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Abstract In this work, we establish an existence theorem of solutions for a new class of nonlinear

Langevin fractional q-difference equation involving Caputo q-derivative in Banach space. Indeed, we will

introduce the notion of kuratowski measure of noncompactness and the Mönch’s fixed-point theorem,

on which; our analysis of the problem will essentially be based. An example is provided to show the

applicability of the main result.
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1. Introduction

Fractional calculus and q-calculus in general and fractional differential equations, in
particular, are currently well established, looking to the number of papers and books
edited and seminars organized on the whole of the world. Fractional calculus belongs to
the large area of mathematical analysis. As far as it is known, the notion of q-difference
equations goes back to 1910, where it was introduced by Jackson [1]. In the few past
decades, the subject has attracted many authors and the q-difference equations appeared
as a promising research field, on both applied or theoretical level, see for example [2–8].
For more details on the subject, one can consult [9–19].

One of the simplest ways to understand dynamics of nonequilibrium systems is the
theory of Brownian motion and perhaps the most important equation is Langevin equation
[20]. Based on the works of M. Gouy [21] and A. Einstein [22] Langevin formulated in
1908, his famous equation witch is widely used by physicians to describe different problems
in physics, chemistry and electrical engineering. Generalizations of the Langevin equation
have been proposed to describe dynamical processes in a fractal medium [23, 24]. Another
way to extend Langevin equation consists on the replacement of ordinary derivative by a
fractional derivative [25–29].
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This paper is mainly concerned with existence results for the following Langevin frac-
tional q-difference equation{

Dβ
q (D

α
q + λ)x(t) = f(t, x(t)), t ∈ J = [0, 1], 0 < α, β ≤ 1,

x(0) = γ1, x(1) = γ2,
(1.1)

where Dq is the fractional q−derivative of the Caputo type. f : J × E → E is a given
function satisfying some assumptions that will be specified later and E is a Banach space
with norm ∥x∥, λ is any real number.

We will present the existence results for the problem (1.1) which rely on Mönchs fixed
point theorem combined with the technique of Kuratowski measure of noncompactness.
We recall that when we analyze a problem involving functional operator, one of the best
ways consists on the use of the technique of measure of noncompactness, see for instance
[30–39].

The remainder of this article is organized as follows. In Section 2, we provide some
basic definitions, preliminaries facts and various lemmas, which are needed later. In
Section 3, we give main results of the problem (1.1). At the end, we provide an example
illustrating theoretical result.

2. Preliminaries

In this section, we introduce notations, definitions and preliminary facts which are used
throughout the paper.

We denote by C(J,E) the Banach space of all continuous functions from x : J → E
endowed with the norm defined by

∥x∥∞ = sup{∥x(t)∥ : t ∈ J}.

Let L1(J,E) be the Banach space of measurable functions x : J → E which are Bochner
integrable, equipped with the norm

∥x∥L1 =

∫
J

|x(t)| dt.

In what follow, we recall some elementary definitions and properties related to frac-
tional q-calculus. For a ∈ R, we put

[a]q =
1− qa

1− q
.

The q-analogue of the power (a− b)n is expressed by

(a− b)(0) = 1, (a− b)(n) =

n−1∏
k=0

(
a− bqk

)
, a, b ∈ R, n ∈ N.

In general,

(a− b)(α) = aα
∞∏
k=0

(
a− bqk

a− bqk+α

)
, a, b, α ∈ R.

Definition 2.1. [40] The q-gamma function is given by

Γq(α) =
(1− q)(α−1)

(1− q)α−1
, α ∈ R− {0,−1,−2, . . .}.
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The q-gamma function satisfies the classical recurrence relationship

Γq(1 + α) = [α]qΓq(α).

Definition 2.2. [40] For any α, β > 0, the q-beta function is defined by

Bq(α, β) =

∫ 1

0

f (α−1)(1− qf)(β−1)dqf, q ∈ (0, 1)

where the expression of q-beta function in terms of the q-gamma function is

Bq(α, β) =
Γq(α)Γq(β)

Γq(α+ β)
.

Definition 2.3. [40] Let f : J → R be a suitable function. We define the q-derivative of
order n ∈ N of the function f by D0

qf(t) = f(t),

Dqf(t) := D1
qf(t) =

f(t)− f(qt)

(1− q)t
, t ̸= 0, Dqf(0) = lim

t→0
Dqf(t),

and

Dn
q f(t) = DqD

n−1
q f(t), t ∈ I, n ∈ {1, 2, . . .}.

Set It := {tqn : n ∈ N} ∪ {0}.

Definition 2.4. [40] For a given function f : It → R, the expression defined by

Iqf(t) =

∫ t

0

f(s) dqs =

∞∑
n=0

t(1− q)qnf
(
tqn

)
,

is called q-integral, provided that the series converges.
We note that DqIqf(t) = f(t), while if f is continuous at 0, then

IqDqf(t) = f(t)− f(0).

Definition 2.5. [10] The integral of a function f : J → R defined by

I0q f(t) = f(t),

and

Iαq f(t) =

∫ t

0

(t− qs)(α−1)

Γq(α)
f(s) dqs, t ∈ J.

is called Riemann-Liouville-fractional q-integral of order α ∈ R+

Lemma 2.6. [7] Let α ∈ R+ and β ∈ (−1,∞). One has

Iαq t
β =

Γq(β + 1)

Γq(α+ β + 1)
tα+β , β ∈ (−1,∞), α ≥ 0, t > 0

In particular, if f ≡ 1, then

Iαq 1(t) =
1

Γq(1 + α)
t(α), for all t > 0.
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Definition 2.7. [41] The Caputo fractional q-derivative of order α ∈ R+ of a function
f : J → R is defined by

CDα
q f(t) = I [α]−α

q D[α]
q f(t), t ∈ J.

We put by convention
CD0

qf(t) = f(t).

Lemma 2.8. [41] Let α ∈ R+. Then the following equality holds:

Iαq
CDα

q f(t) = f(t)−
[α]−1∑
k=0

tk

Γq(1 + k)
Dk

q f(0).

In particular, if α ∈ (0, 1), then

Iαq
CDα

q f(t) = f(t)− f(0).

Lemma 2.9. [42] Let u be a function defined on J and suppose that α, β are two real
nonegative numbers. Then the following hold:

Iαq I
β
q f(t) =I

α+β
q f(t) = Iβq I

α
q f(t),

Dα
q I

α
q f(t) = f(t).

Now let us recall some fundamental facts of the notion of Kuratowski measure of
noncompactness.

Definition 2.10. ([31, 32]) Let E be a Banach space and ΩE be the bounded subsets of
E. The Kuratowski measure of noncompactness is the map µ : ΩE → [0,∞] defined by

µ(B) = inf{ϵ > 0 : B ⊆ ∪n
i=1Bi and diam(Bi) ≤ ϵ}; here B ∈ ΩE .

From this definition we can directly obtain following facts

(a) µ(B) = 0 ⇔ B is compact (B is relatively compact).

(b) µ(B) = µ(B).

(c) A ⊂ B ⇒ µ(A) ≤ µ(B).

(d) µ(A+B) ≤ µ(A) + µ(B)

(e) µ(cB) = |c|µ(B); c ∈ R.

(f) µ(convB) = µ(B).

Here B and convB denote the closure and the convex hull of the bounded set B, respec-
tively.

Definition 2.11. A map f : J × E → E is said to be Caratheodory if
(i) t 7→ f(t, u) is measurable for each u ∈ E,
(ii) u 7→ F (t, u) is continuous for almost all t ∈ J.
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For a given set V of functions v : J → E, let us denote by

V (t) = {v(t) : v ∈ V }, t ∈ J,

and

V (J) = {v(t) : v ∈ V, t ∈ J}.

Let us now present the fundamental tools on which the proofs of our main results are
based ([39]).

Theorem 2.12. (Mönch’s fixed point theorem) Let D be a bounded, closed and convex
subset of a Banach space such that 0 ∈ D and let N be a continuous mapping of D into
itself. If the implication V = convN(V ) or V = N(V ) ∪ 0 ⇒ µ(V ) = 0
holds for every subset V of D, then N has a fixed point.

Lemma 2.13. Let D be a bounded, closed and convex subset of the Banach space C(J,E),
G a continuous function on J × J and f a function from J ×E −→ E which satisfies the
Caratheodory conditions and suppose there exists p ∈ L1(J,R+) such that, for each t ∈ J
and each bounded set B ⊂ E, we have

limh→0+ µ(f(Jt,h ×B)) ≤ p(t)µ(B); here Jt,h = [t− h, t] ∩ J.
If V is an equicontinuous subset of D, then

µ

({∫
J

G(s, t)f(s, y(s))ds : y ∈ V

})
≤

∫
J

∥G(t, s)∥p(s)µ(V (s))ds.

3. Main Results

For the existence of solutions for the problem (1.1), the following definition and Lemma
will be needed.

Definition 3.1. A function x ∈ C(J,E) is said to be a solution of the problem (1.1) if
x satisfies the equation Dβ

q (D
α
q + λ)x(t) = f(t, x(t)) on J and the conditions x(0) = γ1,

x(1) = γ2.

Lemma 3.2. Let h : J → E be a continuous function. A function x is a solution of the
fractional integral equation

x(t) = Iα+β
q h(t)− λIαq x(t) + tα

{
γ2 − γ1 − Iα+β

q h(1) + λIαq x(1)
}
+ γ1, (3.1)

if and only if x is a solution of the fractional boundary-value problem

Dβ
q (D

α
q + λ)x(t) = h(t), t ∈ J, (3.2)

x(0) = γ1, x(1) = γ2. (3.3)

Proof. Assume that x satisfies (3.2). Then by applying Lemmas 2.6, 2.8 and 2.9, we can
transform the problem (3.2)-(3.3) to an equivalent integral equation

x(t) = Iα+β
q h(t)− λIαq x(t) + c0

tα

Γq(α+ 1)
+ c1. (3.4)
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Applying the boundary conditions (3.3), we get

x(0) = c1,

x(1) = Iα+β
q h(1)− λIαq x(1) +

c0
Γq(α+ 1)

+ c1.

So, we have

c1 = γ1,

Iα+β
q h(1)− λIαq x(1) +

c0
Γq(α+ 1)

+ γ1 = γ2.

Consequently

c1 = γ1,

c0 = Γq(α+ 1)
{
γ2 − γ1 − Iα+β

q h(1) + λIαq x(1)
}
.

Finally, we obtain

x(t) = Iα+β
q h(t)− λIαq x(t) + tα

{
γ2 − γ1 − Iα+β

q h(1) + λIαq x(1)
}
+ γ1.

Which completes the proof.

In the following, we prove existence results, for the boundary value problem (1.1) by
using Mönch fixed point theorem, under the following hypotheses.
(H1) f : J × E → E satisfies the Caratheodory conditions.
(H2) There exists P ∈ L1(J,R+) ∩ C(J,R+), such that,

∥f(t, x)∥ ≤ P (t)∥x∥, for t ∈ J and each x ∈ E.

(H3) For each t ∈ J and each bounded set B ⊂ E, we have

lim
h→0+

µ(f(Jt,h ×B)) ≤ P (t)µ(B); here Jt,h = [t− h, t] ∩ J.

Theorem 3.3. Assume that conditions (H1)-(H3) hold. Let P ∗ = supt∈J P (t).
If

P ∗M +N < 1, (3.5)

with

M :=

{
2

Γq(α+ β + 1)

}
and N := |λ|

{
2

Γq(α+ 1)

}
.

Then the problem (1.1) has at least one solution on J.

Proof. Using Lemma 3.2, it is sufficient to prove existence of solutions to the integral
equation (3.1). For this, we rewrite the problem (1.1) as a fixed point problem. Indeed
let us consider the operator F : C(J,E) → C(J,E) defined by

Fx(t) = Iα+β
q h(t)− λIαq x(t) + tα

{
γ2 − γ1 − Iα+β

q h(1) + λIαq x(1)
}
+ γ1. (3.6)

It is obvious that fixed points of the operator F are solutions of the problem (1.1).
Let

R ≥ γ1
1− (p∗M +N)

, (3.7)

and consider

DR = {x ∈ C(J,E) : ∥x∥ ≤ R}.
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We can check, without difficulty, that the subset DR is closed, bounded and convex. We
shall show that F satisfies the assumptions of Mönch’s fixed point theorem. The proof
will be given in three steps.

Step 1: First we show that F is continuous:
Let xn be a sequence such that xn → x in C(J,E). Then for each t ∈ J ,

∥(Fxn)(t)− (Fx)(t)∥ ≤ Iα+β
q ∥f(s, xn(s))− f(s, x(s))∥(t) + |λ|Iαq ∥xn(s)− x(s)∥(t)

+ tαIα+β
q ∥f(s, xn(s))− f(s, x(s))∥(1) + tα|λ|Iαq ∥xn(s)− x(s)∥(1),

≤
{
Iα+β
q (1)(t) + tαIα+β

q (1)(1)
}
∥f(s, xn(s))− f(s, x(s))∥

+
{
|λ|Iαq (1)(t) + tα|λ|Iαq (1)(1)

}
∥xn(s)− x(s)∥.

Thanks to assumption (H1), the sequence f(t, xn(t)) converges uniformly to f(t, x(t)).
Lebesgue dominated convergence theorem guarantees; that

∥F(xn)− F(x)∥∞ → 0 as n→ ∞.

Then F : DR → DR is sequentially continuous.

Step 2: Second, we show that F maps D into itself
Take x ∈ D, by (H2), we have, for each t ∈ J and assume that Fx(t) ̸= 0.

∥(Fx)(t)∥ ≤ Iα+β
q ∥f(s, x(s))∥(t)− λIαq ∥x∥(t)

+ tα
{
γ2 − γ1 − Iα+β

q ∥f(s, x(s))∥(1) + λIαq ∥x∥(1)
}
+ γ1,

≤ Iα+β
q ∥x∥P (s)(t)− λIαq ∥x∥(t)

+ tα
{
γ2 − γ1 − Iα+β

q ∥x∥P (s)(1) + λIαq ∥x∥(1)
}
+ γ1,

≤ P ∗R
{
Iα+β
q (1)(t) + tαIα+β

q (1)(1)
}

+ R
{
|λ|Iαq (1)(t) + tα|λ|Iαq (1)(1)

}
+ Tα(γ2 − γ1) + γ1,

≤ P ∗R

{
2

Γq(α+ β + 1)

}
+ |λ|R

{
2

Γq(α+ 1)

}
+ γ2,

≤ P ∗RM +RN + γ2,

≤ R.

Step 3: we show that F(DR) is equicontinuous
By Step 2, it is obvious that F(DR) ⊂ C(J,E) is bounded. For the equicontinuity of
F(DR), let t1, t2 ∈ J , t1 < t2 and x ∈ DR, so Fx(t2)− Fx(t1) ̸= 0. Then,

∥Fx(t2)− Fx(t1)∥ ≤ Iα+β
q |f(s, x(s))(t2)− f(s, x(s))(t1)|+ |λ|Iαq (|x(s)|(t2)− |x(s)|(t2))

+ (tα2 − tα2 )
{
γ2 − γ1 − Iα+β

q |f(s, x(s))|(1) + λIαq |x|(1)
}
,

≤ P ∗R|Iα+β
q (1)(t2)− Iα+β

q (1)(t1)|+R|λ|(Iαq |(1)|(t2)− Iαq |(1)|(t1))

+ (tα2 − tα1 )
{
γ2 − γ1 − Iα+β

q |f(s, x(s))|(1) + λIαq |x|(1)
}
,

≤ R(P ∗ + |λ|)
Γq(α+ 1)

{(tα2 − tα1 ) + 2(t2 − t1)
α}

+ (tα2 − tα1 )
{
γ2 − γ1 − Iα+β

q |f(s, x(s))|(1) + λIαq |x|(1)
}
.
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As t1 → t2, the right hand side of the above inequality tends to zero.
This means that F(DR) ⊂ DR.

Finally we show that the implication holds
Let V ⊂ DR such that V = conv(F(V ) ∪ {0}). Since V is bounded and equicontinuous,
and therefore the function t → v(t) = µ(V (t)) is continuous on J . By assumption (H2)
and the properties of the measure µ we have for each t ∈ J .

v(t) ≤ µ(F(V )(t) ∪ {0})) ≤ µ((FV )(t))

≤ Iα+β
q P (s)µ(V (s))(t) + |λ|Iαq µ(V (s))(t)

+ tα
{
Iα+β
q P (s)µ(V (s))(1) + |λ|Iαq µ(V (s))(1)

}
,

≤ Iα+β
q P (s)µ(V (s))(t) + |λ|Iαq µ(V (s))(t)

+ tα
{
Iα+β
q P (s)µ(V (s))(1) + |λ|Iαq µ(V (s))(1)

}
,

≤ P ∗∥v∥
{
Iα+β
q (1)(t) + tαIα+β

q (1)(1)
}

+ ∥v∥
{
|λ|Iαq (1)(t) + tα|λ|Iαq (1)(1)

}
,

≤ P ∗∥v∥
{

2

Γq(α+ β + 1)

}
+ |λ|∥v∥

{
2

Γq(α+ 1)

}
,

≤ P ∗∥v∥M + ∥v∥N.
This means that

∥v∥(1− p∗M −N) ≤ 0.

By (3.5) it follows that ∥v∥ = 0, that is v(t) = 0 for each t ∈ J and then V (t) is relatively
compact in E. In view of the Ascoli-Arzela theorem, V is relatively compact in DR.
Applying now Theorem 2.13, we conclude that F has a fixed point which is a solution of
the problem (1.1).

4. Example

In this section, we present an example to illustrate the main result.
Let E = l1 = {x = (x1, x2, ..., xn, ...) :

∑∞
n=1 |xn| <∞} with the norm

∥x∥E =

∞∑
n=1

|xn|

Consider the following nonlinear Langevin 1
4 -fractional equation:

D
1/2
1/4

(
D

1/3
1/4 −

5
27

)
x(t) = (sin t+1)e−t

24

(
x2(t)

1+|x(t)|

)
, t ∈ J = [0, 1],

x(0) = γ1 , x(1) = γ2.

(4.1)

Here

α = 1/2, β = 1/3, q = 1/4,

γ1 = 3/4, γ2 = 1/4, λ = 5/27,

with
f(t, x) = (((sin t+ 1)e−t)/24)(x2/(1 + |x|)).
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Clearly, the function f is continuous. For each x ∈ E and t ∈ [0, 1], we have

|f(t, x)| ≤ 1

12
|x|,

and

p∗ =
1

12
.

Hence, the hypothesis (H2) is satisfied with p∗ = 1
12 . We shall show that condition (3.5)

holds with J = [0, 1]. Indeed,

p∗M +N ≃ 0.6785 < 1.

Therefore, we deduce from the conclusion of Theorem (3.3) that the problem (4.1) has a
solution on [0, 1].

5. Conclusion

We have provided sufficient conditions for the existence of the solutions of a new class of
nonlinear Langevin fractional q-difference equations with Dirichlet boundary conditions in
Banach space. by using a method involving a measure of noncompactness and a fixed point
theorem of Mönch type. Though the technique applied to establish the existence results
for the problem at hand is a standard one, yet its exposition in the present framework is
new. An illustration to the present work is also given by presenting an example.
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