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Abstract Due to the significance of the variational inequality which related to solve various problems

in other branches of sciences and engineering, in this paper, we introduce a new algorithm for finding

solution of this problem by using Bregman method in real reflexive Banach spaces. Under some mild
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results in the literature.
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1. Introduction

Throughout this paper, let E be a real reflexive Banach space with the topological dual
E∗ and the function f : E → (−∞,∞) be a proper, lower semicontinuous and convex
with the effective domain domf = {x ∈ E : f(x) < ∞}. Given any x ∈ int(domf), the
direction derivative of f at x in the direction of y ∈ E is denoted by f ′(x, y), that is,

f ′(x, y) = lim
t→0+

f(x+ ty)− f(x)

t
. (1.1)

Recall the differentiable function that will be used in this paper, the function f is called
Gâteaux differentiable at x if the limit as t → 0 in (1.1) exists at any y ∈ E. The
function f is said to be Frèchet differentiable at x if the limit (1.1) is attained uniformly
in ∥y∥ = 1 and x ∈ E. It is easily claimed that every Frèchet differentiable function is
Gâteaux differentiable and if f is Frèchet differentiable, then it is continuous but if f is
Gâteaux differentiable, then it is not necessary that f is continuous [1].
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The Variational Inequalities (VI) problem of Fichera [2] and Stampacchia [3] is the
problem which aim to find a point x∗ ∈ C such that

⟨Ax∗, y − x∗⟩ ≥ 0, ∀y ∈ C, (1.2)

where E is a real Banach space with its dual space E∗, the norm and the dual pair between
E∗ and E are denoted by ∥ · ∥ and ⟨·, ·⟩, respectively. Let C be a nonempty, closed and
convex subset of E, A : E → E∗ is a given operator. The solution set of VI is represented
by VI(C,A). This is a fundamental problem in optimization theory and captures various
applications such as mathematical programming, partial differential equations, optimal
control and so on.

Several surveys dedicated to solve various problems in other branches of sciences and
engineering and their applications have appeared (see [4–11]).

Due to its significance in various fields, there were many researchers tried to make the
method improvement for solving VI, the one classical method is the projection method
given by the following iterative algorithm,

xn+1 = ΠC(xn − λnAxn). (1.3)

In 1976, Korpelevich [12] proposed the Extragradient Method (EM) for solving VI with
monotone and Lipshitz continuous mapping A in the finite dimension Euclidean space.
EM is a two-projection process and is defined by x0 ∈ C,

yn = ΠC(xn − αnAxn),
xn+1 = ΠC(xn − αnAyn),

(1.4)

where n ≥ 1 and αn ∈
(
0, 1

L

)
. The EM is one of the most well known method which

attracted all researchers to improve and applied this method to the real-world problems.
By the way, in the EM (1.4), the calculation of two projections onto the feasible set C is
required which might not be easy and may affect the efficiency of the method.

Later, in 2000, Tseng [13] introduced Tseng′s extragradient method for solving mono-
tone variational inequalities in a real Hilbert space.{

yn = ΠC(xn − αAxn),
xn+1 = yn − α(Ayn −Axn),

(1.5)

where A is monotone and L-Lipschitz continuous from C into H and α ∈
(
0, 1

L

)
. It was

proved that this method converges weakly to a point in V I(C,A). Note that this modified
method to decomposition in convex programming and monotone variational inequalities.

In 2018, Yang et al. [14] presented the following modification of the subgradient extra-
gradient method with adjustment step size for solving monotone variational inequalities.

 yn = ΠC(xn − αnAxn),
xn+1 = ΠTn(xn − αnAyn),
Tn = {x ∈ H : ⟨xn − αnAxn − yn, x− yn⟩ ≤ 0},

(1.6)

where αn > 0, µ ∈ (0, 1) and αn is adaptive updated as follows:

αn+1 =

 min

{
µ
∥xn − yn∥2 + ∥xn+1 − yn∥2

2⟨Axn −Ayn, xn+1 − yn⟩
, αn

}
if ⟨Axn −Ayn, xn+1 − yn⟩ > 0,

αn otherwise.
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The weak convergence of the algorithm was established without the knowledge of the
Lipschitz constant of the mapping.

In this paper, motivated and inspired by Tseng [13] and Yang et al. [14], we introduce
the following algorithm yn = Πf

C(∇f−1(∇f(xn)− γnAxn)),
zn = ∇f−1(∇f(yn)− γn(Ayn −Axn)),
xn+1 = ∇f−1(αn∇f(u) + (1− αn)∇f(zn)),

(1.7)

where

γn+1 =

 min

{
µ
∥xn − yn∥2 + ∥zn − yn∥2

2⟨Axn −Ayn, zn − yn⟩
, γn

}
if ⟨Axn −Ayn, zn − yn⟩ > 0,

γn otherwise.

we prove that {xn} converges strongly to the point Πf
Cx under some suitable condition

imposed on the parameters.

2. Preliminaries

In this section, we begin by recalling some preliminaries and lemmas which will be use
in the proof.

Let E be a reflexive Banach space with the norm ∥ · ∥ and E∗ the dual space of E.
The Legendre function f : E → (−∞,∞] is defined in Bauschke et al. (see [15]). The
function f is Legendre function if and only if it satisfies the following two conditions:

(L1) int(domf) ̸= ∅ and f is Gâteaux differentiable with dom∇f = int(domf);

(L2) int(domf∗) ̸= ∅ and f∗ is Gâteaux differentiable with dom∇f∗ = int(domf∗).

Since E is reflexive Banach space, we always obtain (∂f)−1 = ∂f∗ (see [16, p. 83]).
This, by (L1) and (L2), implies the following facts:
(i) ∇f is a bijection with ∇f = (∇f∗)−1 (see [17, Theorem 5.10]);
(ii) ran∇f = dom∇f∗ = int(domf∗) and ran∇f∗ = dom∇f = int(domf) (see [18],
p.123),
where ran∇f denotes the range of ∇f .

Definition 2.1. ([19, 20]) Let f : E → (−∞,+∞] be a convex and Gâteaux differentiable
function. The function Df : domf × int(domf) → [0,+∞) defined by

Df (x, y) = f(x)− f(y)− ⟨x− y,∇f(y)⟩,

is call the Bregman distance with respect to f .
By the definition, we know the following two important properties: the two point identity,
for any x, y ∈ int(domf)

Df (x, y) +Df (y, x) = ⟨x− y,∇f(x)−∇f(y)⟩,

the three point identity [21] for any x ∈ domf and y, z ∈ int(domf),

Df (x, y) = Df (x, z)−Df (z, y) + ⟨x− y,∇f(z)−∇f(y)⟩. (2.1)

Definition 2.2. ([22, Proposition 2.1]) If f : E → (−∞,+∞] is uniformly Frèchet
differentiable and bounded on subsets of E, then ∇f is uniformly continuous on bounded
subsets of E from the strong topology of E to the strong topology of E∗.
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Definition 2.3. (Bregman [19]) Let f : E → (−∞,+∞] be convex and Gâteaux dif-
ferentiable function. The Bregman projection of x ∈ int(domf) onto a nonemtry closed
convex set C ⊂ int(domf) is the unique vector ΠC(x) ∈ C satisfying

Df (Π
f
C(x), x) := inf{Df (x, y) : x ∈ C}.

it is know from [23] :

z = Πf
C(x) ⇐⇒ ⟨∇f(x)−∇f(z), y − z⟩ ≤ 0, ∀y ∈ C. (2.2)

We also know the following equivalence

Df (y,Π
f
C(x)) +Df (Π

f
C(x), x) ≤ Df (y, x), ∀y ∈ C, x ∈ int(domf). (2.3)

A convex and differentiable function f is strongly convex if there exists a constant σ > 0
such that

f(x) > f(y) + ⟨∇f(y), x− y⟩+ σ

2
∥x− y∥2, ∀x ∈ domf, and y ∈ int(domf).

From the definition of Bregman distance, we have

Df (x, y) ≥
σ

2
∥x− y∥2. (2.4)

Following [20, 24], the function Vf : E × E −→ [0,+∞) associated with f defined by

Vf (x, x
∗) = f(x)− ⟨x, x∗⟩+ f∗(x∗), ∀x ∈ E, x∗ ∈ E∗.

Vf is non-negative and Vf (x, x
∗) = Df (x,∇f∗(x∗)) for all x ∈ E and x∗ ∈ E∗. Moreover,

by the subdifferential inequality, it is easy to see that

Vf (x, x
∗) + ⟨y∗,∇f∗(x∗)− x⟩ ≤ Vf (x, x

∗ + y∗), (2.5)

for all x ∈ E and x∗, y∗ ∈ E∗. In addition, if f : E → R ∪ {+∞} is a proper lower
semicontinuous function, then f∗ : E∗ → R∪{+∞} is proper weak lower semicontinuous
and convex function. Hence, Vf is convex in the second variable. Thus, for all z ∈ E

Df

(
z,∇f∗

(
N∑
i=1

ti∇f(xi)

))
≤

N∑
i=1

tiDf (z, xi),

where xi ⊂ E and ti ⊂ (0, 1) with
∑N

i=1 ti = 1.

Lemma 2.4. ([15]) Let f : E → R be a Gâteaux differentiable and totally convex func-
tion. If x0 ∈ E and the sequence {Df (x0, xn)}∞n=1 is bounded, then the sequence {xn}∞n=1

is also bounded.

Lemma 2.5. ([15, Proposition 2.2]) If x ∈ int(domf), then the following statement are
equivalent:

(i) The function f is totally convex at x,

(ii) For any sequence {xn} ⊂ domf ,

lim
n→∞

Df (yn, x) = 0 ⇒ lim
n→∞

∥ yn − x ∥= 0.

We say that the function f is sequentially consistent ([23, p.9]) if for any two sequences
{xn} and {yn} in int(domf) and domf , respectively such that the first one is bounded
and

lim
n→∞

Df (yn, xn) = 0 ⇒ lim
n→∞

∥ yn − xn ∥= 0. (2.6)
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Lemma 2.6. ([25, Lemma 2.1.2]) The function f : E → (−∞,+∞] is sequentially
consistent if and only if the function f is totally convex on bounded subsets of E.

Moreover, if f is a Lagendre function, Frèchet differentiable and bounded on bounded
subsets of E, then for any two sequences {xn} and {yn} in domf and int(domf), we have

lim
n→∞

Df (yn, xn) = 0 ⇒ lim
n→∞

∥ yn − xn ∥= 0 ⇒ lim
n→∞

∥ ∇fyn −∇fxn ∥= 0.

Lemma 2.7. ([26]) Assume that {sn} is a sequence of nonnegative real number such that

sn+1 ≤ (1− βn)sn + βnbn, ∀n ≥ 1,

where {βn} is a sequence in (0,1) and {bn} is a sequence such that

(i)
∑∞

n=1 βn = ∞,

(ii) lim supn→∞ bn ≤ 0.

Then limn→∞ sn = 0.

Lemma 2.8. ([25]) The function f is totally convax on bounded subsets if and only if it
is sequentially consistent.

Lemma 2.9. ([27]) Consider the VI (1.2). If the mapping h : [0, 1] → E∗ defined as
h(t) = A(tx + (1 − t)y) is continuous for all x, y ∈ C (i.e., h is hemicontinuous), then
M(C,A) ⊂ V I(C,A). Moreover, if A is pseudo-monotone, then V I(C,A) is closed,
convex and V I(C,A) = M(C,A).

3. Main Result

In this section, we discuss a strong convergence of Bregman projection algorithms
for solving pseudo-monotone variational inequalities. Let C be a nonempty, closed and
convex subset of a reflexive Banach space E. The function f : E → R∪{+∞} is strongly
coercive Legendre function which is bounded, uniformly Frèchet differentiable and totally
convex on bounded subsets of E and its gradient ∇f is weak-weak continuous, xn ⇀ x
implies that ∇f(xn) ⇀ ∇f(x). The mapping A : E → E∗ is pseudo-monotone, i.e., for
all x, y ∈ E, ⟨Ax, y − x⟩ ≥ 0 implies ⟨Ay, y − x⟩ ≥ 0 and Lipschitz continuous with a
constant L > 0. The solution set of VIs is nonemty, that is, V I(C,A) ̸= ∅. Now, we
propose a new projection algorithm for solving VIs of psudo-monotone mappings.

Algorithm 1:

Given γ1 > 0 and µ ∈ (0, σ), where σ is a constant given by (2.4). Let x1, u ∈ E be
arbitrary. Set n = 1

Step 1. Compute

yn = Πf
C(∇f−1(∇f(xn)− γnAxn)).

If xn = yn or Ayn = 0, then stop and yn is a solution of VIs. Else, do Step 2.

Step 2. Compute

zn = ∇f−1(∇f(yn)− γn(Ayn −Axn)),
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where

γn+1 =

 min

{
µ
∥xn − yn∥2 + ∥zn − yn∥2

2⟨Axn −Ayn, zn − yn⟩
, γn

}
if ⟨Axn −Ayn, zn − yn⟩ > 0,

γn otherwise.

Step 3. Compute

xn+1 = ∇f−1(αn∇f(u) + (1− αn)∇f(zn)).

Set n := n+ 1 and go to Step 1.

Theorem 3.1. The sequence {xn} generated by Algorithm 1 converges strongly to a

point Πf
V Isx, provided that limn→∞ αn = 0 and

∑∞
n=1 αn = ∞.

Proof. First, we prove that {xn} is bounded. Let z ∈ V I(C,A), then

Df (z, yn) = Df (z,Π
f
C(∇f−1(∇f(xn)− γnAxn)))

≤ Df (z,∇f−1(∇f(xn)− γnAxn))

= f(z)− f(yn)− ⟨∇f(xn)− γnAxn, z − yn⟩
= f(z)− f(yn)− ⟨∇f(xn), z − yn⟩+ γn⟨Axn, z − yn⟩
= f(z)− f(xn)− ⟨∇f(xn), z − xn⟩+ ⟨∇f(xn), z − xn⟩

+f(xn)− f(yn)− ⟨∇f(xn), z − yn⟩+ γn⟨Axn, z − yn⟩
= f(z)− f(xn)− ⟨∇f(xn), z − xn⟩ − f(yn) + f(xn)

+⟨∇f(xn), yn − xn⟩+ γn⟨Axn, z − yn⟩
= Df (z, xn)−Df (yn, xn) + γn⟨z − yn, Axn⟩. (3.1)

By the definition of Bregman distance, we have

Df (z, zn) = Df (z,∇f−1(∇f(yn)− γn(Ayn −Axn))

= f(z)− f(zn)− ⟨∇f(yn)− γn(Ayn −Axn), z − zn⟩
= f(z)− f(zn)− ⟨∇f(yn), z − zn⟩+ γn⟨Ayn −Axn, z − zn⟩
= f(z)− f(yn)− ⟨∇f(yn), z − yn⟩+ ⟨∇f(yn), z − yn⟩

+f(yn)− f(zn)− ⟨∇f(yn), z − zn⟩+ γn⟨Ayn −Axn, z − zn⟩
= f(z)− f(yn)− ⟨∇f(yn), z − yn⟩ − f(zn) + f(yn)

+⟨∇f(yn), zn − yn⟩+ γn⟨Ayn −Axn, z − zn⟩
= Df (z, yn)−Df (zn, yn) + γn⟨Ayn −Axn, z − zn⟩. (3.2)

Substituting (3.1) into (3.2), we get

Df (z, zn) ≤ Df (z, xn)−Df (yn, xn)−Df (zn, yn) + γn⟨Axn, z − yn⟩
+γn⟨Ayn −Axn, z − zn⟩

= Df (z, xn)−Df (yn, xn)−Df (zn, yn) + γn⟨Axn, z − yn⟩
+γn⟨Ayn, z − zn⟩ − γn⟨Axn, z − zn⟩
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= Df (z, xn)−Df (yn, xn)−Df (zn, yn) + γn⟨Axn, zn − yn⟩
+γn⟨Ayn, z − zn⟩

= Df (z, xn)−Df (yn, xn)−Df (zn, yn) + γn⟨Axn, zn − yn⟩
−γn⟨Ayn, yn − z⟩+ γn⟨Ayn, yn − zn⟩

= Df (z, xn)−Df (yn, xn)−Df (zn, yn) + γn⟨Axn −Ayn, zn − yn⟩
−γn⟨Ayn, yn − z⟩.

Since A is pseudo-monotone and z ∈ V I(C,A), we have

⟨Ayn, yn − z⟩ ≥ 0.

By the definition of γn+1, we have

Df (z, zn) ≤ Df (z, xn)−Df (yn, xn)−Df (zn, yn) + γn⟨Axn −Ayn, zn − yn⟩
= Df (z, xn)−Df (yn, xn)−Df (zn, yn)

+
γn

γn+1
γn+1⟨Axn −Ayn, zn − yn⟩

≤ Df (z, xn)−Df (yn, xn)−Df (zn, yn)

+
µ

2

γn
γn+1

(∥xn − yn∥2 + ∥zn − yn∥2)

= Df (z, xn)−Df (yn, xn) +
µ

2

γn
γn+1

∥xn − yn∥2 −Df (zn, yn)

+
µ

2

γn
γn+1

∥zn − yn∥2.

Using (2.4), we have

Df (z, zn) ≤ Df (z, xn)−
(
1− µ

σ

γn
γn+1

)
Df (yn, xn)

−
(
1− µ

σ

γn
γn+1

)
Df (zn, yn). (3.3)

By Algorithm 1, we note that

Df (z, xn+1) ≤ Df (z,∇f−1(αn∇f(u) + (1− αn)∇f(zn))

≤ αnDf (z, u) + (1− αn)Df (z, zn)

≤ max{Df (z, u), Df (z, xn)}
...

≤ max{Df (z, u), Df (z, x1)}. (3.4)

Hence, {Df (z, xn)} is bounded. Using [28] we obtain that {xn} is also bounded. Conse-
quently, we see that {∇f(xn)}, {zn}, {yn} are bounded.
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From (2.5), we obtain

Df (z, xn+1) = Vf (z, αn∇f(u) + (1− αn)∇f(zn))

≤ Vf (z, αn∇f(u) + (1− αn)∇f(zn)− αn(∇f(u)−∇f(z))

+⟨αn(∇f(u)−∇f(z), xn+1 − z⟩
= Vf (z, αn∇f(z) + (1− αn)∇f(zn) + αn⟨∇f(u)−∇f(z), xn+1 − z⟩
≤ αnVf (z,∇f(z)) + (1− αn)Vf (z,∇f(zn)

+αn⟨∇f(u)−∇f(z), xn+1 − z⟩
= (1− αn)Df (z, zn) + αn⟨∇f(u)−∇f(z), xn+1 − z⟩
≤ (1− αn)Df (z, xn) + αn⟨∇f(u)−∇f(z), xn+1 − z⟩. (3.5)

Afterward, we show that the sequence {xn} generated byAlgorithm 1 converges strongly
to an element in V I(C,A).

Case I : Let z ∈ V I(C,A). Suppose that exists n0 ∈ N such that {Df (z, f(xn))} is mono-
tonically non-increasing for n ≥ n0. Since {Df (z, f(xn))} is bounded, {Df (z, f(xn))}
converges and therefore

Df (z, f(xn))−Df (z, f(xn+1)) → 0 as n → ∞.

We consider the following inequality

Df (z, xn+1) ≤ Df (z,∇f−1(αn∇f(u) + (1− αn)∇f(zn))

≤ αnDf (z, u) + (1− αn)Df (z, zn)

≤ αnDf (z, u) + (1− αn)[Df (z, xn)−
(
1− µ

σ

γn
γn+1

)
Df (yn, xn)

−
(
1− µ

σ

γn
γn+1

)
Df (zn, yn)].

This implied that

(1− αn)

(
1− µ

σ

γn
γn+1

)
[Df (yn, xn) +Df (zn, yn)] ≤ αn[Df (z, u)−Df (z, xn)]

+Df (z, xn)−Df (z, xn+1).

From (3.5) and αn → 0, we get

Df (z, xn+1) ≤ Df (z, xn).

This implies that

lim
n→∞

(Df (z, xn+1)−Df (z, xn)) = 0. (3.6)

Moreover, we get

lim
n→∞

(
1− µ

σ

γn
γn+1

)
[Df (yn, xn) +Df (zn, yn)] = 0.

Hence

lim
n→∞

Df (yn, xn) = lim
n→∞

Df (zn, yn) = 0.
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We obtain

lim
n→∞

∥yn − xn∥ = lim
n→∞

∥zn − yn∥ = 0. (3.7)

We consider the following inequality

∥xn − zn∥ ≤ ∥xn − yn∥+ ∥yn − zn∥.

From (3.7), we get

lim
n→∞

∥xn − zn∥ = 0.

Furthermore,

Df (zn, xn+1) ≤ Df (zn,∇f−1(αn∇f(u) + (1− αn)∇f(zn))

≤ αnDf (zn, u) + (1− αn)Df (zn, zn)

→ 0, n → ∞.

Therefore

lim
n→∞

∥zn − xn+1∥ = 0.

Consider

∥xn − xn+1∥ ≤ ∥xn − zn∥+ ∥zn − xn+1∥.

We obtain

lim
n→∞

∥xn − xn+1∥ = 0.

By the boundedness of {xn}, there exists a subsequence {xnk
} of {xn} such that xnk

⇀ z̃.
We now show that z̃ ∈ V I(C,A). From

ynk
= ΠC(∇f−1(∇f(xnk

)− γnk
Axnk

)),

it follows from (2.2) that

⟨∇f(xnk
)− γnk

Axnk
−∇f(ynk

), x− ynk
⟩ ≤ 0, ∀x ∈ C, (3.8)

which implies

⟨∇f(xnk
)−∇f(ynk

), x− ynk
⟩ ≤ γnk

⟨Axnk
, x− ynk

⟩, ∀x ∈ C,

or equivalently〈
∇f(xnk

)−∇f(ynk
)

γnk

, x− ynk

〉
+ ⟨Axnk

, ynk
− xnk

⟩ ≤ ⟨Axnk
, x− xnk

⟩,

∀x ∈ C. (3.9)

Since f is uniformly Frèchet differentiable,∇f is uniformly continuous on bounded subsets
of E and so ∥∇f(xnk

) − ∇f(ynk
)∥ → 0 as k → ∞. Form (3.9) with the fact that

limk→∞γnk
= γ > 0 and {Axnk

} is bounded, we can show that

lim inf
k→∞

⟨Axnk
, x− xnk

⟩ ≥ 0, ∀x ∈ C. (3.10)

Let {ϵk} be a sequence in (0, 1) such that {ϵk} as k → ∞. For any k ≥ 1, there exists a
smallest number N ∈ N satisfying

⟨Axnk
, x− xnk

⟩+ ϵk ≥ 0, ∀k ∈ N.
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This implies that

⟨Axnk
, x+ ϵkynk

− xnk
⟩ ≥ 0, ∀k ∈ N,

for some wnk
∈ E satisfying ⟨Axnk

, wnk
⟩ = 1 (since Axnk

̸= 0). Since A is pseudo-
monotone, we obtain

⟨A(x+ ϵkwnk
), x+ ϵkwnk

− xnk
⟩ ≥ 0, ∀k ∈ N.

Thus

⟨Ax, x−xnk
⟩ ≥ ⟨Ax−A(x+ϵkwnk

), x+ϵkwnk
−xnk

⟩−ϵk⟨Ax,wnk
⟩, ∀k ∈ N. (3.11)

Since ϵk → 0 and A is continuous. Thus, we have

lim inf
k→∞

⟨Ax, x− xnk
⟩ ≥ 0, ∀x ∈ C.

Hence

⟨Ax, x− z̃⟩ = lim
k→∞

⟨Ax, x− xnk
⟩ ≥ 0, ∀x ∈ C.

From Lemma 2.9, we obtain z̃ ∈ V I(C,A). Next, we show that {xn} convergence strongly
to z.
Since E is reflexive and {xn} is bounded, there exists a subsequence {xnk

} of {xn} such
that

lim sup
n→∞

⟨∇f(u)−∇f(z), xnk+1 − z⟩ = lim
k→∞

⟨∇f(u)−∇f(z), xnk+1 − z⟩. (3.12)

On the other hand, since ∥ xnk+1 − xnk
∥→ 0 and xnk

→ z̃ as k → ∞ we have from (2.5)
and (3.12)

lim sup
n→∞

⟨∇f(u)−∇f(z), xnk+1 − z⟩ = lim
k→∞

⟨∇f(u)−∇f(z), xnk+1 − z⟩

= ⟨∇f(u)−∇f(z), z̃ − z⟩
≤ 0. (3.13)

By Lemma 2.7 and (3.13), we can conclude that limn→∞ Df (z, xn) = 0. Therefore, by
Lemma 2.5, xn convergs strongly to z. The proof is completed.

Case II : Suppose that Df (z,∇f(xn)) is not monotonically decreasing. Let φ : N → N for
all n ≥ n0 be defined by

φn = max{k ∈ N : φk ≤ φk+1}.
Obviously, φ is nondecreasing, φ(n) → ∞ as n → ∞ and

0 ≤ Df (z, xφ(n)) ≤ Df (z, xφ(n)+1), ∀n ≥ n0.

Following a similar argument to Case I, we get

∥ xφ(n) − yφ(n) ∥→ 0, ∥ xφ(n)+1 − xφ(n) ∥→ 0,

as n → ∞ and Ωw(xφ(n)) ⊂ V I(C,A), where Ωw(xφ(n)) is the weak subsequential limit
of {xφ(n)}. We can show that

lim sup
n→∞

⟨∇f(u)−∇f(z), xφ(n)+1 − z⟩ ≤ 0.

From (3.8), we have

Df (z, xφ(n)+1) ≤ (1− γφ(n))Df (z, xφ(n)) + γφ(n)⟨∇f(u)−∇f(z)), xφ(n)+1 − z⟩.
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Since Df (z, xφ(n)) ≤ Df (z, xφ(n)+1), we get

0 ≤ Df (z, xφ(n)+1)−Df (z, xφ(n))

≤ (1− γφ(n))Df (z, xφ(n)) + γφ(n)⟨∇f(u)−∇f(z), xφ(n)+1 − z⟩ −Df (z, xφ(n)),

therefore, from (3.13), we have

Df (z, xφ(n)) ≤ ⟨∇f(u)−∇f(z), xφ(n)+1 − z⟩ → 0 as n → ∞.

Consequencely, we obtain, for all n ≥ n0,

0 ≤ Df (z, xφ(n)) ≤ max{Df (z, xφ(n)), Df (z, xφ(n)+1)} = Df (z, xφ(n)+1).

Thus

Df (z, xn) → 0 as n → ∞.

Hence, from (2.6)

lim
n→∞

∥ xn − z ∥ = 0.

We concluded that {xn} converge strongly to z. This completes the proof.
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