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Abstract The Variance Gamma (VG) model has been increasingly used as an alternative to the standard

geometric Brownian motion (GBM) model in modelling asset prices. We consider a �(↵, ✓) Ornstein-

Uhlenbeck process and build a continuous sample path Variance-Gamma (VG) model with five parameters

(µ, �,�,↵, ✓): location (µ), symmetry (�), volatility (�), and shape (↵) and scale (✓). The simulations

of the five parameters Variance-Gamma (VG) Process are performed after fitting the VG model to the

underlying distribution of the daily SPY ETF return.
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1. Introduction

Stochastic volatility (SV) models extend the standard geometric Brownian motion (GBM)
model, where the observed volatility is modelled as a stochastic process. In a stochastic
volatility framework [1], the constant volatility (�) in a standard geometric Brownian mo-
tion (GBM) model is replaced by a deterministic function of a stochastic process (�(Y

t

))
where Y

t

represents the solution of a stochastic di↵erential equation (SDE). This implies
that the stochastic volatility model has two sources of randomness, which can be either
correlated or not. In the literature, we have two main SV models: Di↵usion-based SV
models and non-Gaussian Ornstein-Uhlenbeck based SV models. In the popular di↵usion-
based SV models, Y

t

follows a Feller’s square root process [2] or a Log-normal process [3]
and the deterministic function is a squared root of the stochastic process (�(Y

t

) =
p
Y

t

).
The non-Gaussian Ornstein-Uhlenbeck-based SV models have been introduced and thor-
oughly studied in [4–7]. The SV models with Ornstein-Uhlenbeck type processes are
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mathematically tractable, have many appealing features and important implications in
option pricing [8].
The paper builds a five-parameter Variance-Gamma (VG) process with a continuous
sample path using �(↵, ✓) Ornstein-Uhlenbeck process type. The estimated parameters
are used to perform the simulations of the �(↵, ✓) Ornstein-Uhlenbeck process and the
Variance-Gamma (VG) process. See [9, 10], for the methodology and detailed results on
the estimation of the five-parameter Variance-Gamma (VG) model.
The remainder of this paper is organized as follows. In the next section, we consider
a �(↵, ✓) Ornstein-Uhlenbeck type process and build a five-parameter Gamma Variance
process. In the third section, we present the parameter estimation results and proceed
with the simulation of the �(↵, ✓) Ornstein-Uhlenbeck process and the Variance-Gamma
(VG) process.

2. Variance - Gamma Process: Stochastic Volatility Model

2.1. �(↵, ✓) Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process is a di↵usion process introduced by Ornstein and Uh-
lenbeck [11] to model the stochastic behavior of the velocity of a particle undergoing
Brownian motion. The Ornstein-Uhlenbeck di↵usion �

2 = {�2(t), t � 0} is the solution
of the Langevin Stochastic Di↵erential Equation (SDE) (2.1)

d�

2(t) = ���

2(t)dt+ dB(�t). (2.1)

where � > 0 and B = {B
t

, t � 0} is a Brownian motion. In recent years, the Ornstein-
Uhlenbeck process has been used in finance to capture important distributional deviations
from Gaussianity and to model dependence structures. The extension of the Ornstein-
Uhlenbeck processes was obtained by replacing the Brownian motion in (2.1) by z(t), a
background driving Lévy process (BDLP) [4, 6]. The SDE (2.1) becomes

d�

2(t) = ���

2(t)dt+ dz(�t) � > 0. (2.2)

where the process z(t) = {z(t), t � 0, z(0) = 0} is a subordinator; a process with non-
negative, independent and stationary increments, which implies �2(t) � 0.

Lemma 2.1. The general form of the stationary process �

2(t) , solution of (2.2) is given

by :

�

2(t) = �
Z

+1

0

e

�s

dz(�t� s) � > 0. (2.3)

Proof.

For � > 0

�

2(t) = �
Z

+1

0

e

�s

dz(�t�s) = �
Z

+1

0

e

��s

dz(�(t�s)) =

Z

t

�1
e

��(t�s)

dz(�s).

(2.4)

By using the variable changing method, we can have di↵erent expressions of (2.3).

�

2(t) =

Z

t

�1
e

��(t�s)

dz(�s) =) d�

2(t) = ���

2(t)dt+ dz(�t) (2.5)
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(2.3) can be written as follows:

�

2(t) =

Z

t

�1
e

��(t�s)

dz(�s) = e

��t

�

2(0) +

Z

t

0

e

��(t�s)

dz(�s) (2.6)

with

�

2(0) =

Z

0

�1
e

�s

dz(�s).

Theorem 2.2.

We consider a Lévy process z(t) =
P

N(t)

k=1

⇠

k

, which is generated by a compound Poisson

process: N(t) is a Poisson process with instantaneous rate ↵, and ⇠

k

follows an exponential

distribution with rate ✓.

Then the stationary marginal distribution of �

2(t) is a �(↵, ✓) Gamma distribution.

Proof.

u � 0

�

2(t+ u) =

Z

t+u

�1
e

��(t+u�s)

dz(�s) = e

��u

�

2(t) +

Z

u

0

e

��(u�s)

dz(�s).
(2.7)

The stationary solution �

2(t) of (2.2) can be written as in (2.7). Because of the station-
arity, we have

#(⇠) = #(⇠e��u)�(u, ⇠). (2.8)

#(⇠) is the characteristic function of the stationary distribution of �2(t) and �(u, ⇠) is the
characteristic function of

R

u

0

e

��(u�s)

dz(�s). We have 0  e

��u  1 for u � 0, and the
relation (2.7) shows that �2(t) is self-decomposable.
z(t) is a compound Poisson process with the function characteristic.

⇢(⇠) =

Z 1

0

(ei⇠x � 1)↵f(x)dx =
i⇠↵

✓ � i⇠

g(⇠) = E(ei⇠z(1)) = exp

⇢

Z 1

0

(ei⇠x � 1)↵f(x)dx

�

= exp(⇢(⇠)).

(2.9)

It was shown in [4] that �(u, ⇠) can be expressed as follows

�(u, ⇠) = exp

⇢

�

Z

u

0

⇢(⇠e��(u�s))ds

�

= exp

(

Z

⇠

⇠e

��u

⇢(w)

w

dw

)

. (2.10)

By replacing, ⇢(w)

w

= i↵

✓�iw

, we have

�(u, ⇠) =

✓

✓ � i⇠e

��u

✓ � i⇠

◆

↵

. (2.11)

#(⇠) is continuous at zero, and we have:

#(⇠) = lim
u!1

#(⇠e��u)�(u, ⇠) =

✓

1

1� i

1

✓

⇠

◆

↵

=
�

1� i✓

�1

⇠

��↵

. (2.12)

From (2.12), #(⇠) is the characteristic function of a Gamma distribution; and the station-
ary marginal distribution of �2(t) is a �(↵, ✓) Gamma distribution.
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We can integrate the stationary non-negative process �2(t).

�

2⇤(t) =

Z

t

0

�

2(s)ds. (2.13)

By integration by part method, (2.13) becomes

�

2⇤(t) = �

�1

�

2(0)(1� e

��t) + �

�1

Z

t

0

⇣

1� e

��(t�s)

⌘

dz(�s)

= �

�1

�

��

2(t) + z(�t) + �

2(0)
�

.

(2.14)

It results from (2.14) that the process �

2⇤(t) is continuous as z(�t) and �

2(t) co-break
[7]. In addition, the shape of �2⇤(t) is determined by z(�t). In fact, �2⇤(t) and z(�t)
co-integrate. The co-integration can be shown by transforming the equation (2.14) into
(2.15).

��

2⇤(t)� z(�t) = ��

2(t) + �

2(0). (2.15)

��

2⇤(t)� z(�t) is a stationary process.

2.2. Variance - Gamma Process: Semi-Martingale

Let Y ⇤ = {Y ⇤
t

}, a stochastic process used to model the log of an asset price.

A

t

= �t+ ��

2⇤(t) (2.16)

M

t

= �

Z

t

0

�(s)dW (s) (2.17)

Y

⇤
t

= A

t

+M

t

= �t+ ��

2⇤(t) + �

Z

t

0

�(s)dW (s) (2.18)

where � and � are the drift parameters, t represents the continuous time clock, and
W (t) is the standard Brownian motion and independent of �2(t). The mean process A

t

is a predictable process with locally bounded variation. In fact, A
t

is continuous and
di↵erentiable because of �2⇤(t).

�(t) =
p

�

2(t) �

2⇤(t) =

Z

t

0

�

2(s)ds. (2.19)

�(t) is the spot or instantaneous volatility, and �

2⇤(t) is the chronometer or the integrated
variance of the process.
M

t

is a local martingale. The derivative of M
t

in (2.18) can be written as a Stochastic
Di↵erential Equation (SDE) (2.20).

dM

t

= ��(t)dW (t). (2.20)

Y

⇤
t

is a special semi-martingale [13] and the decomposition Y

⇤
t

= A

t

+M

t

is unique.
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3. Variance - Gamma Process : Simulations

3.1. Parameter Estimation based on daily SPY ETF price

The stochastic process in (2.18) is the solution of the following Stochastic Di↵erential
Equation (SDE):

dY

⇤
t

= (� + ��

2(t))dt+ ��(t)dW (t). (3.1)

Given an interval of length �, we define �

2

n

and Y

n

over the interval [(n� 1)�; n�].

Y

n

=

Z

n�

(n�1)�

dY

⇤
s

= Y

⇤
n�

� Y

⇤
(n�1)�

�

2

n

=

Z

n�

(n�1)�

d�

2⇤(s) = �

2⇤
n�

� �

2⇤
(n�1)�

.

(3.2)

The volatility component can be transformed into a normally distributed variable X(1)
d

=
N(0, 1). Here, N(0, 1) denotes the standard normal distribution.

Z

n�

(n�1)�

�(t)dW (t)
d

= N

 

0,

Z

n�

(n�1)�

�

2(s)ds

!

= N

⇣

0,�2⇤
n�

� �

2⇤
(n�1)�

⌘

= N

�

0,�2

n

�

.

We have a normally distributed variable with mean 0 and variance �

2

n

Z

n�

(n�1)�

�(t)dW (t) = �

n

X(1). (3.3)

By integrating the instantaneous return rate (3.1) per component, we have:
Z

n�

(n�1)�

dY

⇤
s

= ��+ �

Z

n�

(n�1)�

d�

2⇤(s) + �

Z

n�

(n�1)�

�(t)dW (t).

Based on (3.1), (3.2) and (3.3), we have the following equation over the interval [(n�1)�;
n�]

Y

n

= µ+ ��

2

n

+ ��

n

X(1) (3.4)

where µ = ��, X(1)
d

= N(0, 1) and �

2

n

d

= �(↵, ✓).

In case � is daily length, Y

n

becomes the daily return rate. The equation (3.4) was
analyzed in [9, 10] as a daily return rate and the parameters were estimated.
The density function of the Variance-Gamma variable Y

n

in (3.4) is proven[9, 10] to be
(3.5).

f(y) =
1

��(↵)✓↵

Z

+1

0

1p
2⇡v

e

� (y�µ��v)2

2v�2
v

↵�1

e

� v
✓
dv. (3.5)

The integral (3.5) makes it challenging to utilize the density function and its derivatives
and to perform the Maximum likelihood method.
The characteristic function of the Variance-Gamma variable Y

n

in (3.4) and the inverse
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Fourier transform is proved in [8] to be:

F [f ](x) =
e

�iµx

�

1 + 1

2

✓�

2

x

2 + i�✓x

�

↵

f(y) =
1

2⇡

Z

+1

�1
F [f ](x)eiyx dy. (3.6)

The Fractional Fourier Transform (FRFT) technique was used to compute the probabil-

ity density function (3.6) and its derivatives:
n

df(y,V )

dVj

o

1j5

and
n

d

2
f(y,V )

dVkdVj

o

1k5

1j5

. See

[9, 10, 14, 15] for more details on the methodologies.
The data came from the daily SPY ETF historical data (adjustment for splits and divi-
dends); the period spans from January 4, 2010, to December 30, 2020.
Table 1 presents the estimation results of the five parameters (µ, �,↵, ✓,�) of the Variance-
Gamma variable Y

n

in (3.4).

Table 1. FRFT Maximum Likelihood VG Parameter Estimations

Model µ � � ↵ ✓

VG 0.08476896 �0.0577418 1.02948292 0.88450029 0.93779517

As shown in Table 2, with initial parameter values: � = ↵ = ✓ = 1, � = µ = 0, the
maximization procedure convergences after 21 iterations. log(ML) is the function to

maximize and ||d log(ML)

dV

|| is the norm of the partial derivative function (log(ML)). Dur-
ing the maximization process, both quantities converge to �3549.692 and 0 respectively,
and the parameter vector becomes stable. It appears that the location parameter µ is
positive, the symmetric parameter � is negative, and other parameters have the expected
sign.

Table 2. Results of VG Model Parameter Estimations

Iterations µ � � ↵ ✓ Log(ML) ||dLog(ML)

dV

||
1 0 0 1 1 1 -3582.8388 598.743231
2 0.05905599 -0.0009445 1.03195903 0.9130208 1.03208412 -3561.5099 833.530396
3 0.06949925 0.00400035 1.04101444 0.88478895 1.05131996 -3559.5656 447.807305
4 0.07514039 0.00055771 1.17577397 0.67326429 1.17778666 -3569.6221 211.365781
5 0.08928373 -0.0263716 1.03756321 0.83842661 0.94304967 -3554.4434 498.289445
6 0.08676498 -0.0521887 1.03337015 0.85591875 0.95066351 -3550.6419 204.467192
7 0.086995 -0.0608517 1.02788937 0.87382621 0.95054954 -3549.8465 66.8039738
8 0.08542912 -0.058547 1.02705241 0.88258411 0.94321299 -3549.7023 15.3209117
9 0.08478622 -0.0576654 1.02995166 0.88447791 0.93670036 -3549.6921 1.14764198
10 0.08477798 -0.0577736 1.02922308 0.88449072 0.93831041 -3549.692 0.17287708
11 0.08476475 -0.0577271 1.02960343 0.88450434 0.93755549 -3549.692 0.07850459
12 0.08477094 -0.0577488 1.02942608 0.8844984 0.93790784 -3549.692 0.03723941
13 0.08476804 -0.0577386 1.02950937 0.88450117 0.93774266 -3549.692 0.01732146
14 0.0847694 -0.0577434 1.02947043 0.88449987 0.93781995 -3549.692 0.00813465
15 0.08476876 -0.0577411 1.02948868 0.88450048 0.93778375 -3549.692 0.00380345
16 0.08476906 -0.0577422 1.02948014 0.88450019 0.9378007 -3549.692 0.00178206
17 0.08476892 -0.0577417 1.02948414 0.88450033 0.93779276 -3549.692 0.00083415
18 0.08476898 -0.0577419 1.02948226 0.88450026 0.93779648 -3549.692 0.00039063
19 0.08476895 -0.0577418 1.02948314 0.88450029 0.93779474 -3549.692 0.00018289
20 0.08476897 -0.0577419 1.02948273 0.88450028 0.93779555 -3549.692 8.56E-05
21 0.08476896 -0.0577418 1.02948292 0.88450029 0.93779517 -3549.692 4.01E-05
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3.2. Variance - Gamma Process Simulations

z(t) =

N(t)

X

k=1

⇠

k

�

2(t) = �

2(0)e�t +

N(t)

X

k=1

exp(��(t� a

k

))⇠
k

. (3.7)

For � = 1 and �

2(0) = 0, the compound Poisson process and the �(↵, ✓) Ornstein-
Uhlenbeck process (3.7) were simulated. The simulation results are shown in Fig 1. As

(a) Compound Poison process: ẑ(t) (b) Gamma process: �̂2
(t)

Figure 1. Simulations: ↵̂ = 0.8845, ✓̂ = 0.9378

shown in Fig 1a, we have a no drift process with nonnegative, independent and stationary
increments. The compound Poisson process (Z(t)) is a subordinator. This is not the case
for the volatility �

2(t) in Fig 1b. �

2(t) moves up entirely by jumps and then tails o↵
exponentially. The process has been used in storage theory [12].

�

2⇤(t) =

Z

t

0

�

2(s)ds. (3.8)

The integrated volatility �

2⇤(t) (3.8) is a continuous process and shaped by the compound
Poisson process (Z(t)). As shown in Fig 2, �2⇤(t) is the continuous version of Z(t), also
called subordinator.
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Figure 2. Subordinator: �̂2⇤(t), ↵̂ = 0.8845, ✓̂ = 0.9378

166



The Variance-Gamma process, Y ⇤ = {Y ⇤
t

}, is used to model the daily SPY ETF return.

Y

⇤
t

= �t+ ��

2⇤(t) + �

Z

t

0

�(s)dW (s) (3.9)

S

⇤
t

= S

0

e

Y

⇤
t
. (3.10)
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(a) Simulations: Y ⇤
= {Y ⇤

t }
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(b) VG Price versus SPY ETF Price

Figure 3. VG Model: µ̂ = 0.0848, �̂ = �0.0577, �̂ = 1.0295, ↵̂ =
0.8845, ✓̂ = 0.9378

The simulation of the Variance-Gamma process (Y ⇤) in (3.9) shows an increasing trend in
the long run with important fluctuations in the short run. The sample path is displayed
in blue colour in Fig 3a.
The price generated by the Variance-Gamma process (Y ⇤) was compared with the actual
data, the daily SPY ETF (SPY) price. The SPY ETF price was collected from January
4, 2010, to December 30, 2020, and used for parameter estimation. The dynamics of the
VG price (3.10) in blue colour and the daily SPY ETF (SPY) price in red colour are
shown in Fig 3b.

4. Conclusion

In the paper, the stationary process �

2(t) was built from the Ornstein-Uhlenbeck (OU)
process type with the compound Poisson process as a background driving Lévy process
(BDLP). The �(↵, ✓) Ornstein-Uhlenbeck type process was used to build a continuous
sample path Variance Gamma (VG) process with parameters (µ, �,�,↵, ✓). The parameter
estimation results were produced based on the data from the daily SPY ETF historical
prices. The estimated parameters were used to simulate the Gamma process (�2(t)) and
the continuous sample path process (�2⇤(t)). Both simulations were used as inputs to
simulate the continuous sample path Variance Gamma (VG) process.
It will be interesting to compare the performance of the European option price under the
five-parameter Variance Gamma (VG) process with the Black-Scholes model.
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