Inversion of Matrices over Boolean Semirings

N. Sirasuntorn, S. Sombatboriboon and N. Udomsub

Abstract

It is well-known that a square matrix A over a commutative ring R with identity is invertible over R if and only if $\operatorname{det} A$ is a multiplicatively invertible element of R. As a consequence, we have that a square matrix A over a Boolean ring R with identity 1 is invertible over R if and only if $\operatorname{det}^{+} A+\operatorname{det}^{-} A=1$ where $\operatorname{det}^{+} A$ and $\operatorname{det}^{-} A$ are the positive determinant and the negative determinant of A, respectively. This result is generalized to Boolean semirings with identity. By a Boolean semiring we mean a commutative semiring S with zero in which $x^{2}=x$ for all $x \in S$. By making use of Reutenauer and Sraubing's work in 1984, we show that an $n \times n$ matrix A over a Boolean semiring S with identity 1 is invertible over S if and only if $\operatorname{det}^{+} A+\operatorname{det}^{-} A=1$ and $2 A_{i j} A_{i k}=0\left[2 A_{j i} A_{k i}=0\right]$ for all $i, j, k \in\{1, \ldots, n\}$ such that $j \neq k$.

Keywords : Boolean semiring, invertible matrix.
2000 Mathematics Subject Classification : 16Y60, 15A09.

1 Introduction

A semiring is a triple $(S,+, \cdot)$ such that $(S,+)$ and (S, \cdot) are semigroups and $x \cdot(y+z)=x \cdot y+x \cdot z$ and $(y+z) \cdot x=y \cdot x+z \cdot x$ for all $x, y, z \in S$. A semiring $(S,+, \cdot)$ is called additively [multiplicatively] commutative if $x+y=y+x[x \cdot y=y \cdot x]$ for all $x, y, z \in S$. We call $(S,+, \cdot)$ commutative if $(S,+, \cdot)$ is both additively and multiplicatively commutative. An element $0 \in S$ is called a zero of $(S,+, \cdot)$ if $x+0=0+x=x$ and $x \cdot 0=0 \cdot x=0$ for all $x \in S$. By an identity of a semiring $(S,+, \cdot)$ we mean an element $1 \in S$ such that $x \cdot 1=1 \cdot x=x$ for all $x \in S$. Notice that both a zero and an identity of a semiring are unique. An element x of a semiring S with zero 0 [identity 1] is said to be additively [multiplicatively] invertible in S if there is an element $y \in S$ such that $x+y=y+x=0[x y=y x=$ 1]. Such an element $y \in S$ is obviously unique.

Recall that a ring R is called a Boolean ring if $x^{2}=x$ for all $x \in R$. Then

[^0]106 Thai J. Math. 7(2009)/ N. Sirasuntorn, S. Sombatboriboon and N. Udomsub
every Boolean ring is commutative and $-x=x$, that is, $2 x=0$ for all $x \in R([2]$, p.120). If R is a Boolean ring with identity 1 and $x, y \in R$ are such that $x y=1$, then

$$
x=x 1=x(x y)=x^{2} y=x y=1 .
$$

This shows that 1 is the only multiplicatively invertible element of a Boolean ring with identity 1 .

Example 1.1. ([2], p. 120) If X is a set, $\mathcal{P}(X)$ is the power set of X,

$$
A+B=(A \backslash B) \cup(B \backslash A) \text { and } A \cdot B=A \cap B \text { for all } A, B \in \mathcal{P}(X)
$$

Then $(\mathcal{P}(X),+, \cdot)$ is a Boolean ring having \emptyset and X as its zero and identity, respectively. We can see that X is the only multiplicatively invertible element of ($\mathcal{P}(X),+, \cdot)$.

By a Boolean semiring we mean a commutative semiring S with zero in which $x^{2}=x$ for all $x \in S$. Then every Boolean ring is a Boolean semiring. In fact, Boolean semirings are a generalization of Boolean rings.

Example 1.2. Let X be a nonempty set. Define

$$
A \oplus B=A \cup B \text { and } A \cdot B=A \cap B \text { for all } A, B \in \mathcal{P}(X) .
$$

Then $(\mathcal{P}(X), \oplus, \cdot)$ is clearly a Boolean semiring having \emptyset and X as its zero and identity, respectively. We can see that \emptyset is the only additively invertible element of $(\mathcal{P}(X), \oplus, \cdot)$. Then $(\mathcal{P}(X), \oplus, \cdot)$ is not a Boolean ring. Also, $A \oplus A=A$ for all $A \in \mathcal{P}(X)$.

Example 1.3. Let $S=\{0\} \cup\left[\frac{1}{2}, 1\right]$ and define

$$
\begin{array}{ll}
x \oplus 0=0 \oplus x=x & \text { for all } x \in S, \\
x \oplus y=\frac{1}{2} & \text { for all } x, y \in\left[\frac{1}{2}, 1\right], \\
x \circ y=\min \{x, y\} & \text { for all } x, y \in S .
\end{array}
$$

It is straightforward to show that (S, \oplus, \circ) is a Boolean semiring with zero 0 and identity 1 . Moreover, 0 is the only additively invertible element of the semiring (S, \oplus, \circ) and for $x \in S, x \oplus x=x$ if and only if either $x=0$ or $x=\frac{1}{2}$.

Let S be a commutative semiring with zero 0 and identity $1 \neq 0, n$ a positive integer and $M_{n}(S)$ the set of all $n \times n$ matrices over S. Then under usual matrix addition and matrix multiplication, $M_{n}(S)$ is an additively commutative semiring. The $n \times n$ zero matrix and the $n \times n$ identity matrix over S are the zero and the identity of $M_{n}(S)$, respectively. If $n>1$, then $M_{n}(S)$ is not multiplicatively commutative. For $A \in M_{n}(S)$ and $i, j \in\{1, \ldots, n\}$, let $A_{i j}$ be the entry of A in the $i^{\text {th }}$ row and $j^{\underline{t h}}$ column. The transpose of A will be denoted by A^{t}, that
is, $A_{i j}^{t}=A_{j i}$ for all $i, j \in\{1, \ldots, n\}$. Then for all $A, B \in M_{n}(S),\left(A^{t}\right)^{t}=A$, $(A+B)^{t}=A^{t}+B^{t}$ and $(A B)^{t}=B^{t} A^{t}$. A matrix $A \in M_{n}(S)$ is called invertible over S if $A B=B A=I_{n}$ for some $B \in M_{n}(S)$ where I_{n} is the $n \times n$ identity matrix over S. Notice that B is unique. Also, for $A \in M_{n}(S), A$ is invertible over S if and only if A^{t} is invertible over S. In 1963, Rutherford [4] characterized invertible matrices over a Boolean algebra of 2 elements.

Let \mathcal{S}_{n} be the symmetric group of degree $n \geq 2, \mathcal{A}_{n}$ the alternating group of degree n and $\mathcal{B}_{n}=\mathcal{S}_{n} \backslash \mathcal{A}_{n}$, that is,

$$
\begin{aligned}
\mathcal{A}_{n} & =\left\{\sigma \in \mathcal{S}_{n} \mid \sigma \text { is an even permutation }\right\} \\
\mathcal{B}_{n} & =\left\{\sigma \in \mathcal{S}_{n} \mid \sigma \text { is an odd permutation }\right\}
\end{aligned}
$$

If S is a commutative semiring with zero and identity and n a positive integer greater than 1 , then for $A \in M_{n}(S)$, the positive determinant and the negative determinant of A are defined respectively by

$$
\begin{aligned}
& \operatorname{det}^{+} A=\sum_{\sigma \in \mathcal{A}_{n}}\left(\prod_{i=1}^{n} A_{i \sigma(i)}\right), \\
& \operatorname{det}^{-} A=\sum_{\sigma \in \mathcal{B}_{n}}\left(\prod_{i=1}^{n} A_{i \sigma(i)}\right) .
\end{aligned}
$$

If S is a commutative ring with identity, then for $A \in M_{n}(S)$, $\operatorname{det} A=\operatorname{det}^{+} A-$ $\operatorname{det}^{-} A$. Hence if S is a Boolean ring with identity, then $\operatorname{det} A=\operatorname{det}^{+} A+\operatorname{det}^{-} A$ for all $A \in M_{n}(S)$.

We can see that

$$
\mathcal{A}_{n}=\left\{\sigma^{-1} \mid \sigma \in \mathcal{A}_{n}\right\} \text { and } \mathcal{B}_{n}=\left\{\sigma^{-1} \mid \sigma \in \mathcal{B}_{n}\right\}
$$

$\operatorname{det}^{+} I_{n}=1$ and $\operatorname{det}^{-} I_{n}=0$ and for $A \in M_{n}(S)$,

$$
\begin{aligned}
\operatorname{det}^{+}\left(A^{t}\right) & =\sum_{\sigma \in \mathcal{A}_{n}}\left(\prod_{i=1}^{n} A_{i \sigma(i)}^{t}\right) \\
& =\sum_{\sigma \in \mathcal{A}_{n}}\left(\prod_{i=1}^{n} A_{\sigma(i), i}\right) \\
& =\sum_{\sigma \in \mathcal{A}_{n}}\left(\prod_{i=1}^{n} A_{\sigma^{-1}(i), i}\right) \\
& =\sum_{\sigma \in \mathcal{A}_{n}}\left(\prod_{i=1}^{n} A_{\sigma^{-1}(i), \sigma\left(\sigma^{-1}(i)\right)}\right) \\
& =\sum_{\sigma \in \mathcal{A}_{n}}\left(\prod_{i=1}^{n} A_{i \sigma(i)}\right) \quad \text { since }\left\{\sigma^{-1}(1), \ldots, \sigma^{-1}(n)\right\} \\
& =\operatorname{det}^{+} A .
\end{aligned}
$$

108Thai J. Math. 7(2009)/ N. Sirasuntorn, S. Sombatboriboon and N. Udomsub

It can be shown similarly that $\operatorname{det}^{-}\left(A^{t}\right)=\operatorname{det}^{-} A$.
In 1985, Reutenauer and Straubing [3] gave the following significant results.
Theorem 1.4. ([3]) Let S be a commutative semiring with zero and identity and n a positive integer ≥ 2. If $A, B \in M_{n}(S)$, then there is an element $r \in S$ such that

$$
\begin{aligned}
\operatorname{det}^{+}(A B) & =\left(\operatorname{det}^{+} A\right)\left(\operatorname{det}^{+} B\right)+\left(\operatorname{det}^{-} A\right)\left(\operatorname{det}^{-} B\right)+r \\
\operatorname{det}^{-}(A B) & =\left(\operatorname{det}^{+} A\right)\left(\operatorname{det}^{-} B\right)+\left(\operatorname{det}^{-} A\right)\left(\operatorname{det}^{+} B\right)+r
\end{aligned}
$$

Theorem 1.5. ([3]) Let S be a commutative semiring with zero and identity and n a positive integer. For $A, B \in M_{n}(S)$, if $A B=I_{n}$, then $B A=I_{n}$.

It is well-known that for a square matrix A over a field F, A is invertible over F if and only if $\operatorname{det} A \neq 0$. The following known theorem is a generalization of this fact.

Theorem 1.6. ([1], p.160) Let R be a commutative ring with identity. A square matrix A over R is invertible over R if and only if $\operatorname{det} A$ is a multiplicatively invertible element of R.

By the properties of a Boolean ring with identity mentioned above, the following result is a direct consequence of Theorem 1.6.

Corollary 1.7. Let R be a Boolean ring with identity 1 and n a positive integer ≥ 2. An $n \times n$ matrix A over R is invertible over R if and only if $\operatorname{det}^{+} A+\operatorname{det}^{-} A=$ 1.

The purpose of this research is to generalize Corollary 1.7 to Boolean semirings with identity 1 . We show that for a positive integer $n \geq 2$, an $n \times n$ matrix over a Boolean semiring with identity 1 is invertible if and only if
(i) $\operatorname{det}^{+} A+\operatorname{det}^{-} A=1$ and
(ii) $2 A_{i j} A_{i k}=0$ for all $i, j, k \in\{1, \ldots, n\}$ such that $j \neq k$.

The condition (ii) may be replaced by
(ii)' $2 A_{j i} A_{k i}=0$ for all $i, j, k \in\{1, \ldots, n\}$ such that $j \neq k$.

2 Invertible Matrices over Boolean Semirings

For a set $X,|X|$ denotes the cardinality of X.
In the remainder of this paper, let n be a positive integer greater than 1. Recall that $\left|\mathcal{S}_{n}\right|=n!,\left|\mathcal{A}_{n}\right|=\frac{n!}{2},\left|\mathcal{B}_{n}\right|=\frac{n!}{2}$ and $\sigma \mathcal{A}_{n}=\mathcal{B}_{n}$ for all $\sigma \in \mathcal{B}_{n}$.

The following lemma is needed.
Lemma 2.1. For distinct $i, j \in\{1,2, \ldots, n\}$, $\left\{(\sigma(i) \sigma(j)) \sigma \mid \sigma \in \mathcal{A}_{n}\right\}=\mathcal{B}_{n}$.

Proof. Let $i, j \in\{1, \ldots, n\}$ be distinct. If $\sigma \in \mathcal{A}_{n}$, then $(\sigma(i) \sigma(j)) \in \mathcal{B}_{n}$, so $\left\{(\sigma(i) \sigma(j)) \sigma \mid \sigma \in \mathcal{A}_{n}\right\} \subseteq \mathcal{B}_{n}$. Assume that $\sigma_{1}, \sigma_{2} \in \mathcal{A}_{n}$ and $\sigma_{1} \neq \sigma_{2}$.

Case $1:\left(\sigma_{1}(i) \sigma_{1}(j)\right)=\left(\sigma_{2}(i) \sigma_{2}(j)\right)$. By the cancellation property of \mathcal{S}_{n}, we have $\left(\sigma_{1}(i) \sigma_{1}(j)\right) \sigma_{1} \neq\left(\sigma_{2}(i) \sigma_{2}(j)\right) \sigma_{2}$.

Case 2: $\left(\sigma_{1}(i) \sigma_{1}(j)\right) \neq\left(\sigma_{2}(i) \sigma_{2}(j)\right)$. Then $\left\{\sigma_{1}(i), \sigma_{1}(j)\right\} \neq\left\{\sigma_{2}(i), \sigma_{2}(j)\right\}$. We may assume without loss of generality that $\sigma_{1}(i) \notin\left\{\sigma_{2}(i), \sigma_{2}(j)\right\}$. Then $\sigma_{1}(i) \neq$ $\sigma_{2}(i)$, so

$$
\left(\sigma_{1}(i) \sigma_{1}(j)\right) \sigma_{1}(j)=\sigma_{1}(i) \neq \sigma_{2}(i)=\left(\sigma_{2}(i) \sigma_{2}(j)\right) \sigma_{2}(j)
$$

This implies that $\left(\sigma_{1}(i) \sigma_{1}(j)\right) \sigma_{1} \neq\left(\sigma_{2}(i) \sigma_{2}(j)\right) \sigma_{2}$.
This shows that $\left|\left\{(\sigma(i) \sigma(j)) \sigma \mid \sigma \in \mathcal{A}_{n}\right\}\right|=\left|\mathcal{A}_{n}\right|=\left|\mathcal{B}_{n}\right|$. But since $\{(\sigma(i) \sigma(j)) \sigma \mid$ $\left.\sigma \in \mathcal{A}_{n}\right\} \subseteq \mathcal{B}_{n}$, the equality holds, as desired.

The following general properties of Boolean semirings are needed.
Lemma 2.2. Let S be a Boolean semiring. The following statements hold.
(i) For all $x \in S, 2 x=4 x$.
(ii) If $x \in S$ is an additively invertible element of S, then $2 x=0$.
(iii) If S has an identity 1 , then 1 is the only multiplicatively invertible element of S.

Proof. (i) If $x \in S$, then $2 x=x+x=(x+x)^{2}=x^{2}+x^{2}+x^{2}+x^{2}=x+x+x+x=$ $4 x$.
(ii) Let $x, y \in S$ be such that $x+y=0$. Then $2 x+2 y=0$. Since $4 x=2 x$ by (i), we have

$$
2 x=2 x+0=2 x+2 x+2 y=4 x+2 y=2 x+2 y=0 .
$$

(iii) The same proof is given for Boolean rings in Section 1.

Lemma 2.3. Let S be a commutative semiring with zero 0 and identity 1. For $A \in M_{n}(S)$, if A is invertible over S, then $A_{i j} A_{i k}$ is additively invertible in S for $i, j, k \in\{1, \ldots, n\}$ such that $j \neq k$.

Proof. It is clear that if $a_{1}, \ldots, a_{m} \in S$ are additively invertible in S, then so is $c_{1} a_{1}+\cdots+c_{m} a_{m}$ for all $c_{1}, \ldots, c_{m} \in S$.

Let $B \in M_{n}(S)$ be such that $A B=B A=I_{n}$. Then for distinct $p, q \in$ $\{1, \ldots, n\}$,

$$
0=\left(I_{n}\right)_{p q}=(B A)_{p q}=\sum_{l=1}^{n} B_{p l} A_{l q}
$$

110Thai J. Math. 7(2009)/ N. Sirasuntorn, S. Sombatboriboon and N. Udomsub
which implies that $B_{p l} A_{l q}$ is additively invertible in S for all $p, q, l \in\{1, \ldots, n\}$ such that $p \neq q$. Let $i, j, k \in\{1, \ldots, n\}$ be such that $j \neq k$. Then

$$
\begin{aligned}
A_{i j} A_{i k} & =A_{i j} A_{i k}(A B)_{i i} \\
& =A_{i j} A_{i k}\left(\sum_{l=1}^{n} A_{i l} B_{l i}\right) \\
& =A_{i k}^{2}\left(B_{k i} A_{i j}\right)+\sum_{\substack{l=1 \\
l \neq k}}^{n} A_{i j} A_{i l}\left(B_{l i} A_{i k}\right)
\end{aligned}
$$

But $B_{k i} A_{i j}, B_{1 i} A_{i k}, \ldots, B_{k-1, i} A_{i k}, B_{k+1, i} A_{i k}, \ldots, B_{n i} A_{i k}$ are additively invertible in S, so it follows that $A_{i j} A_{i k}$ is additively invertible in S.

Theorem 2.4. Let S be a Boolean semiring with identity 1 and $A \in M_{n}(S)$. Then A is invertible over S if and only if
(i) $\operatorname{det}^{+} A+\operatorname{det}^{-} A=1$ and
(ii) $2 A_{i j} A_{i k}=0$ for all $i, j, k \in\{1, \ldots, n\}$ such that $j \neq k$.

Proof. Assume that A is invertible over S. Then $A B=B A=I_{n}$ for some $B \in M_{n}(S)$. By Theorem 1.4, there is an element $r \in S$ such that

$$
\begin{aligned}
\operatorname{det}^{+}(A B) & =\left(\operatorname{det}^{+} A\right)\left(\operatorname{det}^{+} B\right)+\left(\operatorname{det}^{-} A\right)\left(\operatorname{det}^{-} B\right)+r \\
\operatorname{det}^{-}(A B) & =\left(\operatorname{det}^{+} A\right)\left(\operatorname{det}^{-} B\right)+\left(\operatorname{det}^{-} A\right)\left(\operatorname{det}^{+} B\right)+r
\end{aligned}
$$

Since $\operatorname{det}^{+}(A B)=\operatorname{det}^{+}\left(I_{n}\right)=1$ and $\operatorname{det}^{-}(A B)=\operatorname{det}^{-}\left(I_{n}\right)=0$, it follows that

$$
\begin{align*}
& \left(\operatorname{det}^{+} A\right)\left(\operatorname{det}^{+} B\right)+\left(\operatorname{det}^{-} A\right)\left(\operatorname{det}^{-} B\right)+r=1 \tag{1}\\
& \left(\operatorname{det}^{+} A\right)\left(\operatorname{det}^{-} B\right)+\left(\operatorname{det}^{-} A\right)\left(\operatorname{det}^{+} B\right)+r=0 \tag{2}
\end{align*}
$$

Then (1) $+(2)$ gives
$\left(\operatorname{det}^{+} A\right)\left(\operatorname{det}^{+} B\right)+\left(\operatorname{det}^{-} A\right)\left(\operatorname{det}^{-} B\right)+\left(\operatorname{det}^{+} A\right)\left(\operatorname{det}^{-} B\right)+\left(\operatorname{det}^{-} A\right)\left(\operatorname{det}^{+} B\right)+2 r=1$
which implies that

$$
\begin{equation*}
\left(\operatorname{det}^{+} A+\operatorname{det}^{-} A\right)\left(\operatorname{det}^{+} B+\operatorname{det}^{-} B\right)+2 r=1 \tag{3}
\end{equation*}
$$

From (2), we have that r is an additively invertible element of S, so by Lemma 2.2 (ii), $2 r=0$. It follows from (3) that

$$
\begin{equation*}
\left(\operatorname{det}^{+} A+\operatorname{det}^{-} A\right)\left(\operatorname{det}^{+} B+\operatorname{det}^{-} B\right)=1 \tag{4}
\end{equation*}
$$

Lemma 2.2 (iii) and (4) yield $\operatorname{det}^{+} A+\operatorname{det}^{-} A=1$. Thus (i) holds. Since A is invertible over S, (ii) is obtained by Lemma 2.2(ii) and Lemma 2.3.

Conversely, assume that (i) and (ii) hold. Define $B \in M_{n}(S)$ by

$$
B_{i j}=\sum_{\substack{\sigma \in \mathcal{S}_{n} \\ \sigma(j)=i}}\left(\prod_{\substack{k=1 \\ k \neq j}}^{n} A_{k \sigma(k)}\right)
$$

for all $i, j \in\{1, \ldots, n\}$. Claim that $A B=I_{n}$. If $i, j \in\{1, \ldots, n\}$, then

$$
\begin{align*}
(A B)_{i j} & =\sum_{t=1}^{n} A_{i t} B_{t j} \\
& =\sum_{t=1}^{n} A_{i t}\left(\sum_{\substack{\sigma \in \mathcal{S}_{n} \\
\sigma(j)=t}}\left(\prod_{\substack{k=1 \\
k \neq j}}^{n} A_{k \sigma(k)}\right)\right) \\
& =\sum_{\substack{\sigma \in \mathcal{S}_{n} \\
\sigma(j)=1}} A_{i 1}\left(\prod_{\substack{k=1 \\
k \neq j}}^{n} A_{k \sigma(k)}\right)+\cdots+\sum_{\substack{\sigma \in \mathcal{S}_{n} \\
\sigma(j)=n}} A_{i n}\left(\prod_{\substack{k=1 \\
k \neq j}}^{n} A_{k \sigma(k)}\right) \tag{5}
\end{align*}
$$

It is clear that $\mathcal{S}_{n}=\left\{\sigma \in \mathcal{S}_{n} \mid \sigma(j)=1\right\} \cup\left\{\sigma \in \mathcal{S}_{n} \mid \sigma(j)=2\right\} \cup \ldots \cup\left\{\sigma \in \mathcal{S}_{n} \mid\right.$ $\sigma(j)=n\}$ which is a disjoint union. Then (5) gives

$$
\begin{equation*}
(A B)_{i j}=\sum_{\sigma \in \mathcal{S}_{n}} A_{i \sigma(j)}\left(\prod_{\substack{k=1 \\ k \neq j}}^{n} A_{k \sigma(k)}\right) \tag{6}
\end{equation*}
$$

Case 1 : $i=j$. Then from (6), we have

$$
\begin{aligned}
(A B)_{i j} & =\sum_{\sigma \in \mathcal{S}_{n}} A_{i \sigma(i)}\left(\prod_{\substack{k=1 \\
k \neq i}}^{n} A_{k \sigma(k)}\right) \\
& =\sum_{\sigma \in \mathcal{S}_{n}}\left(\prod_{k=1}^{n} A_{k \sigma(k)}\right) \\
& =\sum_{\sigma \in \mathcal{A}_{n}}\left(\prod_{k=1}^{n} A_{k \sigma(k)}\right)+\sum_{\sigma \in \mathcal{B}_{n}}\left(\prod_{k=1}^{n} A_{k \sigma(k)}\right) \\
& =\operatorname{det}^{+} A+\operatorname{det}^{-} A=1 .
\end{aligned}
$$

Case 2: $i \neq j$ and $n=2$. Then either $i=1$ and $j=2$ or $i=2$ and $j=1$. Note that $\mathcal{S}_{2}=\{(1),(12)\}$. It follows from (6) and (ii) that

$$
\begin{aligned}
& (A B)_{12}=A_{12} A_{11}+A_{11} A_{12}=2 A_{11} A_{12}=0 \\
& (A B)_{21}=A_{21} A_{22}+A_{22} A_{21}=2 A_{21} A_{22}=0
\end{aligned}
$$

112 Thai J. Math. 7(2009)/ N. Sirasuntorn, S. Sombatboriboon and N. Udomsub

Case $3: i \neq j$ and $n>2$. It follows from (6) that

$$
\begin{align*}
(A B)_{i j} & =\sum_{\sigma \in \mathcal{S}_{n}} A_{i \sigma(j)} A_{i \sigma(i)}\left(\prod_{\substack{k=1 \\
k \neq i, j}}^{n} A_{k \sigma(k)}\right) \\
& =\sum_{\sigma \in \mathcal{A}_{n}} A_{i \sigma(j)} A_{i \sigma(i)}\left(\prod_{\substack{k=1 \\
k \neq i, j}}^{n} A_{k \sigma(k)}\right)+\sum_{\sigma \in \mathcal{B}_{n}} A_{i \sigma(j)} A_{i \sigma(i)}\left(\prod_{\substack{k=1 \\
k \neq i, j}}^{n} A_{k \sigma(k)}\right) \tag{7}
\end{align*}
$$

For each $\sigma \in \mathcal{A}_{n}$ let $\bar{\sigma}=(\sigma(i) \sigma(j)) \sigma$. By Lemma 2.1 and (7), we have

$$
\begin{equation*}
(A B)_{i j}=\sum_{\sigma \in \mathcal{A}_{n}}\left(A_{i \sigma(j)} A_{i \sigma(i)}\left(\prod_{\substack{k=1 \\ k \neq i, j}}^{n} A_{k \sigma(k)}\right)+A_{i \bar{\sigma}(j)} A_{i \bar{\sigma}(i)}\left(\prod_{\substack{k=1 \\ k \neq i, j}}^{n} A_{k \bar{\sigma}(k)}\right)\right) \tag{8}
\end{equation*}
$$

But for every $\sigma \in \mathcal{A}_{n}, \bar{\sigma}(i)=(\sigma(i) \sigma(j)) \sigma(i)=\sigma(j), \bar{\sigma}(j)=(\sigma(i) \sigma(j)) \sigma(j)=\sigma(i)$ and for $k \in\{1, \ldots, n\} \backslash\{i, j\}, \bar{\sigma}(k)=(\sigma(i) \sigma(j)) \sigma(k)=\sigma(k)$, so it follows from (8) and (ii) that

$$
(A B)_{i j}=\sum_{\sigma \in \mathcal{A}_{n}} 2 A_{i \sigma(j)} A_{i \sigma(i)}\left(\prod_{\substack{k=1 \\ k \neq i, j}}^{n} A_{k \sigma(k)}\right)=0
$$

This proves that $A B=I_{n}$. By Theorem 1.5, $B A=I_{n}$. Hence A is invertible over S.

As mentioned previously, $\operatorname{det}^{+} A^{t}=\operatorname{det}^{+} A, \operatorname{det}^{-} A^{t}=\operatorname{det}^{-} A$ and A is invertible over S if and only if A^{t} is invertible over S. Then as a consequence of Theorem 2.4, we have

Corollary 2.5. Let S be a Boolean semiring with identity 1 and $A \in M_{n}(S)$. Then A is invertible over S if and only if
(i) $\operatorname{det}^{+} A+\operatorname{det}^{-} A=1$ and
(ii) $2 A_{j i} A_{k i}=0$ for all $i, j, k \in\{1, \ldots, n\}$ such that $j \neq k$.

References

[1] K. Hoffman and R. Kunze, Linear Algebra, Second Edition, Prentice-Hall, New Jersey, 1971.
[2] T. W. Hungerford, Algebra, Springer-Verlag, New York, 1974.
[3] C. Reutenauer and H. Straubing, Inversion of matrices over a commutative semiring, J. Algebra, 88(1984), $350-360$.
[4] D. E. Rutherford, Inverses of Boolean matrices, Proc. Glasgow Math. Assoc., 6(1963), $49-53$.
(Received 5 June 2009)

N. Sirasuntorn and S. Sombatboriboon
Chulalongkorn University
Department of Mathematics
Faculty of Science
Bangkok 10330, Thailand.
e-mail: n.sirasuntorn@gmail.com

N. Udomsub

Rambhai Barni Rajabhat University
Department of Mathematics and Statistics
Faculty of Science and Technology
Chantaburi 22000, Thailand
email: ppmathschula@yahoo.co.th

[^0]: Copyright (c) 2009 by the Mathematical Association of Thailand. All rights reserved.

