www.math.science.cmu.ac.th/thaijournal

A Related Fixed Point Theorem for Three Pairs of Mappings on Three Metric Spaces

R. K. Namdeo and B. Fisher

Abstract

A new related fixed point theorem for three pairs of mappings on three complete metric spaces is obtained.

Keywords : Complete metric space; Common fixed point; Related fixed point mappings.
2000 Mathematics Subject Classification : 54 H 25.
The following related fixed point theorem was for two pairs of mappings on two complete metrc spaces was proved in [3]. See also [1] and [2].

Theorem 1 Let (X, d) and (Y, ρ) be complete metric spaces. Let A, B be mappings of X into Y and let S, T be mappings of Y into X satisfying the inequalities

$$
\begin{aligned}
\rho\left(B S y, A T y^{\prime}\right) & \leq c \frac{f\left(x, x^{\prime}, y, y^{\prime}\right)}{h\left(x, x^{\prime}, y, y^{\prime}\right)}, \\
d\left(S A x, T B x^{\prime}\right) & \leq c \frac{g\left(x, x^{\prime}, y, y^{\prime}\right)}{h\left(x, x^{\prime}, y, y^{\prime}\right)}
\end{aligned}
$$

for all x, x^{\prime} in X and y, y^{\prime} in Y for which $h\left(x, x^{\prime}, y, y^{\prime}\right) \neq 0$, where

$$
\begin{aligned}
f\left(x, x^{\prime}, y, y^{\prime}\right)= & \max \left\{d\left(x, x^{\prime}\right) \rho\left(y, y^{\prime}\right), d(x, S y) d\left(x^{\prime}, T y^{\prime}\right),\right. \\
& \left.d\left(x, T y^{\prime}\right) d\left(x^{\prime}, S y\right), \rho\left(y, B x^{\prime}\right) \rho\left(y^{\prime}, A x\right)\right\}, \\
g\left(x, x^{\prime}, y, y^{\prime}\right)= & \max \left\{\rho\left(A x, B x^{\prime}\right) d\left(S y, T y^{\prime}\right), \rho(A x, B S y) \rho\left(B x^{\prime}, A T y^{\prime}\right),\right. \\
& \left.\rho\left(A x, A T y^{\prime}\right) \rho\left(B x^{\prime}, B S y\right), d\left(S y, T B x^{\prime}\right) d\left(T y^{\prime}, S A x\right)\right\}, \\
h\left(x, x^{\prime}, y, y^{\prime}\right)= & \max \left\{\rho\left(A x, B x^{\prime}\right), d\left(S A x, T B x^{\prime}\right), d\left(S x, T y^{\prime}\right), \rho\left(B S y, A T y^{\prime}\right)\right\}
\end{aligned}
$$

and $0 \leq c<1$. If one of the mappings A, B, S and T is continuous, then $S A$ and and $T B$ have a unique common fixed point z in X and $B S$ and $A T$ have a unique common fixed point w in Y. Further, $A z=B z=w$ and $S w=T w=z$.

We now prove a related fixed point theorem for three pairs of mappings on three complete metric spaces.
Theorem 2 Let $(X, d),(Y, \rho)$ and (Z, σ) be complete metric spaces. Let A, B be mappings of X into Y, let C, D be mappings of Y into Z and let E, F be mappings of Z into X satisfying the inequalities

$$
\begin{align*}
d\left(E C A x, F D B x^{\prime}\right) & \leq c \frac{f_{1}\left(y, y^{\prime}, z . z^{\prime}\right)}{g_{1}\left(x, x^{\prime}\right)} \tag{1}\\
\rho\left(B E C y, A F D y^{\prime}\right) & \leq c \frac{f_{2}\left(z, z^{\prime}, x, x^{\prime}\right)}{g_{2}(y,)} \tag{2}\\
\sigma\left(D B E z, C A F z^{\prime}\right) & \leq c \frac{f_{3}\left(x, x^{\prime}, y, y^{\prime}\right)}{g_{3}\left(z, z^{\prime}\right)} \tag{3}
\end{align*}
$$

for all x, x^{\prime} in $X ; y, y^{\prime}$ in Y and z, z^{\prime} in Z for which $g_{1}\left(x, x^{\prime}\right) \neq 0 ; g_{2}\left(y, y^{\prime}\right) \neq 0$, $g_{3}\left(z, z^{\prime}\right) \neq 0$, where

$$
\begin{aligned}
& f_{1}\left(y, y^{\prime}, z, z^{\prime}\right)= \max \left\{\rho\left(y, y^{\prime}\right) d\left(E z, F z^{\prime}\right), \sigma\left(C y, D y^{\prime}\right) \rho\left(B E z, A F z^{\prime}\right)\right. \\
&\left.d\left(E C y, F D y^{\prime}\right) \sigma\left(D B E z, C A F z^{\prime}\right)\right\} \\
& f_{2}\left(z, z^{\prime}, x, x^{\prime}\right)= \max \left\{\sigma\left(z, z^{\prime}\right) \rho\left(A x, B x^{\prime}\right), d\left(E z, F z^{\prime}\right) \sigma\left(C A x, D B x^{\prime}\right)\right. \\
&\left.\rho\left(B E z, A F z^{\prime}\right) d\left(E C A x, F D x^{\prime}\right)\right\} \\
& f_{3}\left(x, x^{\prime}, y, y^{\prime}\right)=\max \left\{d\left(x, x^{\prime}\right), \sigma\left(C y, D y^{\prime}\right), \rho\left(A x, B x^{\prime}\right), d\left(E C y, F D y^{\prime}\right)\right. \\
&\left.\sigma\left(C A x, D B x^{\prime}\right) \rho\left(B E C y, A F D y^{\prime}\right)\right\} \\
& g_{1}\left(x, x^{\prime}\right)=\max \left\{d\left(x, x^{\prime}\right), \rho\left(A x, B x^{\prime}\right), \sigma\left(C A x, D B x^{\prime}\right), d\left(E C A x, F D B x^{\prime}\right)\right\}, \\
& g_{2}\left(y, y^{\prime}\right)=\max \left\{\rho\left(y, y^{\prime}\right), \sigma\left(C y, D y^{\prime}\right), d\left(E C y, F D y^{\prime}\right), \rho\left(B E C y, A F D y^{\prime}\right)\right\}, \\
& g_{3}\left(z, z^{\prime}\right)=\max \left\{\sigma\left(z, z^{\prime}\right), d\left(E z, F z^{\prime}\right), \rho\left(B E z, A F z^{\prime}\right), \sigma\left(D B E z, C A F z^{\prime}\right)\right\}
\end{aligned}
$$

and $0 \leq c<1$. If A and C or B and D are continuous, then $E C A$ and $F D B$ have a unique common fixed point u in $X, B E C$ and $A F D$ have a unique common fixed point v in Y, and $D B E$ and $C A F$ have a unique common fixed point w in Z. Further, $A u=B u=v, C v=D v=w$ and $E w=F w=u$.

Proof. Let $x=x_{0}$ be an arbitrary point in X. We define the sequences $\left\{x_{n}\right\}$ in $X,\left\{y_{n}\right\}$ in Y and $\left\{z_{n}\right\}$ in Z inductively by

$$
\begin{aligned}
& A x_{2 n-2}=y_{2 n-1}, C y_{2 n-1}=z_{2 n-1}, E z_{2 n-1}=x_{2 n-1} \\
& B x_{2 n-1}=y_{2 n}, D y_{2 n}=z_{2 n}, F z_{2 n}=x_{2 n}
\end{aligned}
$$

for $n=1,2, \ldots$.
We will first of all suppose that for some n,

$$
\begin{aligned}
g_{1}\left(x_{2 n}, x_{2 n-1}\right)= & \max \left\{d\left(x_{2 n}, x_{2 n-1}\right), \rho\left(A x_{2 n}, B x_{2 n-1}\right), \sigma\left(C A x_{2 n}, D B x_{2 n-1}\right)\right. \\
& \left.d\left(E C A x_{2 n}, F D B x_{2 n-1}\right)\right\} \\
= & \max \left\{d\left(x_{2 n}, x_{2 n-1}\right), \rho\left(y_{2 n+1}, y_{2 n}\right), \sigma\left(z_{2 n+1}, z_{2 n}\right), d\left(x_{2 n+1}, x_{2 n}\right)\right\} \\
= & 0
\end{aligned}
$$

Then putting

$$
x_{2 n-1}=x_{2 n}=x_{2 n+1}=u, \quad y_{2 n}=y_{2 n+1}=v, \quad z_{2 n}=z_{2 n+1}=w
$$

we see that

$$
\begin{gathered}
E C A u=F D B u=u=E w=F w, \quad A F D v=v=A u=B u \\
C A F w=w=C v=D v
\end{gathered}
$$

from which it follows that

$$
B E C v=v, \quad D B E w=w
$$

Similarly, $g_{1}\left(x_{2 n}, x_{2 n+1}\right)=0$ for some n implies that there exist points u in X, v in V and w in Z such that

$$
\begin{gather*}
E C A u=F D B u=u=E w=F w, \quad B E C v=A F D v=v=A u=B u \\
D B E w=C A F w=w=C v D v \tag{4}
\end{gather*}
$$

Similarly, if one $g_{2}\left(y_{2 n-1}, y_{2 n}\right), g_{2}\left(y_{2 n+1}, y_{2 n}\right), g_{3}\left(z_{2 n-1}, z_{2 n}\right), g_{3}\left(z_{2 n+1}, z_{2 n}\right)$ is equal to zero for some n, then equations (4) follow.

We will therefore suppose that $g_{1}\left(x_{2 n-1}, x_{2 n}\right), g_{1}\left(x_{2 n}, x_{2 n+1}\right), g_{2}\left(y_{2 n-1}, y_{2 n}\right)$, $g_{2}\left(y_{2 n+1}, y_{2 n}\right), g_{3}\left(z_{2 n-1}, z_{2 n}\right)$ and $g_{3}\left(z_{2 n+1}, z_{2 n}\right)$ are all non-zero for all n.

We have

$$
\begin{align*}
f_{1}\left(y_{2 n-1}, y_{2 n}, z_{2 n-1}, z_{2 n}\right) & =\max \left\{\rho\left(y_{2 n-1}, y_{2 n}\right) d\left(x_{2 n-1}, x_{2 n}\right)\right. \\
& \left.\sigma\left(z_{2 n-1}, z_{2 n}\right) \rho\left(y_{2 n}, y_{2 n+1}\right), d\left(x_{2 n-1}, x_{2 n}\right) \sigma\left(z_{2 n}, z_{2 n+1}\right)\right\}, \tag{5}
\end{align*}
$$

$f_{2}\left(z_{2 n-1}, z z_{2 n}, x_{2 n}, x_{2 n-1}\right)=\max \left\{\sigma\left(z_{2 n-1}, z_{2 n}\right) \rho\left(y_{2 n}, y_{2 n+1}\right)\right.$,

$$
\begin{equation*}
d\left(x_{2 n-1}, x_{2 n}\right) \sigma\left(z_{2 n}, z_{2 n+1}\right), \rho\left(y_{2 n}, y_{2 n+1}\right) d\left(x_{2 n}, x_{2 n+1}\right), \tag{6}
\end{equation*}
$$

$f_{3}\left(x_{2 n}, x_{2 n-1}, y_{2 n-1}, y_{2 n}\right)=\max \left\{d\left(x_{2 n-1}, x_{2 n}\right), \sigma\left(z_{2 n-1}, z_{2 n}\right), \rho\left(y_{2 n}, y_{2 n+1}\right)\right.$, $\left.d\left(x_{2 n-1}, x_{2 n}\right), \sigma\left(z_{2 n}, z_{2 n+1}\right) \rho\left(y_{2 n}, y_{2 n+1}\right)\right\}$,

$$
\begin{gather*}
g_{1}\left(x_{2 n}, x_{2 n-1}\right)=\max \left\{d\left(x_{2 n-1}, x_{2 n}\right), \rho\left(y_{2 n}, y_{2 n+1}\right), \sigma\left(z_{2 n}, z_{2 n+1}\right),\right. \tag{7}\\
 \tag{8}\\
g_{2}\left(y_{2 n-1}, y_{2 n}\right)=\max \left\{\rho\left(y_{2 n}, x_{2 n+1}\right), y_{2 n}\right), \sigma\left(z_{2 n-1}, z_{2 n}\right), d\left(x_{2 n-1}, x_{2 n}\right), \\
\rho\left(y_{2 n}, y_{2 n+1}\right), \tag{9}\\
g_{3}\left(z_{2 n-1}, z_{2 n}\right)=\max \left\{\sigma\left(z_{2 n-1}, z_{2 n}\right), d\left(x_{2 n-1}, x_{2 n}\right), \rho\left(y_{2 n}, y_{2 n+1}\right),\right. \\
\sigma\left(z_{2 n}, z_{2 n+1}\right) . \tag{10}
\end{gather*}
$$

Applying inequality (1), we get

$$
\begin{align*}
d\left(x_{2 n+1}, x_{2 n}\right) & =d\left(E C A x_{2 n}, F D B x_{2 n-1}\right) \\
& \leq c \frac{f_{1}\left(y_{2 n-1}, y_{2 n}, z_{2 n-1}, z_{2 n}\right)}{g_{1}\left(x_{2 n}, x_{2 n-1}\right)} \tag{11}
\end{align*}
$$

and it now follows from (5), (8) and (11) that

$$
\begin{equation*}
d\left(x_{2 n}, x_{2 n+1}\right) \leq c \max \left\{d\left(x_{2 n-1}, x_{2 n}\right), \rho\left(y_{2 n-1}, y_{2 n}\right), \sigma\left(z_{2 n-1}, z_{2 n}\right)\right\} \tag{12}
\end{equation*}
$$

Applying inequality (2), we get

$$
\begin{align*}
\rho\left(y_{2 n}, y_{2 n+}\right) & =\rho\left(B E C y_{2 n-1}, A F D y_{2 n}\right) \\
& \leq c \frac{f_{2}\left(z_{2 n-1}, z_{2 n}, x_{2 n}, x_{2 n-1}\right)}{g_{2}\left(y_{2 n-1}, y_{2 n}\right)} \tag{13}
\end{align*}
$$

and it now follows from (6), (9) and (13) that

$$
\begin{equation*}
\rho\left(y_{2 n}, y_{2 n+1}\right) \leq c \max \left\{d\left(x_{2 n}, x_{2 n+1}\right), \sigma\left(z_{2 n}, z_{2 n+1}\right)\right\} \tag{14}
\end{equation*}
$$

Applying inequality (3), we get

$$
\begin{align*}
\sigma\left(z_{2 n}, z_{2 n+1}\right) & =\sigma\left(D B E z_{2 n-1}, C A F z_{2 n}\right) \\
& \leq c \frac{f_{3}\left(x_{2 n}, x_{2 n-1}, y_{2 n-1}, y_{2 n}\right)}{g_{3}\left(z_{2 n-1}, z_{2 n}\right)} \tag{15}
\end{align*}
$$

and it now follows from (7), (10) and (15) that

$$
\begin{equation*}
\sigma\left(z_{2 n}, z_{2 n+1}\right) \leq c \max \left\{d\left(x_{2 n-1}, x_{2 n}\right), \sigma\left(z_{2 n-1}, z_{2 n}\right)\right\} \tag{16}
\end{equation*}
$$

Using inequalities (12), (14) and (16) we now get

$$
\begin{align*}
\rho\left(y_{2 n}, y_{2 n+1}\right) & \leq c \max \left\{c d\left(x_{2 n-1}, x_{2 n}, c \rho\left(y_{2 n-1}, y_{2 n}\right), c \sigma\left(z_{2 n-1}, z_{2 n}\right)\right\}\right. \\
& \leq c \max \left\{d\left(x_{2 n-1}, x_{2 n}\right), \rho\left(y_{2 n-1}, y_{2 n}\right), \sigma\left(z_{2 n-1}, z_{2 n}\right)\right\} \tag{17}
\end{align*}
$$

On applying inequality (1) again, we get

$$
\begin{aligned}
d\left(x_{2 n-1}, x_{2 n}\right) & =d\left(E C A x_{2 n-2}, F D B x_{2 n-1}\right) \\
& \leq c \frac{f_{1}\left(y_{2 n-1}, y_{2 n-2}, z_{2 n-1}, z_{2 n-2}\right)}{g_{1}\left(x_{2 n-2}, x_{2 n-1}\right)}
\end{aligned}
$$

from which it follows that

$$
\begin{equation*}
d\left(x_{2 n-1}, x_{2 n}\right) \leq c \max \left\{d\left(x_{2 n-2}, x_{2 n-1}\right), \rho\left(y_{2 n-2}, y_{2 n-1}\right), \sigma\left(z_{2 n-2}, z_{2 n-1}\right)\right\} \tag{18}
\end{equation*}
$$

and similarly on using inequalities (2) and (3), we get

$$
\begin{align*}
& \rho\left(y_{2 n-1}, y_{2 n}\right) \leq c \max \left\{d\left(x_{2 n-1}, x_{2 n}\right), \sigma\left(z_{2 n-1}, z_{2 n}\right)\right\} \tag{19}\\
& \sigma\left(z_{2 n-1}, z_{2 n}\right) \leq c \max \left\{d\left(x_{2 n-2}, x_{2 n-1}\right), \sigma\left(z_{2 n-2}, z_{2 n-1}\right)\right\} \tag{20}
\end{align*}
$$

On using inequalities (18), (19) and (20), we get

$$
\begin{equation*}
\rho\left(y_{2 n-1}, y_{2 n}\right) \leq c \max \left\{d\left(x_{2 n-2}, x_{2 n-1}\right), \rho\left(y_{2 n-2}, y_{2 n-1}\right), \sigma\left(z_{2 n-2}, z_{2 n-1}\right)\right\} \tag{21}
\end{equation*}
$$

It now follows from inequalities (12) and (18) that

$$
\begin{align*}
d\left(x_{n}, x_{n+1}\right) & \leq c \max \left\{d\left(x_{n-1}, x_{n}\right), \rho\left(y_{n-1}, y_{n}\right), \sigma\left(z_{n-1}, z_{n}\right)\right\} \\
& \leq k^{n-1} \max \left\{d\left(x_{1}, x_{2}\right), \rho\left(y_{1}, y_{2}\right), \sigma\left(z_{1}, z_{2}\right)\right\} \tag{22}
\end{align*}
$$

Similarly, on using inequalities (17), (21), (16) and (20), we get

$$
\begin{align*}
& \rho\left(y_{n}, y_{n+1}\right) \leq k^{n-1} \max \left\{d\left(x_{1}, x_{2}\right), \rho\left(y_{1}, y_{2}\right), \sigma\left(z_{1}, z_{2}\right)\right\} \tag{23}\\
& \sigma\left(z_{n}, z_{n+1}\right) \leq k^{n-1} \max \left\{d\left(x_{1}, x_{2}\right), \rho\left(y_{1}, y_{2}\right), \sigma\left(z_{1}, z_{2}\right)\right\} \tag{24}
\end{align*}
$$

Since $c<1$, it follows from inequalites (22), (23) and (24) that $\left\{x_{n}\right\}$ is a Cauchy sequence in X with a limit $u,\left\{y_{n}\right\}$ is a Cauchy sequence in Y with a limit v and $\left\{z_{n}\right\}$ is a Cauchy sequence in Z with a limit w.

Now suppose that A and C are continuous. Then

$$
\begin{equation*}
v=\lim _{n \rightarrow \infty} y_{2 n+1}=\lim _{n \rightarrow \infty} A x_{2 n}=A u, \quad w=\lim _{n \rightarrow \infty} z_{2 n-1}=\lim _{n \rightarrow \infty} C y_{2 n-1}=C v \tag{25}
\end{equation*}
$$

and hence

$$
\begin{align*}
\lim _{n \rightarrow \infty} f_{1}\left(v, y_{2 n}, w, z_{2 n}\right) & =d(E w, u) \sigma(D B E w, u) \tag{26}\\
\lim _{n \rightarrow \infty} f_{2}\left(w, z_{2 n}, u, x_{2 n-1}\right) & =\rho(B E w, v) d(E w, u) \tag{27}\\
\lim _{n \rightarrow \infty} f_{3}\left(v, y_{2 n}, w, z_{2 n}\right) & =0 \tag{28}\\
\lim _{n \rightarrow \infty} g_{1}\left(u, x_{2 n-1}\right) & =d(E w, u) \tag{29}\\
\lim _{n \rightarrow \infty} g_{2}\left(v, v_{n}\right) & =\max \{d(E w, u) \rho(B E w, v)\} \tag{30}\\
\lim _{n \rightarrow \infty} g_{3}\left(w, z_{2 n}\right) & =\max \{d(E w, u), \rho(B E w, w), \sigma(D B E w, w) \tag{31}
\end{align*}
$$

If $\lim _{n \rightarrow \infty} g_{1}\left(u, x_{2 n-1}\right)=0$, then $E w=u$ and $E C A u=u$.
If it were possible that

$$
\lim _{n \rightarrow \infty} g_{1}\left(u, x_{2 n-1}\right)=d(E w, u) \neq 0
$$

then on applying inequality (1) and equations (25), (26) and (29), we get

$$
\begin{equation*}
d(E w, u)=\lim _{n \rightarrow \infty} d\left(E C A u, F D B x_{2 n-1}\right) \leq c \sigma(D B E w, w) \tag{32}
\end{equation*}
$$

On using inequality (3) and equations (28) and (31), we get

$$
\sigma(D B E w, w)=\lim _{n \rightarrow \infty} \sigma\left(D B E w, C A F z_{2 n}\right)=0
$$

which implies that $D B E w=w$ and hence from (32) we must have $E w=u$.
On using inequality (2) and equations (25), (27) and (30), we have

$$
\rho(B E w, v)=\lim _{n \rightarrow \infty} \rho\left(B E C v, A F D y_{2 n}\right) \leq c d(E w, u)=0
$$

which implies that

$$
B u=v, \quad D v=w, \quad E C A u=u, \quad B E C v=v
$$

Now suppose that $F w \neq u$. On applying inequality (1), we have

$$
\begin{align*}
d(u, F w) & =\lim _{n \rightarrow \infty} d\left(E C A x_{2 n}, F D B u\right) \\
& \leq c \frac{\lim _{n \rightarrow \infty} f_{1}\left(y_{2 n-1}, v, z_{2 n-1}, w\right)}{\lim _{n \rightarrow \infty} g_{1}\left(x_{2 n}, u\right)} \\
& =c \sigma(w, C A F w) \tag{33}
\end{align*}
$$

Applying inequality (3), we now have

$$
\begin{aligned}
\sigma(w, C A F w) & =\lim _{n \rightarrow \infty} \sigma\left(D B E z_{2 n-1}, C A F w\right) \\
& \leq c \frac{\lim _{n \rightarrow \infty} f_{3}\left(x_{2 n}, u, y_{2 n-1}, v\right)}{\lim _{n \rightarrow \infty} g_{3}\left(z_{2 n-1}, w\right)} \\
& =0
\end{aligned}
$$

This implies that $w=C A F w$ and hence from (33), we must have $F w=u$. Equations (4) follows.

Equations (4) follow similarly if B and D are continuous.
To prove the uniqueness, let $E C A$ and $F D B$ have a second distinct fixed point u^{\prime}. Then, using inequalities (1), (2) and (3) respectively, we have

$$
d\left(u, u^{\prime}\right)=d\left(E C A u, F D B u^{\prime}\right) \leq c \frac{f_{1}\left(A u, B u^{\prime}, C A u, D B u\right)}{g_{1}\left(u, u^{\prime}\right)}
$$

which implies that

$$
\begin{gather*}
d\left(u, u^{\prime}\right) \leq c \max \left\{\rho\left(v, A u^{\prime}\right), \rho\left(v, B u^{\prime}\right), \sigma\left(w, C A u^{\prime}\right)\right\} \tag{34}\\
\rho\left(v, A u^{\prime}\right)=\rho\left(B E C A u, A F D B u^{\prime}\right) \leq c \frac{f_{2}\left(C A u, D B u^{\prime}, u, u^{\prime}\right)}{g_{2}\left(A u, B u^{\prime}\right)}
\end{gather*}
$$

which implies that

$$
\begin{equation*}
\rho\left(v, A u^{\prime}\right) \leq c \max \left\{d\left(u, u^{\prime}\right), \rho\left(v, B u^{\prime}\right)\right\} \tag{35}
\end{equation*}
$$

and

$$
\sigma\left(w, C A u^{\prime}\right)=\sigma\left(D B E C A u, C A F D B u^{\prime}\right) \leq c \frac{f_{3}\left(u, u^{\prime}, A u, B u^{\prime}\right)}{g_{3}\left(C A u, D B u^{\prime}\right)}
$$

which implies that

$$
\begin{equation*}
\sigma\left(w, C A u^{\prime}\right) \leq c \max \left\{d\left(u, u^{\prime}\right), \rho\left(v, A u^{\prime}\right), \rho\left(v, B u^{\prime}\right)\right\} . \tag{36}
\end{equation*}
$$

On applying inequality (2) again, we have

$$
\rho\left(B u^{\prime}, v\right)=\rho\left(B E C A u^{\prime}, A F D B u\right) \leq c \frac{f_{2}\left(C A u^{\prime}, D B u, u^{\prime}, u\right)}{g_{2}\left(A u, B u^{\prime}\right)}
$$

which implies that

$$
\begin{equation*}
\rho\left(v, B u^{\prime}\right) \leq c \max \left\{d\left(u, u^{\prime}\right), \rho\left(v, A u^{\prime}\right)\right\} \tag{37}
\end{equation*}
$$

It now follows from (34) to (37) that

$$
\begin{equation*}
d\left(u, u^{\prime}\right) \leq c \max \left\{\rho\left(v, A u^{\prime}\right), \rho\left(v, B u^{\prime}\right)\right\} \tag{38}
\end{equation*}
$$

and then (35), (37) and (38) imply that $u=u^{\prime}$, proving the uniqueness of u.
We can prove similarly that v is the unique common fixed point of $B E C$ and $A F D$ and w is the unique common fixed point of $D B E$ and $C A F$.

References

[1] B. Fisher and P. P. Murthy, Related fixed point theorems for two pairs of mappings on two metric spaces, Kyungpook Math. J., 37(1997), 343-347.
[2] R. K. Namdeo, S. Jain and B. Fisher, A related fixed point theorem for two pairs of mappings on two complete metric spaces, Hacettepe J. Math. Stat., 32(2003), 7-11.
[3] R. K. Namdeo and B. Fisher, A related fixed point theorem for two pairs of mappings on two complete metric spaces, Nonlinear Analysis Forum, 8(1)(2003), 23-27.
(Received 25 May 2005)

R. K. Namdeo
Dr. H.S. Gour University,
Sagar M.P. 470003, India.
e-mail: rkn_math@yahoo.com
Brian Fisher
Department Of Mathematics, University of Leicester,
Leicester, LE1 7RH, England.
email:fbr@le.ac.uk

