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The following related fixed point theorem was for two pairs of mappings on
two complete metrc spaces was proved in [3]. See also [1] and [2].

Theorem 1 Let (X,d) and (Y, p) be complete metric spaces. Let A, B be map-
pings of X into Y and let S, T be mappings of Y into X satisfying the inequalities

/ /
p(BSy,ATy') < ¢ 7f(x GREALS ),
h(z,2",y,y')

!

d(SAz, TBs') < ¢ M
h(z,z',y,y')

for all z,2’ in X and y,y' in'Y for which h(z,z’,y,y’") # 0, where

f(‘r>xl7y7y/) = max{d( ) ( ) (33 Sy)d(m/,Ty’),
d(z,Ty")d(z", Sy), ply, Bx')p(y’, Az)},
9(z,2',y,y") = max{p(Az, Bx')d(Sy, Ty'), p(Az, BSy)p(Bz', ATYy'),
p(Azx, ATy ) p(Bz', BSy),d(Sy, TBz")d(Ty', SAz)},
h(z,z',y,y’) = max{p(Ax, Bz'),d(S Az, TBx'),d(Sz,Ty"), p(BSy, ATy")}
and 0 < c < 1. If one of the mappings A, B, S and T is continuous, then SA and

and T'B have a unique common fixed point z in X and BS and AT have a unique
common fized point w in' Y. Further, Az = Bz =w and Sw =Tw = z.
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We now prove a related fixed point theorem for three pairs of mappings on
three complete metric spaces.

Theorem 2 Let (X,d), (Y,p) and (Z,0) be complete metric spaces. Let A, B be
mappings of X into Y, let C, D be mappings of Y into Z and let E, F be mappings
of Z into X satisfying the inequalities

fl(y7y/7z'zl)

ECAx,FDBz') < ¢=—222 277 7 1
d(EC Az, ')y <c (o) (1)
fQ(Z,Z/,CU,iC/)

BECy, AFDy) < (12525 0) 2
p(BECYy y') < 207 (2)
f3($7xl7y7y/)

N < pd2N 709 T
7(DBE2, CAFY) < ¢ (3)

for all x,2" in X; y,y' inY and z,2" in Z for which gi(x,2") # 0; g2(y,y’) # 0,
g3(z,2") # 0, where
fly.y', 2 2") = max{p(y,y")d(Ez, F2'),0(Cy, Dy')p(BEz, AFz"),
d(ECy,FDy")o(DBEz,CAFZ'")},
fa(z, 2, z,2") = max{o(z, 2")p(Ax, Bz'),d(Ez, Fz')o(C Az, DBx'),
p(BEz, AFz)d(EC Az, FDz')},
fa(a, 2’ y,y') = max{d(x,2"),0(Cy, Dy'), p(Az, Ba'),d(ECy, FDy'),
o(CAx, DBx")p(BECy, AFDy')},
g1(z,2") = max{d(z,z"), p(Az, Bz'),0(C Az, DBz'),d(EC Az, FDBx')},
92(y,y') = max{p(y,y"),0(Cy, Dy'),d(ECy, FDy'), p(BECy, AF Dy")},
2"),d(Ez,FZ"), p(BEz, AFZ'),0(DBEz, CAF2")}
and 0 < c < 1. If A and C or B and D are continuous, then ECA and FDB
have a unique common fized point u in X, BEC and AFD have a unique common

fized point v in'Y, and DBE and CAF have a unique common fixed point w in
Z. Further, Au = Bu=v,Cv=Dv=w and Bw = Fw = u.

g3(z,2') = max{o(z,

Proof. Let = xg be an arbitrary point in X. We define the sequences {z,} in
X, {yn} in Y and {z,} in Z inductively by
Axan—2 = yan—1,Cy2n—1 = 22n-1, B22n_1 = T2n_1,
Bzon—1 = Yon, Dyon = 22, F22n = T2
forn=1,2,....
We will first of all suppose that for some n,
91(T2n, T2n—1) = max{d(v2n, T2n—1), p(AT2n, Bran-1),0(CAx2,, DBxon_1),
d(EC'Axgn, FDB.%QH_l)}
= max{d(T2n, Tan—1), P(Y2n+1,Y2n), 0 (22041, 22n), A(T2nt1, Tan)}
=0.
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Then putting
Tan—1 = L2n = L2n+1 = U, Y2n = Y2n+1 = U, 22n = 22n+1 = W,
we see that
ECAu=FDBu=u=Fw=Fw, AFDv=v= Au= Bu,
CAFw =w = Cv = Dv,
from which it follows that
BECv=v, DBFEw=w.

Similarly, g1(22n,Zont+1) = 0 for some n implies that there exist points w in

X, vin V and w in Z such that
ECAu=FDBu=u= Fw=Fw, BECv=AFDv=v=Au= Bu
DBEw = CAFw = w = CvDv. (4)

Similarly, if one ga(Y2n—1,Y2n)s 92(Y2n+1,Y2n), 93(22n—-1,22n), g3(22n+1,22n)
is equal to zero for some n, then equations (4) follow.

We will therefore suppose that g1 (z2n—1,%21), 91(T2n, T2n+1), 92(Y2n—1,Y2n),
92(Y2n+1,Y2n)s 93(22n—1, 22n) and g3(z2,41, 22,) are all non-zero for all n.
We have
f1(y2n—1,Y2n, 22n—1, 22n) = max{p(y2n—1, Y2n)d(T2n-1, T2n),
o (22n—1, 22n) P(Y2n; Y2n+1), A(T2n—1, T2n )0 (220, 22n+1) },
(5)
fZ(ZZn—h ZZ2n5 L2n, $2n—1) = maX{U(ZQn—h Z2n)P(y2n, y2n+1),
d(T2n-1,%20)0 (22n; 22n+1), P(Y2ns Y2n+1)d(T2n, Tan+1),
(6)
f3(T2n, Tan_1,Y2n—1, Y2n) = max{d(Tan_1,T2n), 0 (2201, 22n), P(Y2n: Y2n+1),
d(T2n—1,T2n), 0(22n, 22n4+1)P(Y2n, Y2n+1) }5

91(xan, Tan—1) = max{d(zan—1, Z2n), P(Y2n: Y2n+1), 0 (Z2n, Z2n+1),

d(x2n, Tant1), (8)
92(Y2n—1, Y2n) = max{p(y2n—1,Y2n), 7(22n—1, 22n), d(T2n—1, T2n),

P(Y2n; Y2n+1), (9)
93(22n—1, 22n) = max{o(22n—1, 22n), A(T2n—1, T2n), P(Y2n, Y2n+1),

0 (22ns Z2n+1)- (10)

Applying inequality (1), we get
d(l‘gn+1, I2n> = d(ECAI‘Qn, FDBIQn_l)

fl(y2n71792n722n71722n) (11)
g1 (3327“ 332n—1)

<c
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and it now follows from (5), (8) and (11) that
d(@2n, T2nt1) < cmax{d(zan—1,%2n), P(Y2n—1,Y2n), 0 (22n—1, 22n) }- (12)
Applying inequality (2), we get

P(Y2n, Yon+) = p(BECY2y—1, AF Dyay,)

J2(22n—1, Z2n: T2n, Ton—1)

<c 13
g2 (y2n717 y?n) ( )
and it now follows from (6), (9) and (13) that
P(Y2ns Yant1) < cmax{d(T2n, Tont1), 0(22n, Z2n+1) }- (14)
Applying inequality (3), we get
0(22n, 22n4+1) = 0(DBEz3,_1,CAF 22y)
< CfS(x2n7$2nflay2n717y2n) (15)
93(22n—1, 22n)
and it now follows from (7), (10) and (15) that
0(22n, 2on+1) < cmax{d(xan—1,%2n),0(22n—1, 22n) }- (16)
Using inequalities (12), (14) and (16) we now get
P(Y2n, Yont1) < cmax{cd(Tan—1, Ton, cp(Y2n—1,Y2n), €0 (22n—1, 220) }
< cmax{d(r2n—1,%2n), P(Y2n—1,Y2n), 7 (22n—1, 22n) } - (17)

On applying inequality (1) again, we get

d(zan—1,x2n) = d(ECAxo,—2, FDBxg,_1)

f1 (anflv Yan—2,22n—1, Z2n72)
g1 (33271—27 332n—1)

<c

from which it follows that
d(T2n—1,%2n) < cmax{d(z2n—2,Tan—1), P(Y2n—2,Y2n—1), 0 (22n—2, 22n-1)} (18)
and similarly on using inequalities (2) and (3), we get

p(Yan—1,Y2n) < cmax{d(zan—_1,%2n), 0(22n—1, 22n)}, (19)
o(zan—1,z2n) < cmax{d(zan—2, T2n—1), 0(22n—2, 22n—1) }. (20)

On using inequalities (18), (19) and (20), we get

P(Y2n—1,Y2n) < cmax{d(Ton—2,T2n-1), P(Y2n—2,Y2n—1), 0 (22n—2, 22n—1)}. (21)
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It now follows from inequalities (12) and (18) that

d(xna xn+1) < Cmax{d(xnfh xn)v p(ynflv yn)7 O'(anla Zn)}

< knilmax{d(xhx?% (y1,y2),0(21,2’2)}. (22)

Similarly, on using inequalities (17), (21), (16) and (20), we get
P(YnsYnt1) < k" max{d(z1, 22), p(y1,y2), 0 (21, 22) }, (23)
0 (2ns zny1) < K" max{d(z1, 22), p(y1,y2), 0 (21, 22) }- (24)

Since ¢ < 1, it follows from inequalites (22), (23) and (24) that {x,} is a
Cauchy sequence in X with a limit u, {y,} is a Cauchy sequence in Y with a limit
v and {z,} is a Cauchy sequence in Z with a limit w.

Now suppose that A and C are continuous. Then

v= lim yop+1 = lim Aze, = Au, w= lim 29,1 = lim Cys,—1 = Cv (25)
n—oo n—oo n—oo

n—oo

and hence

lim fl(U?yQ’erwaZQn = d(Ew,u)U(DBEw,U)7

) (26)
Wi fo(w, 201, w20 1) = p(BEw, v)d(Ew,w), (27)
i f3(v, yon, w, zon) = 0, (28)
i gy (u, 220-1) = d(Bw,u), (29)
) (30)
) (31)

lim g3 (v, v,

n—oo

lim gs(w, z9,) = max{d(Ew, u), p(BEw,w),c(DBEw,w).

n—oo

If lim, o0 g1(u, €2p—1) = 0, then Fw = u and EC Au = u.
If it were possible that

lim ¢q(u,x2n—1) = d(Ew,u) # 0,

then on applying inequality (1) and equations (25), (26) and (29), we get

d(EBw,u) = lim d(ECAu, FDBxs,_1) < co(DBEw,w). (32)

On using inequality (3) and equations (28) and (31), we get

o(DBEw,w) = lim o(DBEw,CAFz5,) =0

n—oo

which implies that DBFEw = w and hence from (32) we must have Fw = u.
On using inequality (2) and equations (25), (27) and (30), we have

p(BEw,v) = lim p(BECwv, AFDys,) < cd(Fw,u) =0
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which implies that
Bu=v, Dv=w, FEFCAu=wu, BECv=w.
Now suppose that Fw # u. On applying inequality (1), we have

d(u, Fw) = lim d(ECAza,, FDBu)
n—oo
lim,, o f1 (an—la U, Zoan—1, w)
hmnaoo g1 (x2n» u)

= co(w,CAFw). (33)

Applying inequality (3), we now have
o(w,CAFw) = lim o(DBEzy,_1,CAFw)
hmn—»oo f3(x2n7 Uy Y2n—1, U)

lim,, oo 93(Z2n—1a ’LU)

=0.

This implies that w = CAFw and hence from (33), we must have Fw = u.
Equations (4) follows.

Equations (4) follow similarly if B and D are continuous.

To prove the uniqueness, let EC'A and F DB have a second distinct fixed point
u’. Then, using inequalities (1), (2) and (3) respectively, we have

cfl (Au, Bu',C Au, D Bu)

d(u,v') = d(ECAu, FDBv') <
(u,u') = d( ) PNORT))

which implies that

d(u,u") < ecmax{p(v, Au'), p(v, Bu'), o (w, C Au’)}, (34)

f2(CAu, DB u,u’)
g2(Au, Bu')

p(v, Au") = p(BEC Au, AFDBu') < ¢

which implies that
p(v, Au') < emax{d(u,u"), p(v, Bu')} (35)

and

fa(u,u’, Au, Bu')
93(C Au, DBu/)

o(w,CAu") = o(DBEC Au, CAFDBv') < ¢

which implies that

o(w, CAu") < cmax{d(u,u), p(v, Au"), p(v, Bu')}. (36)
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On applying inequality (2) again, we have

Au', DBu,
p(Bu,v) = p(BECA', AFDBu) < (A2CAW. DB v, v)

92(Au, Bu')
which implies that
p(v, Bu') < cmax{d(u,u’), p(v, Au’)}. (37)
It now follows from (34) to (37) that
d(u,u") < cmax{p(v, Au’), p(v, Bu')} (38)

and then (35), (37) and (38) imply that u = «’, proving the uniqueness of u.
We can prove similarly that v is the unique common fixed point of BEC and
AFD and w is the unique common fixed point of DBE and CAF. d
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