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Abstract : We establish some common fixed point and coincident point theorems
for a quadruple of self-mappings on a Banach space X over a topological semifield.
Our first result extends the main result of Pathak et al. [8] to a general class of
mappings in which we have dropped the requirement of pairwise commutativity of
mappings by imposing certain restrictions on parameters. Our second result deals
with the existence of coincidence points for a quadruple of self-mappings under
different conditions than in Theorem 1 of [8]. We also discuss an application of
our main result to solve certain non-linear function equations in Banach space over
a topological semifield..
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1 Introduction

In 1960, M. Antonovskii, V. Boltyanskii and T. Sarymsakow [1] introduced
the notion of a topological semifield.

Definition 1.1 If a semifield R; i.e., a division ring R that has the structure of a
topological group such that (x, y) → x + y (sum) and (x, y) → x.y (product) are
both continuous mappings of R × R → R, then R is called a topological ring. If
a topological ring F is a field (not necessarily commutative) such that x → x−1

(inverse element) is a continuous mapping of F ∗ = F − {0} into F ∗ then F is
called a topological semifield.
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Let E be a topological semifield and let all its positive elements be in K. For
any two elements x and y of E, we put x << y if y − x is in K̄. Every topological
semifield E contains a sub semifield which is isomorphic to the field of real numbers

R, (see [1]). This subsemifield is called the axis of E. Each topological semifield
can be regarded as a topological linear space over the field R by identifying the
axis and R.

Let d be a mapping of X × X → E, satisfying the usual axioms for a metric.
The ordered triple (X, d,E) is called the metric space over the topological semifield,
see [1], [2], [5] and [6].

Let X be a linear space over the field R. If there exists a mapping ‖.‖ : X → E

satisfying the usual axioms for a norm, then the ordered triple (X, ‖.‖, E) is called
a feeble normed space over the topological semifield, see [1], [4] and [6].

2 Main Results

Now we use the following definitions:

Definition 2.1 A subset S of a linear topological space E is said to be sequen-
tially complete if and only if each Cauchy sequence in S converges to a point in
S.

Definition 2.2 Let (X, ‖.‖, E) be a feeble normed space over a topological semi-
field E and let d(x, y) = ‖x − y‖ for all x, y in X. A space (X, ‖.‖, E) is called a
Banach space over a topological semifield E if (X, d,E) is a sequentially complete
metric space over the topological semifield E.

Definition 2.3 A point u of X is said to be coincidence point of a pair of mappings
(A,S) if there exists t ∈ X such that St = Tt.

Definition 2.4 [3] Two self mappings A and S of X is said to be weakly compatible
if there exist a point u ∈ X such that ASu = SAu whenever Au = Su.

Pathak et.al.[8] gave the following result.

Theorem A.[8] Let X be a Banach space over a topological semifield E. Let
A,B, S and T be four continuous self mappings of X which commute with each
other and satisfy the following conditions:

p‖Sx − Ty‖m + ‖Sx − Ax‖m << q‖Ty − By‖m,

p‖Sx − Ty‖m + ‖Ty − By‖m << q‖Sx − Ax‖m

for all x, y ∈ X, where p,m > 0, and 0 < q < 1. Then the sequence {yn} defined
recursively by:

y2n+1 = Sx2n+1 = (1 − t)Tx2n + tBx2n,

y2n+2 = Tx2n+2 = (1 − t)Sx2n+1 + tAx2n+1,
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where x0 is a point in X, 0 < t < 1 and 0 ≤ q − ptm < 1, converges to the unique
common fixed point of A,B, S and T in X.

We note here that Theorem A should have contained the extra condition that
the range of S contained the range of (1− t)T + tB and the range of T contained
the range of (1 − t)S + tA.

We now prove our first theorem in which we have dropped the condition of
“pairwise commutativity of mappings” of Theorem A by restricting the parameters
p and q as follows:

Theorem 2.5 Let X be a Banach space over a topological semifield E. Let A,B, S

and T be four continuous self mappings of X, satisfying the following conditions:

p‖Sx − Ty‖m + ‖Sx − Ax‖m << q‖Ty − By‖m, (2.1)

p‖Sx − Ty‖m + ‖Ty − By‖m << q‖Sx − Ax‖m (2.2)

for all x, y ∈ X, where p,m > 0, and q > p. Suppose that the range of S contains
the range of (1− t)T + tB and the range of T contains the range of (1− t)S + tA,

where 0 < t < 1 and 0 < q − p < q − ptm < q < 1. Then A,B, S and T have a
unique common fixed point.

Proof. Let x0 be an arbitrary point in X and put y1 = (1− t)Tx0 + tBx0. Since
the the range of S contains the range of (1 − t)T + tB, there exists a point x1

in X such that Sx1 = y1. Now put y2 = (1 − t)Sx0 + tAx1. Since the the range
of T contains the range of (1 − t)S + tA, there exists a point x2 in X such that
Tx2 = y2. More generally, having chosen the point x2n in X, we choose a point
x2n+1, such that

Sx2n+1 = y2n+1 = (1 − t)Tx2n + tBx2n (2.3)

and then choose a point x2n+2, such that

Tx2n+2 = y2n+2 = (1 − t)Sx2n+1 + tAx2n+1 (2.4)

for n = 1, 2, . . . .
From (2.3) and (2.4), we obtain

‖Sx2n+1 − Tx2n‖ = t‖Bx2n − Tx2n‖, (2.5)

‖Tx2n+2 − Sx2n+1‖ = t‖Ax2n+1 − Sx2n+1‖. (2.6)

If we put x = x2n+1 and y = x2n in (2.1), we have from (2.5) and (2.6)

p‖Sx2n+1 − Tx2n‖
m + ‖Sx2n+1 − Ax2n+1‖

m << q‖Tx2n − Bx2n‖
m.

Then from (2.5) and (2.6), we have

p‖Sx2n+1 − Tx2n‖
m + t−m‖Tx2n+2 − Sx2n+1‖

m

<< qt−m‖Sx2n+1 − Tx2n‖
m
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and then

‖Tx2n+2 − Sx2n+1‖
m << (q − ptm)‖Sx2n+1 − Tx2n‖

m. (2.7)

Similarly putting x = x2n+1 and y = x2n+2 in (2.2) and using (2.5) and (2.6),
we get

p‖Sx2n+1 − Tx2n+2‖
m + ‖Tx2n+2 − Bx2n+2‖

m

<< q‖Sx2n+1 − Ax2n+1‖
m,

p‖Sx2n+1 − Tx2n+2‖
m + t−m‖Sx2n+3 − Tx2n+2‖

m

<< qt−m‖Tx2n+2 − Sx2n+1‖
m (2.8)

‖Sx2n+3 − Tx2n+2‖
m << (q − ptm)‖Tx2n+2 − Sx2n+1‖

m.

From relations (2.7) and (2.8), we have

‖Sx2n+3 − Tx2n+2‖
m << (q − ptm)2‖Sx2n+1 − Tx2n‖

m.

Hence

‖Sx2n+3 − Tx2n+2‖ << [(q − ptm)2]1/m‖Sx2n+1 − Tx2n‖ (2.9)

which implies that

‖Sx2n+1 − Tx2n‖ << [(q − ptm)2]n/m‖Sx1 − Tx0‖

and since 0 < q − ptm < 1, it follows that {yn} is a Cauchy sequence.
Since X is complete, it then follows that the sequence {yn} converges to a point

u in X. Using (2.3) and (2.4), we see that {Sx2n+1} and {Tx2n} also converge to
u. Further, in view of (2.5) and (2.6), {Bx2n} and {Ax2n+1} also converges to u.

Putting x = Ax2n+1 and y = Bx2n in (2.1) and (2.2), we have

p‖SAx2n+1 − TBx2n‖
m + ‖SAx2n+1 − AAx2n+1‖

m

<< q‖TBx2n − BBx2n‖
m (2.10)

p‖SAx2n+1 − TBx2n‖
m + ‖TBx2n − BBx2n‖

m

<< q‖SAx2n+1 − AAx2n+1‖
m. (2.11)

Letting n → ∞ in (2.10) and (2.11) we have,

p‖Su − Tu‖m + ‖Su − Au‖m << q‖Tu − Bu‖m, (2.12)

p‖Su − Tu‖m + ‖Tu − Bu‖m << q‖Su − Au‖m, (2.13)

since A,B, S and T are continuous mappings and ‖.‖ is a continuous function.
With the help of (2.12) and (2.13) we will now show that u is a coincidence

point of the pairs (A,S) and of (B, T ).
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Suppose, if possible, that Au 6= Su. Since p, q > 0, we have from (2.1), (2.2),
(2.12) and (2.13) that

‖Su − Au‖m << ‖Su − Au‖m + p‖Su − Tu‖m

<< q‖Tu − Bu‖m

<< q‖Tu − Bu‖m + qp‖Su − Tu‖m,

<< q2‖Su − Au‖m,

which is a contradiction. Thus we have

Su = Au. (2.14)

We now show that Bu = Tu. If not, then again using (2.1), (2.2), (2.12) and
(2.13) we have

‖Tu − Bu‖m << ‖Tu − Bu‖m + p‖Su − Tu‖m

<< q‖Su − Au‖m

<< q‖Su − Au‖m + qp‖Su − Tu‖m

<< q2‖Tu − Bu‖m,

which is a contradiction. Thus we have

Tu = Bu. (2.15)

Using (2.14) and (2.15) in (2.12) and (2.13) we have

p‖Su − Tu‖m << 0

which gives

Su = Tu. (2.16)

From (2.14), (2.15) and (2.16), we see that u is a coincidence point of A, B S and
T and we put

Au = Su = Tu = Bu = w. (2.17)

Claim I: We claim that w is a common fixed point of B and T . To show this,
put x = u and y = w in conditions (2.1) and (2.2). We then have

p‖Su − Tw‖m + ‖Su − Au‖m << q‖Tw − Bw‖m,

p‖Su − Tw‖m + ‖Tw − Bw‖m << q‖Su − Au‖m.

Using (2.17), it follows that

p‖w − Tw‖m << q‖Tw − Bw‖m, (2.18)

p‖w − Tw‖m + ‖Tw − Bw‖m << 0 (2.19)
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so that from (2.18) we have

p‖w − Tw‖m << q‖Tw − Bw‖m << ‖Tw − Bw‖m,

as q < 1, and from (2.19) we have

‖Tw − Bw‖m << ‖Tw − Bw‖m + p‖w − Tw‖m << 0

as p > 0.
Thus Tw = Bw and putting Tw = Bw in (2.18) we have Tw = w. Therefore

w is a common fixed point of B and T.

Claim II: We now claim that w is a common fixed point of A and S. To show
this, put x = w and y = u in conditions (2.1) and (2.2). We then have

p‖Sw − Tu‖m + ‖Sw − Aw‖m << q‖Tu − Bu‖m << 0

on using (2.17). It follows that

Sw = Aw = Tu = w.

Therefore w is a common fixed point of A and S.

From claims I and II we see that w is a common fixed point of A,B, S and T .
We now prove the uniqueness of w. If w′ is a second common fixed point of

A,B, S and T , then on putting x = w and y = w′ in (2.1) we have

p‖Sw − Tw′‖m + ‖Sw − Aw‖m << q‖Tw′ − Bw′‖m

that is
p‖w − w′‖m + ‖w − w‖m << q‖w′ − w′‖m

or,
p‖w − w′‖m << 0.

Hence w = w′, proving the uniqueness of common fixed point of A,B, S and T .
This completes the proof of the theorem. �

Remark 2.6 (i) When A,B, S and T all commute with each other and p,m >

0; 0 < t < 1; 0 < q < 1 and 0 < q − ptm < 1 then our Theorem 2.1 reduces
to Theorem 2.1 of Pathak et. al. [8].

(ii) When S = T and all the mappings A,B and S commute with each other,
then our Theorem 2.1 reduces to Theorem 1 of Pathak et. al. [7].

Theorem 2.7 Let X be a Banach space over a topological semifield E and let
K be a set of positive elements of X. Let A,B, S and T be four continuous self
mappings of X, satisfying the following relations

‖Ax − Sx‖ << p‖Sx − Ty‖, (2.20)

‖By − Ty‖ << p‖Ax − Sx‖ (2.21)
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for all x, y ∈ X, where 0 < p < 1. Suppose that the range of S contains the range
of (1 − t)T + tB and the range of T contains the range of (1 − t)S + tA, where
0 < t < 1. Then the sequence {yn} defined recursively by

y2n+1 = Sx2n+1 = (1 − t)Tx2n + tBx2n,

y2n+2 = Tx2n+2 = (1 − t)Sx2n+1 + tAx2n+1,

where x0 is a point in X, converges to a point u ∈ X.
Further, if the range of T contains the range of S and if (A,S) is a weakly

compatible pair of mappings, then Au = w is a coincidence point of A,B, S and
T .

Proof. From (2.3) and (2.4), we obtain

‖Sx2n+1 − Tx2n‖ = t‖Bx2n − Tx2n‖,

‖Tx2n+2 − Sx2n+1‖ = t‖Ax2n+1 − Sx2n+1‖.

Puttting x = x2n+1 and y = x2n in (2.20), we have

‖Ax2n+1 − Sx2n+1‖ << p‖Sx2n+1 − Tx2n‖

and using (2.6), it follows that

‖Sx2n+1 − Tx2n+2‖ << pt‖Sx2n+1 − Tx2n‖. (2.22)

Similarly, putting x = x2n+1 and y = x2n+2 in (2.21) we have

‖Bx2n+2 − Tx2n+2‖ << p‖Ax2n+1 − Sx2n+1‖

and using (2.5), we get

‖Sx2n+3 − Tx2n+2‖ << pt‖Sx2n+1 − Tx2n+2‖. (2.23)

From (2.22) and (2.23) we have

‖Sx2n+3 − Tx2n+2‖ << p2t‖Sx2n+1 − Tx2n‖

for n = 0, 1, 2, . . . and it follows that

‖Sx2n+1 − Tx2n‖ << (p2t)n‖Sx1 − Tx0‖.

Since 0 < p2t < 1, it follows that {yn} is a Cauchy sequence.
Now, since X is complete, it follows that the sequence {yn} converges to a point

u in X. Using (2.3) and (2.4), we see that {Sx2n+1} and {Tx2n} also converge to
u. Further, in view of (2.5) and (2.6), {Bx2n} and {Ax2n+1} also converge to u.

Using the continuity of A,B, S and T , we now see that

lim
n→∞

SAx2n+1 = Su, lim
n→∞

ASx2n+1 = Au,

lim
n→∞

BTx2n = Bu, lim
n→∞

TBx2n = Tu.
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Since the range of T contains the range of S, there exists v ∈ X such that
Su = Tv = w, say. Putting x = u and y = v conditions (2.20) and (2.21) yield

‖Au − Su‖ << p‖Su − Tv‖,

‖Bv − Tv‖ << p‖Au − Su‖

that is,

Su = Tv = w = Au = Bv. (2.24)

This shows that u is a coincidence point of (A,S) and v is coincidence point of
(B, T ).

We now show that w is a coincidence point of both pairs (A,S) and (B, T ).
Weak compatibility of (A,S) implies that ASu = SAu since Au = Su = w. That
is,

Aw = Sw. (2.25)

Putting x = y = w, the conditions (2.20) and (2.21) yield

‖Aw − Sw‖ << p‖Sw − Tw‖,

‖Bw − Tw‖ << q‖Aw − Sw‖.

Thus we have

Bw = Tw (2.26)

and we conclude that

Aw = Sw = Bw = Tw.

Therefore, w is a coincidence point of A,B, S and T . This completes the proof of
the theorem. �

Remark 2.8 In Theorem 2.7, weak compatibility of the pair of mappings (A,S)
and (B, T ) do not necessarily imply Aw = Sw and Bw = Tw, respectively; i.e., w

is not necessarily a coincidence point of A,B, S and T.

3 An Application

Now we prove an application of Theorem 2.5 for certain non-linear function
equations in Banach space X over a topological semifield E as follows:

Theorem 3.1 Let X be a Banach space over a topological semifield E and let
A,B, S and T be four continuous self mappings on X satisfying conditions (2.1)
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and (2.2) of Theorem 2.5. Let {fn} and {gn} be sequences of elements in X and
let wn be the unique solution of the system of equations

u − Su = fn, (3.1)

u − Tu = gn, (3.2)

andlet {wn} be a sequence of solutions of the system of equations

Su − Au = 0, Tu − Bu = 0 (3.3)

satisfying

‖wi − wj‖ << ‖wi − Swi‖ + ‖Swi − Twj‖ + ‖Twj − wj‖ (3.4)

for i, j = 1, 2, . . . . If
lim

n→∞

‖fn‖ = lim
n→∞

‖gn‖ = 0,

then the sequence {wn} converges to the solution of the equations

u = Su = Au = Bu = Tu. (3.5)

Proof. By hypothesis, for all n, we have

‖Swn − Awn‖ = 0, ‖Twn − Bwn‖ = 0.

Suppose that
‖wn − Swn‖ 6= 0, ‖wn − Twn‖ 6= 0,

then by (2.2) and (3.4), we have for r > n,

‖wn − wr‖<<‖wn − Swn‖ + ‖Swn − Twr‖ + ‖Twr − wr‖

<< ‖fn‖ + p−
1

m {q‖Swn − Awn‖
m − ‖Twr − Bwr‖

m}
1

m + ‖gr‖,

or,

‖wn − wr‖ << ‖fn‖ + ‖gr‖. (3.6)

Similarly, by (2.1) and (3.4) we have for r > n,

‖wn − wr‖ << ‖fn‖ + p−
1

m {q‖Twr − Bwr‖
m − ‖Swn − Awn‖

m}
1

m + ‖gr‖,

or,

‖wn − wr‖ << ‖fn‖ + ‖gr‖. (3.7)

Proceeding to the limit as n → ∞ we obtain from (3.6) and (3.7) that ‖wn −
wr‖ → 0. This implies that {wn} is a Cauchy sequence in X. Since X is complete,
it follows that the sequence {wn} converges to a point w in X.
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Since A, B, S and T are continuous, it follows from (3.1) that

‖w − Sw‖ = lim
n→∞

‖wn − Swn‖ = lim
n→∞

‖fn‖ = 0,

‖w − Tw‖ = lim
n→∞

‖wn − Twn‖ = lim
n→∞

‖gn‖ = 0.,

‖Sw − Aw‖ = lim
n→∞

‖Swn − Awn‖ = 0,

‖Tw − Bw‖ = lim
n→∞

‖Twn − Bwn‖ = 0.

This implies that w = Aw = Bw = Sw = Tw, completing the proof of the
theorem. �

4 An Example

Finally, we give an example to validate our coincidence Theorem 2.7 as follows:

Example 4.1 Let E = R be a topological semifield and X = R be its subsemifield
over the field of real number under ordinary addition and multiplication. Suppose
K = R

+ = (0,∞) be the set of all positive elements of E, so that K̄ = [0,∞).
Let us define a norm ‖.‖ in R by

‖x − y‖ = |x − y| ∀x, y ∈ R

and four continuous self-mappings on R by

Ax =
x

5
, Sx =

x

4
, Bx =

x

3
, Tx =

x

2
: ∀x, y ∈ R .

Since each topological subsemifield is isomorphic to the field of real numbers R,
it is obvious that R is isomorphic to R itself. For instance, if we choose a mapping
φ : R → R defined by φ(x) = x

2
for all x ∈ R then φ is topologically isomorphic

from R to R, as φ is one-one, onto, linear and both φ and φ−1 are continuous in
their respective domains.

Here, we observe that

(i) A−1x = 5x, S−1x = 4x, B−1x = 3x and T−1x = 2x.

(ii) AX = SX = BX = TX = R, so that the range of S contains the range
of (1 − t)T + tB and the range of T contains the range of (1 − t)S + tA, where
0 < t < 1 and SX = TX.

(iii) (R, ‖.‖) is a Banach space.

(iv) Let us test the convergence of {xn} as defined in Theorem 2.7. That is,

y2n+1 = Sx2n+1 = (1 − t)Tx2n + tBx2n,

y2n+2 = Tx2n+2 = (1 − t)Sx2n+1 + tAx2n+1.
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Thus for an arbitrary x0 ∈ R we obtain

Sx1 = (1 − t)Tx0 + tBx0 =
1

2
x0

(

1 −
t

3

)

,

so that

x1 = S−1

{1

2
x0

(

1 −
t

3

)}

= 2x0

(

1 −
t

3

)

and

Tx2 =
(

1 − t
)

Sx1 + tAx1 =
1

4
x1

(

1 −
t

5

)

so that

x2 = T−1

{1

4
x1

(

1 −
t

5

)}

=
1

2
x1

(

1 −
t

5

)

= x0

(

1 −
t

3

)(

1 −
t

5

)

.

More generally, we have

x2n+1 = 2x2n

(

1 −
t

3

)

= 2x0

(

1 −
t

3

)n+1(

1 −
t

5

)n

,

x2n+2 =
1

2
x2n+1

(

1 −
t

5

)

= x0

(

1 −
t

3

)n+1(

1 −
t

5

)n+1

for n = 1, 2, . . . .
Since 0 < t < 1, it follows that limn→∞ x2n+1 = limn→∞ x2n+2 = 0 and so

limn→∞ xn = 0.

(v) We have thus proved that the sequence {xn} converges to u = 0 and A0 = S0.
Since AS0 = SA0, the pair (A,S), is weak compatibile.

(vi) Let us test the relations (2.20) and (2.21) for all x, y ∈ X.
Since

||Ax − Sx|| =
|x|

20
, ||By − Ty|| =

|y|

6
, ||Sx − Ty|| =

|x − 2y|

4

we have from (2.20)

|x|

20
<<

p|x − 2y|

4
<<

p

4
(|x| + 2|y|),

since K = R
+, and this implies that

(

1

20
−

p

4

)

|x| <<
p|y|

2
. (4.1)

Similarly, from (2.21) we have

|y|

6
<<

p|x|

20
. (4.2)
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Using (4.2) in (4.1) we obtain,

( 1

20
−

p

4

)

|x| <<
p|y|

2
<<

3p2|x|

20
<

3p|x|

20
.

That is,
( 1

20
−

p

4

)

<
3p

20
.

This implies

1

8
< p. (4.3)

Thus conditions (2.20) and (2.21) are satisfied for all x, y ∈ X and for 1

8
<

p < 1.

(vii) Lastly we see that, for w = 0 we have

A0 = S0 = B0 = T0.

Thus w = 0 is a coincidence point of mappings A,B, S and T . This verifies
Theorem 2.2.

An Open Question. To what extent we can mute continuity requirement of
quadruple of self-mappings in Theorems 2.1 and 2.2 ?
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in Banach spaces over topological semifields and an application, Dem. Math.,
XXXII(1)(1999), 139-143



Fixed Point and Coincidence Point Theorems on Banach Spaces over . . . 127

[8] H. K. Pathak, M. S. Khan, R. Tiwari and B. Fisher, Fixed point theorem for
Banach space over topological semifields and its application, Thai J. Math.,
1(2)(2003), 81-85.

(Received 14 June 2006)

H. K. Pathak
School of Studies in Mathematics,
Pt. Ravishankar Shukla University,
Raipur(C.G.) 492010, India.
email: hkpathak@sify.com

R. K. Verma
Department of Mathematics,
Govt. C. L. C. College,
Patan, Distt.- Durg 491111 (C. G.), India.

Brian Fisher
Department Of Mathematics,
University of Leicester,
Leicester, LE1 7RH, England.
email:fbr@le.ac.uk


