Thai Journal of Mathematics Volume 7 (2009) Number 1 : 105–113

www.math.science.cmu.ac.th/thaijournal Online ISSN 1686-0209

Inversion of Matrices over Boolean Semirings

N. Sirasuntorn, S. Sombatboriboon and N. Udomsub

Abstract : It is well-known that a square matrix A over a commutative ring R with identity is invertible over R if and only if det A is a multiplicatively invertible element of R. As a consequence, we have that a square matrix A over a Boolean ring R with identity 1 is invertible over R if and only if det⁺ A + det⁻ A = 1 where det⁺ A and det⁻ A are the positive determinant and the negative determinant of A, respectively. This result is generalized to Boolean semirings with identity. By a *Boolean semiring* we mean a commutative semiring S with zero in which $x^2 = x$ for all $x \in S$. By making use of Reutenauer and Sraubing's work in 1984, we show that an $n \times n$ matrix A over a Boolean semiring S with identity 1 is invertible over S if and only if det⁺ A + det⁻ A = 1 and $2A_{ij}A_{ik} = 0$ [$2A_{ji}A_{ki} = 0$] for all $i, j, k \in \{1, ..., n\}$ such that $j \neq k$.

Keywords : Boolean semiring, invertible matrix. 2000 Mathematics Subject Classification : 16Y60, 15A09.

1 Introduction

A semiring is a triple $(S, +, \cdot)$ such that (S, +) and (S, \cdot) are semigroups and $x \cdot (y+z) = x \cdot y + x \cdot z$ and $(y+z) \cdot x = y \cdot x + z \cdot x$ for all $x, y, z \in S$. A semiring $(S, +, \cdot)$ is called *additively* [multiplicatively] commutative if x + y = y + x [$x \cdot y = y \cdot x$] for all $x, y, z \in S$. We call $(S, +, \cdot)$ commutative if $(S, +, \cdot)$ is both additively and multiplicatively commutative. An element $0 \in S$ is called a zero of $(S, +, \cdot)$ if x + 0 = 0 + x = x and $x \cdot 0 = 0 \cdot x = 0$ for all $x \in S$. By an identity of a semiring $(S, +, \cdot)$ we mean an element $1 \in S$ such that $x \cdot 1 = 1 \cdot x = x$ for all $x \in S$. Notice that both a zero and an identity of a semiring are unique. An element x of a semiring S with zero 0 [identity 1] is said to be additively [multiplicatively] invertible in S if there is an element $y \in S$ such that x + y = y + x = 0 [xy = yx = 1]. Such an element $y \in S$ is obviously unique.

Recall that a ring R is called a Boolean ring if $x^2 = x$ for all $x \in R$. Then

Copyright \bigodot 2009 by the Mathematical Association of Thailand. All rights reserved.

every Boolean ring is commutative and -x = x, that is, 2x = 0 for all $x \in R([2], p.120)$. If R is a Boolean ring with identity 1 and $x, y \in R$ are such that xy = 1, then

$$x = x1 = x(xy) = x^2y = xy = 1.$$

This shows that 1 is the only multiplicatively invertible element of a Boolean ring with identity 1.

Example 1.1. ([2], p. 120) If X is a set, $\mathcal{P}(X)$ is the power set of X,

 $A + B = (A \setminus B) \cup (B \setminus A)$ and $A \cdot B = A \cap B$ for all $A, B \in \mathcal{P}(X)$.

Then $(\mathcal{P}(X), +, \cdot)$ is a Boolean ring having \emptyset and X as its zero and identity, respectively. We can see that X is the only multiplicatively invertible element of $(\mathcal{P}(X), +, \cdot)$.

By a Boolean semiring we mean a commutative semiring S with zero in which $x^2 = x$ for all $x \in S$. Then every Boolean ring is a Boolean semiring. In fact, Boolean semirings are a generalization of Boolean rings.

Example 1.2. Let X be a nonempty set. Define

 $A \oplus B = A \cup B$ and $A \cdot B = A \cap B$ for all $A, B \in \mathcal{P}(X)$.

Then $(\mathcal{P}(X), \oplus, \cdot)$ is clearly a Boolean semiring having \emptyset and X as its zero and identity, respectively. We can see that \emptyset is the only additively invertible element of $(\mathcal{P}(X), \oplus, \cdot)$. Then $(\mathcal{P}(X), \oplus, \cdot)$ is not a Boolean ring. Also, $A \oplus A = A$ for all $A \in \mathcal{P}(X)$.

Example 1.3. Let $S = \{0\} \cup \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ and define

$x\oplus 0$	=	$0 \oplus x = x$	for all $x \in S$,
$x\oplus y$	=	$\frac{1}{2}$	for all $x, y \in \left[\frac{1}{2}, 1\right]$,
$x \circ y$	=	$\min\{x, y\}$	for all $x, y \in S$.

It is straightforward to show that (S, \oplus, \circ) is a Boolean semiring with zero 0 and identity 1. Moreover, 0 is the only additively invertible element of the semiring (S, \oplus, \circ) and for $x \in S$, $x \oplus x = x$ if and only if either x = 0 or $x = \frac{1}{2}$.

Let S be a commutative semiring with zero 0 and identity $1 \neq 0$, n a positive integer and $M_n(S)$ the set of all $n \times n$ matrices over S. Then under usual matrix addition and matrix multiplication, $M_n(S)$ is an additively commutative semiring. The $n \times n$ zero matrix and the $n \times n$ identity matrix over S are the zero and the identity of $M_n(S)$, respectively. If n > 1, then $M_n(S)$ is not multiplicatively commutative. For $A \in M_n(S)$ and $i, j \in \{1, \ldots, n\}$, let A_{ij} be the entry of A in the $i^{\underline{ih}}$ row and $j^{\underline{ih}}$ column. The transpose of A will be denoted by A^t , that is, $A_{ij}^t = A_{ji}$ for all $i, j \in \{1, \ldots, n\}$. Then for all $A, B \in M_n(S)$, $(A^t)^t = A$, $(A+B)^t = A^t + B^t$ and $(AB)^t = B^t A^t$. A matrix $A \in M_n(S)$ is called *invertible* over S if $AB = BA = I_n$ for some $B \in M_n(S)$ where I_n is the $n \times n$ identity matrix over S. Notice that B is unique. Also, for $A \in M_n(S)$, A is invertible over S if and only if A^t is invertible over S. In 1963, Rutherford [4] characterized invertible matrices over a Boolean algebra of 2 elements.

Let S_n be the symmetric group of degree $n \ge 2$, A_n the alternating group of degree n and $\mathcal{B}_n = S_n \setminus A_n$, that is,

$$\mathcal{A}_n = \{ \sigma \in \mathcal{S}_n \mid \sigma \text{ is an even permutation} \},\$$

$$\mathcal{B}_n = \{ \sigma \in \mathcal{S}_n \mid \sigma \text{ is an odd permutation} \}.$$

If S is a commutative semiring with zero and identity and n a positive integer greater than 1, then for $A \in M_n(S)$, the *positive determinant* and the *negative determinant* of A are defined respectively by

$$\det^{+} A = \sum_{\sigma \in \mathcal{A}_{n}} \left(\prod_{i=1}^{n} A_{i\sigma(i)} \right),$$
$$\det^{-} A = \sum_{\sigma \in \mathcal{B}_{n}} \left(\prod_{i=1}^{n} A_{i\sigma(i)} \right).$$

If S is a commutative ring with identity, then for $A \in M_n(S)$, det $A = \det^+ A - \det^- A$. Hence if S is a Boolean ring with identity, then det $A = \det^+ A + \det^- A$ for all $A \in M_n(S)$.

We can see that

d

$$\mathcal{A}_n = \{ \sigma^{-1} \mid \sigma \in \mathcal{A}_n \} \text{ and } \mathcal{B}_n = \{ \sigma^{-1} \mid \sigma \in \mathcal{B}_n \}$$

 $\det^+ I_n = 1$ and $\det^- I_n = 0$ and for $A \in M_n(S)$,

$$\operatorname{et}^{+} (A^{t}) = \sum_{\sigma \in \mathcal{A}_{n}} \left(\prod_{i=1}^{n} A_{i\sigma(i)}^{t} \right)$$
$$= \sum_{\sigma \in \mathcal{A}_{n}} \left(\prod_{i=1}^{n} A_{\sigma(i),i} \right)$$
$$= \sum_{\sigma \in \mathcal{A}_{n}} \left(\prod_{i=1}^{n} A_{\sigma^{-1}(i),i} \right)$$
$$= \sum_{\sigma \in \mathcal{A}_{n}} \left(\prod_{i=1}^{n} A_{\sigma^{-1}(i),\sigma(\sigma^{-1}(i))} \right)$$
$$= \sum_{\sigma \in \mathcal{A}_{n}} \left(\prod_{i=1}^{n} A_{i\sigma(i)} \right) \quad \text{since } \{ \sigma^{-1}(1), \dots, \sigma^{-1}(n) \}$$
$$= \operatorname{det}^{+} A.$$

It can be shown similarly that $\det^{-}(A^{t}) = \det^{-}A$.

In 1985, Reutenauer and Straubing [3] gave the following significant results.

Theorem 1.4. ([3]) Let S be a commutative semiring with zero and identity and n a positive integer ≥ 2 . If $A, B \in M_n(S)$, then there is an element $r \in S$ such that

$$det^{+}(AB) = (det^{+}A)(det^{+}B) + (det^{-}A)(det^{-}B) + r,$$

$$det^{-}(AB) = (det^{+}A)(det^{-}B) + (det^{-}A)(det^{+}B) + r.$$

Theorem 1.5. ([3]) Let S be a commutative semiring with zero and identity and n a positive integer. For $A, B \in M_n(S)$, if $AB = I_n$, then $BA = I_n$.

It is well-known that for a square matrix A over a field F, A is invertible over F if and only if det $A \neq 0$. The following known theorem is a generalization of this fact.

Theorem 1.6. ([1], p.160) Let R be a commutative ring with identity. A square matrix A over R is invertible over R if and only if $\det A$ is a multiplicatively $invertible \ element \ of \ R.$

By the properties of a Boolean ring with identity mentioned above, the following result is a direct consequence of Theorem 1.6.

Corollary 1.7. Let R be a Boolean ring with identity 1 and n a positive integer ≥ 2 . An $n \times n$ matrix A over R is invertible over R if and only if det⁺A+det⁻A = 1.

The purpose of this research is to generalize Corollary 1.7 to Boolean semirings with identity 1. We show that for a positive integer $n \ge 2$, an $n \times n$ matrix over a Boolean semiring with identity 1 is invertible if and only if (i) $\det^+ A + \det^- A = 1$ and (ii) $2A_{ij}A_{ik} = 0$ for all $i, j, k \in \{1, \dots, n\}$ such that $j \neq k$.

The condition (ii) may be replaced by (ii) $2A_{ji}A_{ki} = 0$ for all $i, j, k \in \{1, \ldots, n\}$ such that $j \neq k$.

2 Invertible Matrices over Boolean Semirings

For a set X, |X| denotes the cardinality of X.

In the remainder of this paper, let n be a positive integer greater than 1. Recall that $|\mathcal{S}_n| = n!$, $|\mathcal{A}_n| = \frac{n!}{2}$, $|\mathcal{B}_n| = \frac{n!}{2}$ and $\sigma \mathcal{A}_n = \mathcal{B}_n$ for all $\sigma \in \mathcal{B}_n$. The following lemma is needed.

Lemma 2.1. For distinct $i, j \in \{1, 2, ..., n\}$, $\{(\sigma(i) \sigma(j)) \sigma \mid \sigma \in \mathcal{A}_n\} = \mathcal{B}_n$.

Inversion of Matrices over Boolean Semirings

Proof. Let $i, j \in \{1, ..., n\}$ be distinct. If $\sigma \in \mathcal{A}_n$, then $(\sigma(i) \sigma(j)) \in \mathcal{B}_n$, so $\{(\sigma(i) \sigma(j)) \sigma \mid \sigma \in \mathcal{A}_n\} \subseteq \mathcal{B}_n$. Assume that $\sigma_1, \sigma_2 \in \mathcal{A}_n$ and $\sigma_1 \neq \sigma_2$.

Case 1: $(\sigma_1(i) \sigma_1(j)) = (\sigma_2(i) \sigma_2(j))$. By the cancellation property of S_n , we have $(\sigma_1(i) \sigma_1(j)) \sigma_1 \neq (\sigma_2(i) \sigma_2(j)) \sigma_2$.

Case 2: $(\sigma_1(i) \sigma_1(j)) \neq (\sigma_2(i) \sigma_2(j))$. Then $\{\sigma_1(i), \sigma_1(j)\} \neq \{\sigma_2(i), \sigma_2(j)\}$. We may assume without loss of generality that $\sigma_1(i) \notin \{\sigma_2(i), \sigma_2(j)\}$. Then $\sigma_1(i) \neq \sigma_2(i)$, so

$$(\sigma_1(i) \ \sigma_1(j)) \ \sigma_1(j) = \sigma_1(i) \neq \sigma_2(i) = (\sigma_2(i) \ \sigma_2(j)) \ \sigma_2(j).$$

This implies that $(\sigma_1(i) \ \sigma_1(j)) \ \sigma_1 \neq (\sigma_2(i) \ \sigma_2(j)) \ \sigma_2$.

This shows that $|\{(\sigma(i) \ \sigma(j)) \ \sigma \ | \ \sigma \in \mathcal{A}_n\}| = |\mathcal{A}_n| = |\mathcal{B}_n|$. But since $\{(\sigma(i) \ \sigma(j)) \ \sigma \ | \ \sigma \in \mathcal{A}_n\} \subseteq \mathcal{B}_n$, the equality holds, as desired. \Box

The following general properties of Boolean semirings are needed.

Lemma 2.2. Let S be a Boolean semiring. The following statements hold. (i) For all $x \in S$, 2x = 4x.

(ii) If $x \in S$ is an additively invertible element of S, then 2x = 0.

(iii) If S has an identity 1, then 1 is the only multiplicatively invertible element of S.

Proof. (i) If $x \in S$, then $2x = x + x = (x + x)^2 = x^2 + x^2 + x^2 + x^2 = x + x + x + x = 4x$.

(ii) Let $x, y \in S$ be such that x + y = 0. Then 2x + 2y = 0. Since 4x = 2x by (i), we have

2x = 2x + 0 = 2x + 2x + 2y = 4x + 2y = 2x + 2y = 0.

(iii) The same proof is given for Boolean rings in Section 1. \Box

Lemma 2.3. Let S be a commutative semiring with zero 0 and identity 1. For $A \in M_n(S)$, if A is invertible over S, then $A_{ij}A_{ik}$ is additively invertible in S for $i, j, k \in \{1, ..., n\}$ such that $j \neq k$.

Proof. It is clear that if $a_1, \ldots, a_m \in S$ are additively invertible in S, then so is $c_1a_1 + \cdots + c_ma_m$ for all $c_1, \ldots, c_m \in S$.

Let $B \in M_n(S)$ be such that $AB = BA = I_n$. Then for distinct $p, q \in \{1, \ldots, n\}$,

$$0 = (I_n)_{pq} = (BA)_{pq} = \sum_{l=1}^{n} B_{pl} A_{lq}$$

which implies that $B_{pl}A_{lq}$ is additively invertible in S for all $p, q, l \in \{1, ..., n\}$ such that $p \neq q$. Let $i, j, k \in \{1, ..., n\}$ be such that $j \neq k$. Then

$$A_{ij}A_{ik} = A_{ij}A_{ik}(AB)_{ii}$$

= $A_{ij}A_{ik}\left(\sum_{l=1}^{n} A_{il}B_{li}\right)$
= $A_{ik}^{2}(B_{ki}A_{ij}) + \sum_{\substack{l=1\\l \neq k}}^{n} A_{ij}A_{il}(B_{li}A_{ik}).$

But $B_{ki}A_{ij}, B_{1i}A_{ik}, \ldots, B_{k-1,i}A_{ik}, B_{k+1,i}A_{ik}, \ldots, B_{ni}A_{ik}$ are additively invertible in S, so it follows that $A_{ij}A_{ik}$ is additively invertible in S.

Theorem 2.4. Let S be a Boolean semiring with identity 1 and $A \in M_n(S)$. Then A is invertible over S if and only if

- (i) $\det^+ A + \det^- A = 1$ and
- (ii) $2A_{ij}A_{ik} = 0$ for all $i, j, k \in \{1, \dots, n\}$ such that $j \neq k$.

Proof. Assume that A is invertible over S. Then $AB = BA = I_n$ for some $B \in M_n(S)$. By Theorem 1.4, there is an element $r \in S$ such that

$$det^{+}(AB) = (det^{+}A)(det^{+}B) + (det^{-}A)(det^{-}B) + r,$$

$$det^{-}(AB) = (det^{+}A)(det^{-}B) + (det^{-}A)(det^{+}B) + r.$$

Since $\det^+(AB) = \det^+(I_n) = 1$ and $\det^-(AB) = \det^-(I_n) = 0$, it follows that

$$(\det^{+}A)(\det^{+}B) + (\det^{-}A)(\det^{-}B) + r = 1,$$
 (1)

$$(\det^{+}A)(\det^{-}B) + (\det^{-}A)(\det^{+}B) + r = 0.$$
 (2)

Then (1)+(2) gives

$$(\det^{+}A)(\det^{+}B) + (\det^{-}A)(\det^{-}B) + (\det^{+}A)(\det^{-}B) + (\det^{-}A)(\det^{+}B) + 2r = 1$$

which implies that

$$(\det^+ A + \det^- A)(\det^+ B + \det^- B) + 2r = 1.$$
 (3)

From (2), we have that r is an additively invertible element of S, so by Lemma 2.2 (ii), 2r = 0. It follows from (3) that

$$(\det^{+}A + \det^{-}A)(\det^{+}B + \det^{-}B) = 1.$$
 (4)

Lemma 2.2 (iii) and (4) yield $det^+A + det^-A = 1$. Thus (i) holds. Since A is invertible over S, (ii) is obtained by Lemma 2.2(ii) and Lemma 2.3.

Inversion of Matrices over Boolean Semirings

Conversely, assume that (i) and (ii) hold. Define $B \in M_n(S)$ by

$$B_{ij} = \sum_{\substack{\sigma \in \mathcal{S}_n \\ \sigma(j) = i}} \left(\prod_{\substack{k=1 \\ k \neq j}}^n A_{k\sigma(k)} \right)$$

,

for all $i, j \in \{1, \ldots, n\}$. Claim that $AB = I_n$. If $i, j \in \{1, \ldots, n\}$, then

$$(AB)_{ij} = \sum_{t=1}^{n} A_{it} B_{tj}$$
$$= \sum_{t=1}^{n} A_{it} \left(\sum_{\substack{\sigma \in S_n \\ \sigma(j)=t}} \left(\prod_{\substack{k=1 \\ k \neq j}}^{n} A_{k\sigma(k)} \right) \right)$$
$$= \sum_{\substack{\sigma \in S_n \\ \sigma(j)=1}} A_{i1} \left(\prod_{\substack{k=1 \\ k \neq j}}^{n} A_{k\sigma(k)} \right) + \dots + \sum_{\substack{\sigma \in S_n \\ \sigma(j)=n}} A_{in} \left(\prod_{\substack{k=1 \\ k \neq j}}^{n} A_{k\sigma(k)} \right).$$
(5)

It is clear that $S_n = \{ \sigma \in S_n \mid \sigma(j) = 1 \} \cup \{ \sigma \in S_n \mid \sigma(j) = 2 \} \cup \ldots \cup \{ \sigma \in S_n \mid \sigma(j) = n \}$ which is a disjoint union. Then (5) gives

$$(AB)_{ij} = \sum_{\sigma \in \mathcal{S}_n} A_{i\sigma(j)} \left(\prod_{\substack{k=1\\k \neq j}}^n A_{k\sigma(k)} \right).$$
(6)

Case 1 : i = j. Then from (6), we have

$$(AB)_{ij} = \sum_{\sigma \in S_n} A_{i\sigma(i)} \left(\prod_{\substack{k=1\\k \neq i}}^n A_{k\sigma(k)} \right)$$
$$= \sum_{\sigma \in S_n} \left(\prod_{k=1}^n A_{k\sigma(k)} \right)$$
$$= \sum_{\sigma \in \mathcal{A}_n} \left(\prod_{k=1}^n A_{k\sigma(k)} \right) + \sum_{\sigma \in \mathcal{B}_n} \left(\prod_{k=1}^n A_{k\sigma(k)} \right)$$
$$= \det^+ A + \det^- A = 1.$$

Case 2 : $i \neq j$ and n = 2. Then either i = 1 and j = 2 or i = 2 and j = 1. Note that $S_2 = \{(1), (1 \ 2)\}$. It follows from (6) and (ii) that

$$(AB)_{12} = A_{12}A_{11} + A_{11}A_{12} = 2A_{11}A_{12} = 0,$$

$$(AB)_{21} = A_{21}A_{22} + A_{22}A_{21} = 2A_{21}A_{22} = 0.$$

Case 3 : $i \neq j$ and n > 2. It follows from (6) that

$$(AB)_{ij} = \sum_{\sigma \in \mathcal{S}_n} A_{i\sigma(j)} A_{i\sigma(i)} \left(\prod_{\substack{k=1\\k \neq i,j}}^n A_{k\sigma(k)} \right)$$
$$= \sum_{\sigma \in \mathcal{A}_n} A_{i\sigma(j)} A_{i\sigma(i)} \left(\prod_{\substack{k=1\\k \neq i,j}}^n A_{k\sigma(k)} \right) + \sum_{\sigma \in \mathcal{B}_n} A_{i\sigma(j)} A_{i\sigma(i)} \left(\prod_{\substack{k=1\\k \neq i,j}}^n A_{k\sigma(k)} \right).$$
(7)

For each $\sigma \in \mathcal{A}_n$ let $\bar{\sigma} = (\sigma(i) \ \sigma(j))\sigma$. By Lemma 2.1 and (7), we have

$$(AB)_{ij} = \sum_{\sigma \in \mathcal{A}_n} \left(A_{i\sigma(j)} A_{i\sigma(i)} \left(\prod_{\substack{k=1\\k \neq i,j}}^n A_{k\sigma(k)} \right) + A_{i\bar{\sigma}(j)} A_{i\bar{\sigma}(i)} \left(\prod_{\substack{k=1\\k \neq i,j}}^n A_{k\bar{\sigma}(k)} \right) \right).$$
(8)

But for every $\sigma \in \mathcal{A}_n$, $\bar{\sigma}(i) = (\sigma(i) \ \sigma(j))\sigma(i) = \sigma(j)$, $\bar{\sigma}(j) = (\sigma(i) \ \sigma(j))\sigma(j) = \sigma(i)$ and for $k \in \{1, \ldots, n\} \setminus \{i, j\}$, $\bar{\sigma}(k) = (\sigma(i) \ \sigma(j))\sigma(k) = \sigma(k)$, so it follows from (8) and (ii) that

$$(AB)_{ij} = \sum_{\sigma \in \mathcal{A}_n} 2A_{i\sigma(j)} A_{i\sigma(i)} \left(\prod_{\substack{k=1\\k \neq i,j}}^n A_{k\sigma(k)}\right) = 0$$

This proves that $AB = I_n$. By Theorem 1.5, $BA = I_n$. Hence A is invertible over S.

As mentioned previously, $\det^+ A^t = \det^+ A$, $\det^- A^t = \det^- A$ and A is invertible over S if and only if A^t is invertible over S. Then as a consequence of Theorem 2.4, we have

Corollary 2.5. Let S be a Boolean semiring with identity 1 and $A \in M_n(S)$. Then A is invertible over S if and only if

(i) $\det^+ A + \det^- A = 1$ and

(ii) $2A_{ji}A_{ki} = 0$ for all $i, j, k \in \{1, \ldots, n\}$ such that $j \neq k$.

References

 K. Hoffman and R. Kunze, *Linear Algebra*, Second Edition, Prentice-Hall, New Jersey, 1971.

- [2] T. W. Hungerford, Algebra, Springer-Verlag, New York, 1974.
- [3] C. Reutenauer and H. Straubing, Inversion of matrices over a commutative semiring, J. Algebra, 88(1984), 350 – 360.
- [4] D. E. Rutherford, Inverses of Boolean matrices, Proc. Glasgow Math. Assoc., 6(1963), 49 - 53.

(Received 5 June 2009)

N. Sirasuntorn and S. Sombatboriboon Chulalongkorn University Department of Mathematics Faculty of Science Bangkok 10330, Thailand. e-mail: n.sirasuntorn@gmail.com

N. Udomsub Rambhai Barni Rajabhat University Department of Mathematics and Statistics Faculty of Science and Technology Chantaburi 22000, Thailand email: ppmathschula@yahoo.co.th