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Abstract In this paper, by using basic concepts of number theory, we present some conditions of the

non-existence of non-negative integer solutions (x, y, z) for the Diophantine equations qx+p(2q+1)y = z2

and qx + p(4q + 1)y = z2, where p and q are prime numbers.

MSC: 11D61

Keywords: Diophantine equation; Legendre symbol; congruence

Submission date: 01.11.2023 / Acceptance date: 06.04.2024

1. Introduction

There are a lot of studies about the exponential Diophantine equations in the form
ax + by = z2, where a and b are positive integers. Many researchers investigated the
non-existence of solutions for the Diophantine equations, when a and b are fixed positive
integers, see [1–5]. Later, it has been generalized by adding some conditions for a and b. In
2018, Gupta, Kumar and Kishan [6] proved that the Diophantine equation px+(p+6)y =
z2 has no non-negative integer solution, where p and p+6 are prime numbers with p ≡ 1
(mod 6). In 2019, Mina and Bacani [7] presented results that guarantee the non-existence
of positive integer solutions of the Diophantine equation px + qy = z2n, where p, q and n
are positive integers. In the same year, Kumar, Gupta and Kishan [8] showed that if p and
p+12 are primes with p ≡ 1 (mod 6), then the Diophantine equation px+(p+12)y = z2

has no non-negative integer solution. In 2020, Dokchan and Pakapongpun [9] proved
that the Diophantine equation ax + (a + 2)y = z2 has no non-negative integer solution,
where a is a positive integer with a ≡ 5 (mod 42). In 2021, Thongnak, Kaewong and
Chuayjan [10] determined that the Diophantine equation (p + 2)x + (5p + 6)y = z2 is
not solvable in non-negative integers, where p, p + 2 and 5p + 6 are prime numbers.
Dokchan and Pakapongpun [11] proved that the Diophantine equation px+(p+20)y = z2

has no positive integer solution, where p and p + 20 are primes. In [12], Tadee found
some conditions of the non-existence of non-negative integer solutions for the Diophantine
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equation px + (p+ 14)y = z2, where p and p+ 14 are prime numbers. In 2022, Alabbood
[13] proved that the Diophantine equation px + (p+ λ+ 1)y = z2 has no positive integer
solution, where p > 3, p + λ + 1 and λ are prime numbers with λ being a non Sophie
Germain prime such that λ ≡ 3 (mod 4).

Next, some of mathematical researchers have added the coefficients of the equation.
For example, in 2019, Laipaporn, Wananiyakul and Khachorncharoenkul [14] proved that
the Diophantine equation 3x+p·5y = z2 has no non-negative integer solution, where p is a
prime number with p ≡ 5, 17 (mod 24). In 2022, Tangjai, Chaeoueng and Phumchaichot
[15] showed that the Diophantine equation 7x + 5 · py = z2 has no non-negative integer
solution, where p is an odd prime number with p ≡ 1, 2, 4 (mod 7). In the same year,
Thongnak, Chuayjan and Kaewong [16] solved the Diophantine equation 11·3x+11y = z2.
Recently, Tadee [17] proved that if n is a positive integer with n ≡ 3 (mod 4), then the
Diophantine equation (n+2)x+2·ny = z2 has no non-negative integer solution. Moreover,
Porto, Buosi and Ferreira [18] studied the Diophantine equation p · 3x + py = z2, where
p is a prime number. Motivated by the above papers, we will find the conditions of the
non-existence of non-negative integer solutions (x, y, z) for the Diophantine equations

qx + p(2q + 1)y = z2 (1.1)

and

qx + p(4q + 1)y = z2, (1.2)

where p and q are prime numbers. In order to find such conditions, we will use properties
of UFD in Z, congruence and the Legendre symbol. Moreover, the research results of
Tadee and Siraworakun [19] also play an important role in proving this, which will be
discussed in the next section.

2. Preliminaries

In this section, we recall the definition of the Legendre symbol. Moreover, we present
its some properties, which have been proven by Tadee and Siraworakun [19].

Definition 2.1. [20] Let a be an integer and p be an odd prime. The Legendre symbol,(
a
p

)
, is defined by

(
a

p

)
=


1 if x2 ≡ a (mod p) is solvable

0 if p | a
−1 if x2 ≡ a (mod p) is not solvable

.

Theorem 2.2. [19] Let p and q be distinct odd prime numbers with q ≡ 1 (mod 4). Then(
q

p

)
=

{
1 if p ≡ q + rS1q + rS1 (mod 2q)

−1 if p ≡ q + rS2q + rS2 (mod 2q)
,

where S1 ∈ {2, 4, 6, . . . , q−1}, S2 ∈ {1, 3, 5, . . . , q−2} and r is a primitive root modulo q.

Theorem 2.3. [19] Let p and q be distinct odd prime numbers with q ≡ 3 (mod 4). Then(
q

p

)
=

{
1 if p ≡ 3q + rS1q + rS1 , −3q + rS2q + rS2 (mod 4q)

−1 if p ≡ 3q + rS2q + rS2 , −3q + rS1q + rS1 (mod 4q)
,

where S1 ∈ {2, 4, 6, . . . , q−1}, S2 ∈ {1, 3, 5, . . . , q−2} and r is a primitive root modulo q.
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3. The Diophantine Equation qx + p(2q + 1)y = z2

Lemma 3.1. Let p, q and 2q + 1 be distinct odd prime numbers.

1. If x = 0 and (1.1) has a non-negative integer solution, then p ≡ 3, 2q− 1 (mod 2q).

2. If x > 0 is even and (1.1) has a non-negative integer solution, then p ≡ 1 (mod 2q).

Proof. Since x is even, we get x = 2k for some non-negative integer k. From (1.1), we
have (z − qk)(z + qk) = p(2q + 1)y, which implies that p | (z + qk) or p | (z − qk).

Case 1. p | (z + qk). Since p and 2q + 1 are distinct prime numbers, there exists a
non-negative integer u such that z− qk = (2q+1)u and z+ qk = p(2q+1)y−u. Therefore,
we get 2qk = p(2q+1)y−u − (2q+1)u. If k = 0, then 2 ≡ p− 1 (mod 2q). Consequently,
p ≡ 3 (mod 2q). If k > 0, then p ≡ 1 (mod q). Since p and q are odd prime numbers, we
have p ≡ 1 (mod 2q).

Case 2. p | (z − qk). Since p and 2q + 1 are distinct prime numbers, there exists a
non-negative integer v such that z − qk = p(2q+ 1)v and z + qk = (2q+ 1)y−v. It follows
that 2qk = (2q+1)y−v − p(2q+1)v. If k = 0, then 2 ≡ 1− p (mod 2q), which shows that
p ≡ 2q − 1 (mod 2q). If k > 0, then p ≡ 1 (mod q) and so p ≡ 1 (mod 2q).

Theorem 3.2. Let p, q and 2q + 1 be distinct odd prime numbers with p ≡ 1 (mod 4).
Then the Diophantine equation (1.1) has no non-negative integer solution if p ̸≡ 3, 2q− 1
(mod 2q) and q ≡ p + rS2p + rS2 (mod 2p), where S2 ∈ {1, 3, 5, . . . , p − 2} and r is a
primitive root modulo p.

Proof. Assume that there exist non-negative integers x, y, z such that (1.1) is true. Since
q ≡ p + rS2p + rS2 (mod 2p), where S2 ∈ {1, 3, 5, . . . , p − 2} and r is a primitive root

modulo p, we have
(

p
q

)
= −1, by Theorem 2.2. Since p ̸≡ 3, 2q − 1 (mod 2q), we get

x > 0, by Lemma 3.1 (1). Taking modulo q to equation (1.1), we obtain p ≡ z2 (mod q).

Thus
(

p
q

)
= 1, which is a contradiction.

Example 3.3. The Diophantine equation 23x + 5 · 47y = z2 has no non-negative integer
solution.

Lemma 3.4. Let p and q be distinct odd prime numbers with q ≡ 1 (mod 4). If p ≡
1, 2q − 1 (mod 2q), then

(
q
p

)
= 1.

Proof. Since q ≡ 1 (mod 4) and p ≡ 1,−1 (mod 2q), we get
(

p
q

)
= 1 and so(

q

p

)
=

(
p

q

)
(−1)(

p−1
2 )( q−1

2 ) = 1.

Theorem 3.5. Let p, q and 2q + 1 be distinct odd prime numbers with q ≡ 1 (mod 4).
Then the Diophantine equation (1.1) has no non-negative integer solution if p ̸≡ 3
(mod 2q) and p ≡ q + rS2q + rS2 (mod 2q), where S2 ∈ {1, 3, 5, . . . , q − 2} and r is a
primitive root modulo q.
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Proof. Assume that there exist non-negative integers x, y, z such that (1.1) is true. Since
p ≡ q + rS2q + rS2 (mod 2q), where S2 ∈ {1, 3, 5, . . . , q − 2} and r is a primitive root

modulo q, we have
(

q
p

)
= −1, by Theorem 2.2. Since p ̸≡ 3 (mod 2q), it implies that x

is odd, by Lemma 3.1 and Lemma 3.4. From (1.1), we obtain qx ≡ z2 (mod p). Then(
qx

p

)
=

(
q
p

)x

= 1 and so
(

q
p

)
= 1, a contradiction.

Example 3.6. The Diophantine equation 5x + p · 11y = z2 has no non-negative integer
solution, where p is a prime number with p ≡ 7 (mod 10).

Example 3.7. The Diophantine equation 29x + p · 59y = z2 has no non-negative integer
solution, where p is a prime number with p ≡ 11, 15, 17, 19, 21, 27, 31, 37, 39, 41, 43, 47, 55
(mod 58).

4. The Diophantine Equation qx + p(4q + 1)y = z2

Theorem 4.1. Let p and q be positive integers with p ≡ 1 (mod 4) and q ≡ 1 (mod 4).
Then the Diophantine equation (1.2) has no non-negative integer solution.

Proof. Assume that there exist non-negative integers x, y, z such that (1.2) is true. Since
p ≡ 1 (mod 4) and q ≡ 1 (mod 4), we have qx + p(4q + 1)y ≡ 2 (mod 4). From (1.2), it
follows that z2 ≡ 2 (mod 4), which contradicts the fact that z2 ≡ 0, 1 (mod 4).

Remark 4.2. By Theorem 4.1, we can see that p and q do not have to be distinct prime
numbers. For example, the Diophantine equation 9x + 9 · 37y = z2 has no non-negative
integer solution.

Lemma 4.3. Let p, q and 4q + 1 be distinct odd prime numbers.
1. If x = 0 and (1.2) has a non-negative integer solution, then p ≡ 3, 4q− 1 (mod 4q).
2. If x > 0 is even and (1.2) has a non-negative integer solution, then p ≡ 1, 2q + 1

(mod 4q).

Proof. To prove in the same way as Lemma 3.1.

Theorem 4.4. Let p, q and 4q + 1 be distinct odd prime numbers with p ≡ 3 (mod 4)
and q ≡ 3 (mod 4). Then the Diophantine equation (1.2) has no non-negative integer
solution if p ̸≡ 3, 2q + 1, 4q − 1 (mod 4q).

Proof. Assume that there exist non-negative integers x, y, z such that (1.2) is true. Since
p ̸≡ 1, 3, 2q + 1, 4q − 1 (mod 4q), it implies that x is odd, by Lemma 4.3. Since p ≡ 3
(mod 4) and q ≡ 3 (mod 4), we have qx + p(4q + 1)y ≡ (−1)x − 1 (mod 4). From (1.2),
we get z2 ≡ (−1)x − 1 ≡ 2 (mod 4), which is impossible since z2 ≡ 0, 1 (mod 4).

Example 4.5. The Diophantine equation 43x+7 ·173y = z2 has no non-negative integer
solution.

Theorem 4.6. Let p, q and 4q+1 be distinct odd prime numbers with p ≡ 1 (mod 4) and
q ≡ 3 (mod 4). Then the Diophantine equation (1.2) has no non-negative integer solution
if p ≡ 3q + rS2q + rS2 (mod 4q), where S2 ∈ {1, 3, 5, . . . , q − 2} and r is a primitive root
modulo q.
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Proof. Assume that there exist non-negative integers x, y, z such that (1.2) is true. Since
p ≡ 3q + rS2q + rS2 (mod 4q), where S2 ∈ {1, 3, 5, . . . , q − 2} and r is a primitive root

modulo q, we have
(

q
p

)
= −1 by Theorem 2.3. Since p ≡ 1 (mod 4) and q ≡ 3 (mod 4),

we get qx + p(4q + 1)y ≡ (−1)x + 1 (mod 4). From (1.2), we obtain (−1)x + 1 ≡ z2

(mod 4). Since z2 ≡ 0, 1 (mod 4), it implies that x is odd. From (1.2), we have qx ≡ z2

(mod p). Therefore
(

qx

p

)
=

(
q
p

)x

= 1 and so
(

q
p

)
= 1, a contradiction.

Example 4.7. The Diophantine equation 3x + p · 13y = z2 has no non-negative integer
solution, where p is a prime number with p ≡ 5 (mod 12).

Example 4.8. The Diophantine equation 7x + p · 29y = z2 has no non-negative integer
solution, where p is a prime number with p ≡ 5, 13, 17 (mod 28).

Theorem 4.9. Let p, q and 4q + 1 be distinct odd prime numbers with p ≡ 3 (mod 4).
Then the Diophantine equation (1.2) has no non-negative integer solution if p ̸≡ 3, 4q− 1
(mod 4q) and q ≡ 3p+rS2p+rS2 , −3p+rS1p+rS1 (mod 4p), where S1 ∈ {2, 4, 6, . . . , p−
1}, S2 ∈ {1, 3, 5, . . . , p− 2} and r is a primitive root modulo p.

Proof. Assume that there exist non-negative integers x, y, z such that (1.2) is true. Since
q ≡ 3p + rS2p + rS2 , −3p + rS1p + rS1 (mod 4p), where S1 ∈ {2, 4, 6, . . . , p − 1}, S2 ∈
{1, 3, 5, . . . , p − 2} and r is a primitive root modulo p, we have

(
p
q

)
= −1, by Theorem

2.3. Since p ̸≡ 3, 4q− 1 (mod 4q), we get x > 0, by Lemma 4.3 (1). From (1.2), it follows

that p ≡ z2 (mod q). Then
(

p
q

)
= 1, a contradiction.

Example 4.10. The Diophantine equation 13x+7 ·53y = z2 has no non-negative integer
solution.

5. Conclusions

By using the properties of UFD in Z, congruence and the Legendre symbol, we have
shown that the Diophantine equation qx + p(2q + 1)y = z2 has no non-negative integer
solution, where p, q and 2q + 1 are distinct odd prime numbers, when it satisfies one of
the following cases: case 1 p ≡ 1 (mod 4), p ̸≡ 3, 2q− 1 (mod 2q) and q ≡ p+ rS2p+ rS2

(mod 2p), where S2 ∈ {1, 3, 5, . . . , p−2} and r is a primitive root modulo p or case 2 q ≡ 1
(mod 4), p ̸≡ 3 (mod 2q) and p ≡ q+ rS2q+ rS2 (mod 2q), where S2 ∈ {1, 3, 5, . . . , q−2}
and r is a primitive root modulo q. Lastly, we have shown that the Diophantine equation
qx + p(4q + 1)y = z2 has no non-negative integer solution, where p, q and 4q + 1 are
distinct odd prime numbers, when it satisfies one of the following cases: case 1 p ≡ 3
(mod 4), q ≡ 3 (mod 4) and p ̸≡ 3, 2q+1, 4q−1 (mod 4q) or case 2 p ≡ 1 (mod 4), q ≡ 3
(mod 4), p ≡ 3q+rS2q+rS2 (mod 4q), where S2 ∈ {1, 3, 5, . . . , q−2} and r is a primitive
root modulo q or case 3 p ≡ 3 (mod 4), p ̸≡ 3, 4q − 1 (mod 4q) and q ≡ 3p+ rS2p+ rS2 ,
−3p + rS1p + rS1 (mod 4p), where S1 ∈ {2, 4, 6, . . . , p − 1}, S2 ∈ {1, 3, 5, . . . , p − 2} and
r is a primitive root modulo p.
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