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Abstract: We characterize directed graphs which are Cayley graphs of certain
completely regular semigroups. We specify these semigroups as so called left or
right zero unions of groups and prove that they can be composed only of copies of
the same group.
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The investigation and characterization of digraphs which are Cayley graphs
of certain algebraic structures have a long history, documented for example in
Maschke‘s Theorem from 1896 about groups of genus zero, that is, groups G which
possess a system of generating elements A, such that the Cayley graph C(G,A) is
planar. A modern presentation can be found in [5].

For a groupoid G and some subset A ⊆ G one defines the Cayley graph C(G,A)
as follows: G is the vertex set and (u, v), u, v ∈ G, is an arc in C(G,A) if there
exists an element a ∈ A such that v = ua. We see that here the Cayley graph
is defined by right translations which is quite usual. However, the reflection of
algebraic properties of G may depend strongly on this decision, as we will also see
in the sequel.

In [3] Cayley graphs which represent groupoids, quasigroups, loops or groups
are described, for terminolgy see for example [2]. We use some of these results and
study Cayley graphs which represent certain completely regular semigroups, which
we call right (left) zero unions of groups. They have some interesting algebraic
properties on the lines investigated in [4]. They also generalize right or left zero
semigroups.

Any book on graph theory, for example [1], will provide terminolgy which may
be used here without definition. We use the term strong subgraph instead of the
also common term induced subgraph.
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1 Basic Knowledge

Definition 1.1 A digraph (V, E) with vertex set V and edge set E is called a
regular digraph if there exists a non-negative integer n such that indegree and
outdegree of every vertex is n. In addition, if every vertex v ∈ V has a loop or
non of them has a loop, then (V, E) is called a normal regular digraph.

Definition 1.2 Let (V1, E1) and (V2, E2) be digraphs. A mapping ϕ : V1 → V2 is
called a digraph homomorphism if (u, v) ∈ E1 implies (ϕ(u), ϕ(v)) ∈ E2. We write
ϕ : (V1, E1) → (V2, E2). A digraph homomorphism ϕ : (V, E) → (V,E) is called a
digraph endomorphism.
If ϕ : (V1, E1) → (V2, E2) is a bijective digraph homomorphism and ϕ−1 is also a
digraph homomorphism, then ϕ is called a digraph isomorphism. And a digraph
isomorphism ϕ : (V, E) → (V, E) is called a digraph automorphism.

Definition 1.3 A digraph (V, E) is called a groupoid (group, semigroup, etc.)
digraph or digraph of a groupoid, etc. if there exits a groupoid G and A ⊆ G such
that (V, E) isomorphic to the Cayley graph C(G,A).
We speak about G-groupoid digraphs, if we want to consider various subsets A ⊆ G
and the respective Cayley graphs C(G, A).

Lemma 1.4 Let G1, G2 be groupoids, A ⊆ G1, and θ : G1 → G2 a groupoid
isomorphism. Then θ : C(G1, A) → C(G2, θ(A)) is a digraph isomorphism.

Proof. It is clear that θ is a bijection. Now
(x, y) is an arc in C(G1, A) ⇔ ∃a ∈ A, y = xa

⇔ ∃a ∈ A, θ(y) = θ(x)θ(a)
⇔ ∃a ∈ A, (θ(x), θ(y)) is an arc in C(G2, θ(A)).

Therefore θ is a digraph isomorphism. ¤

Theorem 1.5 (3) A digraph (V,E) is a groupoid digraph if and only if E = ∅ or
for every vertex u ∈ V there exists a vertex v ∈ V such that (u, v) ∈ E.

Theorem 1.6 (3) A digraph (V, E) with n vertices is a group digraph if and
only if the group Aut(V, E) of all digraph automorphisms of (V, E) contains an
n-element subgroup 4 such that for any two vertices u, v ∈ V there exists δ ∈ 4
such that δ(u) = v. In this case (V, E) is a normal regular digraph.

The following normal regular digraph is not a group digraph.
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2 Right (Left) Zero Union of Groups

In this section we consider a class of completely regular semigroups, i. e., of unions
of groups.
Note that the proof of the following lemma remains valid if (G1; ◦1) and (G2; ◦2)
are monoids.

Lemma 2.1 Let (G1; ◦1), (G2; ◦2) be groups. Define a binary operation ∗ on the
set G1 ∪G2 by:

xi ∗ yi = xi ◦i yi if xi, yi ∈ Gi, i = 1, 2,

x1 ∗ y2 = θ2(x1) ◦2 y2 if x1 ∈ G1, y2 ∈ G2,

x2 ∗ y1 = θ1(x2) ◦1 y1 if x2 ∈ G2, y1 ∈ G1,

where θ2 : G1 → G2, θ1 : G2 → G1 are group homomorphisms. Then (G1 ∪G2; ∗)
is a semigroup if and only if θ1 = θ−1

2 .

Proof. Necessity. By hypothesis (G1 ∪ G2; ∗) is associative. Denote by ei the
identity of Gi, i = 1, 2. For an arbitrary x1 ∈ G1 we compute (x1 ∗ e2) ∗ e1 =
(θ2(x1)◦2 e2)∗e1 = θ1((θ2(x1)◦2 e2))◦1 e1 = θ1((θ2(x1))◦1 θ1(e2))◦1 e1 = θ1θ2(x1)
and x1 ∗ (e2 ∗ e1) = x1 ◦1 (θ1(e2) ◦1 e1) = x1. Equality of the two expressions for
all x1 ∈ G1 shows that θ1 is left inverse to θ2. Similarly we obtain that θ1 is right
inverse to θ2 if we start computation with (x2 ∗ e1) ∗ e2 for an arbitrary x2 ∈ G2.
Sufficiency is obvious. ¤

The construction in the previous lemma can also be transformed from ”right”
to ”left”. It generalizes to arbitrary unions of isomorphic groups and even to
unions of isomorphic semigroups. It is clear that after this lemma we can restrict
our attention to unions of copies of one group or semigroup. Moreover the multi-
plication of elements from different copies as given in the lemma makes clear that
the semigroup constructed is nothing else but the direct product of the group with
the two element right zero semigroup R2. Similarly, if we consider the left variant
we have to take the direct product with the two element left zero semigroup L2.
Recall that the multiplication in the right zero semigroup Rk = {1, . . . , k} is de-
fined by ij = j for all i, j ∈ Rk. Recall moreover that the direct product R× S of
two semigroups R and S is the cartesian product of their elements with compo-
nentwise multiplication.
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Definition 2.2 Let G be a group and Rk for k ∈ N, k ≥ 2, the k-element right
zero semigroup. We call the semigroup G×Rk the right zero union of the groups
G or shortly an RZUG over G.
Correspondingly, if Lk for k ∈ N, k ≥ 2, is the k-element left zero semigroup, we
call the semigroup G×Lk the left zero union of the groups G or shortly an LZUG
over G.

We note that an RZUG is a right regular orthogroup and an LZUG is a left
regular orthogroup. For the terminology compare [4].

3 RZUG Digraphs

Now we can prove the main result. For a digraph of a right zero union of groups
we will use the term RZUG digraph and, similarly we will use LZUG digraph.

Theorem 3.1 Let (V, E) be an RZUG digraph of the group G with the digraph
isomorphism ϕ : C(G × Rk, A) → (V,E) for k ∈ N and A ⊆ G × Rk, Rk =
{1, . . . , k} the k-element right zero semigroup, k ≥ 2. If we denote the image in
(V, E) of a vertex (u, i) ∈ G×Rk under ϕ by ui then (V, E) is the vertex disjoint
union of k strong G-group subgraphs (V1, E1), . . . , (Vk, Ek) such that

∀i, j ∈ {1, . . . , k}[(ui, vi) ∈ Ei ⇔ (uj , vi) ∈ E].

Proof. For each i ∈ {1, . . . , k} set Vi := ϕ(G × {i}), Ai = A ∩ (G × {i}), Ei =
E ∩ (Vi × Vi). Now the restriction of ϕ to C(G × {i}, Ai) induces a digraph
isomorphism

ϕi : C(G, p1(Ai)) → (Vi, Ei)

where p1 denotes the first projection from the cartesian product.
We have to show that ∀i∀j[(ui, vi) ∈ Ei ⇔ (uj , vi) ∈ E].
Take i ∈ {1, . . . , k}, ui, vi ∈ Vi with (ui, vi) ∈ Ei. Then (ϕ−1

i (ui), ϕ−1
i (vi)) is

an arc in C(G, p1(Ai)), i. e., there exists an element a ∈ p1(Ai) with ua = v.
Then we have (u, i)(a, i) = (v, i), and consequently, for all j ∈ {1, . . . , k} we get
(u, j)(a, i) = (v, i) by definition of the multiplication in G×Rk, i. e., ((u, j), (v, i)) ∈
E(C(G×Rk, A)). Hence (uj , vi) ∈ E for all j ∈ {1, . . . , k}.
Conversely, take i, j ∈ {1, . . . , k}, uj ∈ Vj , vi ∈ Vi with (uj , vi) ∈ E.
Then ((u, j), (v, i)) is an arc in C(G × Rk, A), i. e., there exists a′ ∈ A such that
(v, i) = (u, j)a′ where a′ = (a, i) for some a ∈ p1(Ai), from the definition of
multiplication in G×Rk. Then clearly, (v, i) = (u, i)(a, i), i. e., ((u, i), (v, i)) is an
arc in C(G × Rk, A). Now we have that (a, i) ∈ Ai, v = ua, a ∈ p1(Ai) and thus
(ui, vi) ∈ Ei. ¤

Theorem 3.2 Let (V, E) be a digraph. If it is the vertex disjoint union of k strong

G-group subgraphs (V1, E1), . . . , (Vk, Ek) for some group G, V =
k⋃

i=1

Vi, k ≥ 2, with



Characterization of Digraphs of Right (Left) Zero Unions of Groups 135

digraph isomorphisms ϕi : C(G,Ai) → (Vi, Ei) for each i ∈ {1, . . . , k}, Ai ⊆ G
and if

∀i, j ∈ {1, . . . , k}[(ui, vi) ∈ Ei ⇔ (uj , vi) ∈ E]

then (V, E) is an RZUG digraph of G×Rk.

Proof. Set A =
k⋃

i=1

(Ai × {i}) and let ϕ : C(G × Rk, A) → (V, E) be such that

its restriction to C(G× {i}, Ai × {i}) is induced by ϕi : C(G,Ai) → (Vi, Ei). It is
clear that ϕ is a well defined bijection. We will show that ϕ and ϕ−1 are digraph
homomorphisms.
Take (u, i), (v, j) ∈ G×Rk such that ((u, i), (v, j)) is an arc in C(G×Rk, A) with
a′ ∈ A such that (v, j) = (u, i)a′. From the definition of the multiplication in
G × Rk we see that a′ = (a, j) where a ∈ Aj . Then v = ua, i. e., (u, v) is an
arc in C(G, Aj) and hence (uj , vj) ∈ Ej . From the condition we then get that
(ui, vj) ∈ E for all i ∈ {1, . . . , k}. This shows that ϕ is a digraph homomorphism.
Consider now ϕ−1 := (V, E) → C(G×Rk, A). Take uj ∈ Vj , vi ∈ Vi with (uj , vi) ∈
E. Then (ui, vi) ∈ Ei by the condition. But then (ϕ−1

i (ui), ϕ−1
i (vi)) is an arc

in C(G,Ai). Consequently there exists a ∈ Ai with v = ua. By definition of
the multiplication in G×Rk we get for all j ∈ {1, . . . , k} that (v, i) = (u, j)(a, i).
Therefore for all j ∈ {1, . . . , k} we have that ((u, j), (v, i)) is an arc in C(G×Rk, A).
This shows that ϕ−1 is also a digraph homomorphism. ¤

Corollary 3.3 A digraph (V,E) is an RZUG digraph if and only if there exists
k ∈ N, k ≥ 2, such that (V,E) is the vertex disjoint union of k isomorphic strong

G-group subgraphs (V1, E1), . . . , (Vk, Ek) such that V =
k⋃

i=1

Vi and

∀i, j ∈ {1, . . . , k}[(ui, vi) ∈ Ei ⇔ (uj , vi) ∈ E].

Remark It is clear that for the less interesting situation where A = ∅ we have the
following: A digraph (V, E) is an RZUG digraph if and only if (V,E) consists of k
totally disconnected isomorphic strong G-group subgraphs (V1, E1), . . . , (Vk, Ek)

such that V =
k⋃

i=1

Vi for some group G.

The following RZUG digraphs C(Z3×R3, A) where Z3 = {0, 1, 2} denotes the
three element group make the structure quite lucid. It becomes also clear that
for A = {a1, a2} we have to form the edge sum of the respective graphs with one
element sets A = {a1} and A = {a2} and so on.

C(Z3 ×R3, A) with A = {(0, 3)}, A = {(1, 2)}, A = {(2, 1)}
lim sk

i=1Vi
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4 LZUG Digraphs

Now we prove the corresponding result for a digraph of a left zero union of groups.
Again G denotes a group and Lk now denotes the k-element left zero semigroup.

Theorem 4.1 Let (V, E) be an LZUG digraph of G with the digraph isomorphism
ϕ : C(G×Lk, A) → (V,E) for k ∈ N, k ≥ 2, and A ⊆ G×Lk. Set ui = ϕ((u, i)) ∈
(V, E) for (u, i) ∈ G × Lk. Then (V, E) is the vertex disjoint union of k strong
G-group subgraphs (V1, E1), . . . , (Vk, Ek) with Vi = ϕ(G× {i}), Ei = E ∩ (Vi × Vi)
and edges such that

∀i ∈ {1, . . . , k}[(ui, vi) ∈ Ei ⇔ ∃l ∈ {1, . . . , k}(ul, vl) ∈ El]

and
(ui, vj) ∈ E ⇒ i = j and (ui, vi) ∈ Ei.

Proof. For each i ∈ {1, . . . , k} set Ai = A ∩ (G × {i}). Now the restriction of ϕ
to C(G× {i}, Ai) induces a digraph isomorphism

ϕi : C(G, p1(Ai)) → (Vi, Ei)

where p1 denotes the first projection from the cartesian product.
We have to show the two conditions. Necessity in the first condition is trivial. So
suppose that (ul, vl) ∈ El, then (ϕ−1

l (ul), ϕ−1
l (vl)) is an arc in C(G, p1(Ai)), i. e.,

there exists an element a ∈ p1(Al) with ua = v. Then we have (u, l)(a, l) = (v, l),
and consequently, for all i ∈ {1, . . . , k} we get (u, i)(a, l) = (v, i) by definition of
the multiplication in G× Lk, i. e., ((u, i), (v, i)) ∈ Ei.
To show the second condition take (ui, vj) ∈ E then (ϕ−1(ui), ϕ−1(vj)) = ((u, i), (v, j))
is an arc in C(G×Lk, A) i. e., there exists (a, l) ∈ A such that (v, j) = (u, i)(a, l).
From the definition of multiplication in G× Lk we get i = j and ua = v and thus
(ui, vi) ∈ Ei. ¤

Theorem 4.2 Let (V, E) be a digraph. If it is the vertex disjoint union of k strong

G-group subgraphs (V1, E1), . . . , (Vk, Ek) for some group G, V =
k⋃

i=1

Vi, k ≥ 2, with

digraph isomorphisms ϕi : C(G,Ai) → (Vi, Ei) for each i ∈ {1, . . . , k}, Ai ⊆ G
such that ϕi(u) = ui for all u ∈ G and if

∀i ∈ {1, . . . , k}[(ui, vi) ∈ Ei ⇔ ∃l ∈ {1, . . . , k}(ul, vl) ∈ El]

and
(ui, vj) ∈ E ⇒ i = j and (ui, vi) ∈ Ei

then (V,E) is an LZUG digraph over G, i. e., there exists a digraph isomorphism

ϕ : C(G× Lk, A) → (V,E) for A =
k⋃

i=1

(Ai × {i}) ⊆ G× Lk.
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Proof. Define ϕ((u, i)) = ϕi(u) = ui for (u, i) ∈ G × Lk. Clearly, ϕ is a well
defined bijection. We will show that ϕ and ϕ−1 are digraph homomorphisms.
Take (u, i), (v, j) ∈ G×Lk such that ((u, i), (v, j)) is an arc in C(G×Lk, A) with
a′ = (a, l) ∈ A such that (v, j) = (u, i)(a, l). From the definition of the multiplica-
tion in G × Lk we get that i = j and ua = v. But then ((u, l), (v, l)) is an arc in
C(G,Al). And as ϕl is a digraph isomorphism we have (ul, vl) ∈ El. Now the first
condition implies that (ui, vi) = (ϕ((u, i)), ϕ((v, i)) ∈ Ei ⊆ E. This shows that ϕ
is a digraph homomorphism.
Take uj ∈ Vj , vi ∈ Vi with (uj , vi) ∈ E. Then i = j by the second condi-
tion and thus (ui, vi) ∈ Ei ⊆ E. Since ϕi is a digraph isomorphism we get
(ϕ−1

i (ui), ϕ−1
i (vi)) is an arc in C(G,Ai). Consequently there exists a ∈ Ai with

v = ua. By definition of the multiplication in G × Lk we get (v, i) = (u, i)(a, i).
Thus ((u, i), (v, i)) = (ϕ−1(ui), ϕ−1(vi)) is an arc in C(G × Lk, A). This shows
that ϕ−1 is also a digraph homomorphism. ¤

Corollary 4.3 A digraph (V, E) is an LZUG digraph if and only if there exist
k ∈ N, k ≥ 2, such that (V, E) is the vertex disjoint union of k isomorphic strong

G-group subgraphs (V1, E1), . . . , (Vk, Ek) for some group G, V =
k⋃

i=1

Vi, and

∀i ∈ {1, . . . , k}[(ui, vi) ∈ Ei ⇔ ∃l ∈ {1, . . . , k}(ul, vl) ∈ El]

and
(ui, vj) ∈ E ⇒ i = j and (ui, vi) ∈ Ei.

The following LZUG digraphs illustrate the result for LZUG digraphs isomor-
phic to C(Z3 × L3, A) .

C(Z3 × L3, A) with A = {(0, 3)}, A = {(1, 2)}, A = {(2, 1)}
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