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The following related fixed point theorem was for two pairs of mappings on
two complete metrc spaces was proved in [3]. See also [1] and [2].

Theorem 1 Let (X, d) and (Y, ρ) be complete metric spaces. Let A,B be map-

pings of X into Y and let S, T be mappings of Y into X satisfying the inequalities

ρ(BSy,ATy′) ≤ c
f(x, x′, y, y′)

h(x, x′, y, y′)
,

d(SAx, TBx′) ≤ c
g(x, x′, y, y′)

h(x, x′, y, y′)

for all x, x′ in X and y, y′ in Y for which h(x, x′, y, y′) 6= 0, where

f(x, x′, y, y′) = max{d(x, x′)ρ(y, y′), d(x, Sy)d(x′, T y′),

d(x, Ty′)d(x′, Sy), ρ(y,Bx′)ρ(y′, Ax)},

g(x, x′, y, y′) = max{ρ(Ax, Bx′)d(Sy, Ty′), ρ(Ax, BSy)ρ(Bx′, ATy′),

ρ(Ax, ATy′)ρ(Bx′, BSy), d(Sy, TBx′)d(Ty′, SAx)},

h(x, x′, y, y′) = max{ρ(Ax, Bx′), d(SAx, TBx′), d(Sx, Ty′), ρ(BSy,ATy′)}

and 0 ≤ c < 1. If one of the mappings A,B, S and T is continuous, then SA and

and TB have a unique common fixed point z in X and BS and AT have a unique

common fixed point w in Y . Further, Az = Bz = w and Sw = Tw = z.
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We now prove a related fixed point theorem for three pairs of mappings on
three complete metric spaces.

Theorem 2 Let (X, d), (Y, ρ) and (Z, σ) be complete metric spaces. Let A,B be

mappings of X into Y, let C,D be mappings of Y into Z and let E,F be mappings

of Z into X satisfying the inequalities

d(ECAx,FDBx′) ≤ c
f1(y, y′, z.z′)

g1(x, x′)
, (1)

ρ(BECy,AFDy′) ≤ c
f2(z, z′, x, x′)

g2(y,′ )
, (2)

σ(DBEz,CAFz′) ≤ c
f3(x, x′, y, y′)

g3(z, z′)
(3)

for all x, x′ in X; y, y′ in Y and z, z′ in Z for which g1(x, x′) 6= 0; g2(y, y′) 6= 0,
g3(z, z′) 6= 0, where

f1(y, y′, z, z′) = max{ρ(y, y′)d(Ez, Fz′), σ(Cy,Dy′)ρ(BEz,AFz′),

d(ECy, FDy′)σ(DBEz,CAFz′)},

f2(z, z′, x, x′) = max{σ(z, z′)ρ(Ax,Bx′), d(Ez, Fz′)σ(CAx,DBx′),

ρ(BEz,AFz′)d(ECAx,FDx′)},

f3(x, x′, y, y′) = max{d(x, x′), σ(Cy,Dy′), ρ(Ax,Bx′), d(ECy, FDy′),

σ(CAx,DBx′)ρ(BECy,AFDy′)},

g1(x, x′) = max{d(x, x′), ρ(Ax,Bx′), σ(CAx,DBx′), d(ECAx,FDBx′)},

g2(y, y′) = max{ρ(y, y′), σ(Cy,Dy′), d(ECy, FDy′), ρ(BECy,AFDy′)},

g3(z, z′) = max{σ(z, z′), d(Ez, Fz′), ρ(BEz,AFz′), σ(DBEz,CAFz′)}

and 0 ≤ c < 1. If A and C or B and D are continuous, then ECA and FDB

have a unique common fixed point u in X, BEC and AFD have a unique common

fixed point v in Y , and DBE and CAF have a unique common fixed point w in

Z. Further, Au = Bu = v, Cv = Dv = w and Ew = Fw = u.

Proof. Let x = x0 be an arbitrary point in X. We define the sequences {xn} in
X, {yn} in Y and {zn} in Z inductively by

Ax2n−2 = y2n−1, Cy2n−1 = z2n−1, Ez2n−1 = x2n−1,

Bx2n−1 = y2n, Dy2n = z2n, F z2n = x2n

for n = 1, 2, . . . .
We will first of all suppose that for some n,

g1(x2n, x2n−1) = max{d(x2n, x2n−1), ρ(Ax2n, Bx2n−1), σ(CAx2n, DBx2n−1),

d(ECAx2n, FDBx2n−1)}

= max{d(x2n, x2n−1), ρ(y2n+1, y2n), σ(z2n+1, z2n), d(x2n+1, x2n)}

= 0.
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Then putting

x2n−1 = x2n = x2n+1 = u, y2n = y2n+1 = v, z2n = z2n+1 = w,

we see that

ECAu = FDBu = u = Ew = Fw, AFDv = v = Au = Bu,

CAFw = w = Cv = Dv,

from which it follows that

BECv = v, DBEw = w.

Similarly, g1(x2n, x2n+1) = 0 for some n implies that there exist points u in
X, v in V and w in Z such that

ECAu = FDBu =u = Ew = Fw, BECv = AFDv = v = Au = Bu

DBEw = CAFw = w = CvDv. (4)

Similarly, if one g2(y2n−1, y2n), g2(y2n+1, y2n), g3(z2n−1, z2n), g3(z2n+1, z2n)
is equal to zero for some n, then equations (4) follow.

We will therefore suppose that g1(x2n−1, x2n), g1(x2n, x2n+1), g2(y2n−1, y2n),
g2(y2n+1, y2n), g3(z2n−1, z2n) and g3(z2n+1, z2n) are all non-zero for all n.

We have

f1(y2n−1, y2n, z2n−1, z2n) = max{ρ(y2n−1, y2n)d(x2n−1, x2n),

σ(z2n−1, z2n)ρ(y2n, y2n+1), d(x2n−1, x2n)σ(z2n, z2n+1)},
(5)

f2(z2n−1, zz2n, x2n, x2n−1) = max{σ(z2n−1, z2n)ρ(y2n, y2n+1),

d(x2n−1, x2n)σ(z2n, z2n+1), ρ(y2n, y2n+1)d(x2n, x2n+1),
(6)

f3(x2n, x2n−1, y2n−1, y2n) = max{d(x2n−1, x2n), σ(z2n−1, z2n), ρ(y2n, y2n+1),

d(x2n−1, x2n), σ(z2n, z2n+1)ρ(y2n, y2n+1)},
(7)

g1(x2n, x2n−1) = max{d(x2n−1, x2n), ρ(y2n, y2n+1), σ(z2n, z2n+1),

d(x2n, x2n+1), (8)

g2(y2n−1, y2n) = max{ρ(y2n−1, y2n), σ(z2n−1, z2n), d(x2n−1, x2n),

ρ(y2n, y2n+1), (9)

g3(z2n−1, z2n) = max{σ(z2n−1, z2n), d(x2n−1, x2n), ρ(y2n, y2n+1),

σ(z2n, z2n+1). (10)

Applying inequality (1), we get

d(x2n+1, x2n) = d(ECAx2n, FDBx2n−1)

≤ c
f1(y2n−1, y2n, z2n−1, z2n)

g1(x2n, x2n−1)
(11)
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and it now follows from (5), (8) and (11) that

d(x2n, x2n+1) ≤ cmax{d(x2n−1, x2n), ρ(y2n−1, y2n), σ(z2n−1, z2n)}. (12)

Applying inequality (2), we get

ρ(y2n, y2n+) = ρ(BECy2n−1, AFDy2n)

≤ c
f2(z2n−1, z2n, x2n, x2n−1)

g2(y2n−1, y2n)
(13)

and it now follows from (6), (9) and (13) that

ρ(y2n, y2n+1) ≤ cmax{d(x2n, x2n+1), σ(z2n, z2n+1)}. (14)

Applying inequality (3), we get

σ(z2n, z2n+1) = σ(DBEz2n−1, CAFz2n)

≤ c
f3(x2n, x2n−1, y2n−1, y2n)

g3(z2n−1, z2n)
(15)

and it now follows from (7), (10) and (15) that

σ(z2n, z2n+1) ≤ cmax{d(x2n−1, x2n), σ(z2n−1, z2n)}. (16)

Using inequalities (12), (14) and (16) we now get

ρ(y2n, y2n+1) ≤ cmax{cd(x2n−1, x2n, cρ(y2n−1, y2n), cσ(z2n−1, z2n)}

≤ cmax{d(x2n−1, x2n), ρ(y2n−1, y2n), σ(z2n−1, z2n)}. (17)

On applying inequality (1) again, we get

d(x2n−1, x2n) = d(ECAx2n−2, FDBx2n−1)

≤ c
f1(y2n−1, y2n−2, z2n−1, z2n−2)

g1(x2n−2, x2n−1)

from which it follows that

d(x2n−1, x2n) ≤ cmax{d(x2n−2, x2n−1), ρ(y2n−2, y2n−1), σ(z2n−2, z2n−1)} (18)

and similarly on using inequalities (2) and (3), we get

ρ(y2n−1, y2n) ≤ cmax{d(x2n−1, x2n), σ(z2n−1, z2n)}, (19)

σ(z2n−1, z2n) ≤ cmax{d(x2n−2, x2n−1), σ(z2n−2, z2n−1)}. (20)

On using inequalities (18), (19) and (20), we get

ρ(y2n−1, y2n) ≤ cmax{d(x2n−2, x2n−1), ρ(y2n−2, y2n−1), σ(z2n−2, z2n−1)}. (21)
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It now follows from inequalities (12) and (18) that

d(xn, xn+1) ≤ cmax{d(xn−1, xn), ρ(yn−1, yn), σ(zn−1, zn)}

≤ kn−1 max{d(x1, x2), ρ(y1, y2), σ(z1, z2)}. (22)

Similarly, on using inequalities (17), (21), (16) and (20), we get

ρ(yn, yn+1) ≤ kn−1 max{d(x1, x2), ρ(y1, y2), σ(z1, z2)}, (23)

σ(zn, zn+1) ≤ kn−1 max{d(x1, x2), ρ(y1, y2), σ(z1, z2)}. (24)

Since c < 1, it follows from inequalites (22), (23) and (24) that {xn} is a
Cauchy sequence in X with a limit u, {yn} is a Cauchy sequence in Y with a limit
v and {zn} is a Cauchy sequence in Z with a limit w.

Now suppose that A and C are continuous. Then

v = lim
n→∞

y2n+1 = lim
n→∞

Ax2n = Au, w = lim
n→∞

z2n−1 = lim
n→∞

Cy2n−1 = Cv (25)

and hence

lim
n→∞

f1(v, y2n, w, z2n) = d(Ew, u)σ(DBEw, u), (26)

lim
n→∞

f2(w, z2n, u, x2n−1) = ρ(BEw, v)d(Ew, u), (27)

lim
n→∞

f3(v, y2n, w, z2n) = 0, (28)

lim
n→∞

g1(u, x2n−1) = d(Ew, u), (29)

lim
n→∞

g2(v, vn) = max{d(Ew, u)ρ(BEw, v)}, (30)

lim
n→∞

g3(w, z2n) = max{d(Ew, u), ρ(BEw,w), σ(DBEw,w). (31)

If limn→∞ g1(u, x2n−1) = 0, then Ew = u and ECAu = u.

If it were possible that

lim
n→∞

g1(u, x2n−1) = d(Ew, u) 6= 0,

then on applying inequality (1) and equations (25), (26) and (29), we get

d(Ew, u) = lim
n→∞

d(ECAu,FDBx2n−1) ≤ cσ(DBEw,w). (32)

On using inequality (3) and equations (28) and (31), we get

σ(DBEw,w) = lim
n→∞

σ(DBEw,CAFz2n) = 0

which implies that DBEw = w and hence from (32) we must have Ew = u.

On using inequality (2) and equations (25), (27) and (30), we have

ρ(BEw, v) = lim
n→∞

ρ(BECv,AFDy2n) ≤ cd(Ew, u) = 0
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which implies that

Bu = v, Dv = w, ECAu = u, BECv = v.

Now suppose that Fw 6= u. On applying inequality (1), we have

d(u, Fw) = lim
n→∞

d(ECAx2n, FDBu)

≤ c
limn→∞ f1(y2n−1, v, z2n−1, w)

limn→∞ g1(x2n, u)

= cσ(w,CAFw). (33)

Applying inequality (3), we now have

σ(w,CAFw) = lim
n→∞

σ(DBEz2n−1, CAFw)

≤ c
limn→∞ f3(x2n, u, y2n−1, v)

limn→∞ g3(z2n−1, w)

= 0.

This implies that w = CAFw and hence from (33), we must have Fw = u.

Equations (4) follows.
Equations (4) follow similarly if B and D are continuous.
To prove the uniqueness, let ECA and FDB have a second distinct fixed point

u′. Then, using inequalities (1), (2) and (3) respectively, we have

d(u, u′) = d(ECAu,FDBu′) ≤ c
f1(Au,Bu′, CAu,DBu)

g1(u, u′)

which implies that

d(u, u′) ≤ cmax{ρ(v,Au′), ρ(v,Bu′), σ(w,CAu′)}, (34)

ρ(v,Au′) = ρ(BECAu,AFDBu′) ≤ c
f2(CAu,DBu′, u, u′)

g2(Au,Bu′)

which implies that

ρ(v,Au′) ≤ cmax{d(u, u′), ρ(v,Bu′)} (35)

and

σ(w,CAu′) = σ(DBECAu,CAFDBu′) ≤ c
f3(u, u′, Au,Bu′)

g3(CAu,DBu′)

which implies that

σ(w,CAu′) ≤ cmax{d(u, u′), ρ(v,Au′), ρ(v,Bu′)}. (36)
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On applying inequality (2) again, we have

ρ(Bu′, v) = ρ(BECAu′, AFDBu) ≤ c
f2(CAu′, DBu, u′, u)

g2(Au,Bu′)

which implies that

ρ(v,Bu′) ≤ cmax{d(u, u′), ρ(v,Au′)}. (37)

It now follows from (34) to (37) that

d(u, u′) ≤ cmax{ρ(v,Au′), ρ(v,Bu′)} (38)

and then (35), (37) and (38) imply that u = u′, proving the uniqueness of u.
We can prove similarly that v is the unique common fixed point of BEC and

AFD and w is the unique common fixed point of DBE and CAF . �
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