(a) Susceptible population comparison (b) Exposed population comparison

(c) Infected population comparison (d) Recovery population comparison

Figure 4. Each variable population comparison

Based on the simulations obtained in Figures 4a to 4d, it appears that giving vaccines
to the community has a significant enough effect in reducing the rate of increase in the
infected population. The outbreak would be that if all residents were given the Sinovac
vaccine, the outbreak would be over 533 days faster than if all the people of Surabaya
were not vaccinated at all. The COVID-19 outbreak will also be finished 592 days faster
if all residents are given the AstraZeneca vaccine, compared to if the entire Surabaya
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community is not given the vaccine at all. These results indicate that the vaccine is
proven to help reduce the spread of the COVID-19 disease outbreak circulating in the
community, this is in accordance with research conducted by Shadabfar et al [35].

After the simulation results are obtained, there are errors that occur as a result of
the use of numerical methods that use the actual approach. When viewed from Table
7 which refers to Table 6, the error obtained is still below the tolerance standard, in
such a way that the error obtained from the simulation results of the SEIR epidemic
mathematical model can be categorized as quite accurate. The error obtained from the
model is still large enough to be used as a prediction, one way to minimize the error is to
estimate parameters on S, E, I, and R. There are many gaps that make the SEIR epidemic
model used can still be improved and refined In other words, the government can still
add treatments to control the outbreak, such as adding quarantine (Q), administering
anti-virus drugs (M), or reducing the number of transmigrations. Other methods that
can be used are optimization to minimize errors using Multiple Object Particle Swarm
Optimization (MOPSO), Multiple Object Firefly Optimization (MOFO), and Red Fox
Optimization [36]-[38].

9. Conclusion

Based on the results of the research discussed previously, by utilizing the SEIR epi-
demic model that has been developed with a conditional approach, with a spread rate
of one person can infect 9-10 other people, the second wave of COVID-19 outbreak in
Surabaya will last for 1013 days and will stop spreading. on February 20, 2024. The use
of vaccines as an effort to repeat the rate of spread of COVID-19 infection has proven to
be quite effective by decreasing the level of a person’s ability to transmit, from initially
one person can infect 10 people to 3-5 people, this can also seen from the simulation
results which show that the outbreak stopped 533-592 days earlier, which is estimated to
fall on September 5 or July 8, 2022. Based on the results of the simulation model, it can
be said that the outbreak has been handled quite well, the government’s action by giving
Vaccines as mitigation are appropriate, although not optimal for stop the entire spread
of infection.
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