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Abstract Based on algebras of type 7 and algebraic systems of type (7,7’), in this work, the partial
superposition operation on the union of the set of all terms consisting of expressions and the set of
all formulas consisting of equations of terms and expressions connected by logical connectors and a
quantifier is defined. This allows us to form a partial algebra of type (n + 1) satisfying the axiom of
superassociativity as a weak identity where n is an arbitrary positive integer. In particular, using the
concept of order-decreasing full terms of type 7, terms in which each component is constructed from a
variable in the alphabet X, having some conditions and an order-decreasing transformation defined on a
finite chain 7 = {1,...,n} ordered in a canonical way, a mapping « in the full transformation semigroup
on 7 satisfying the inequality a(z) < z for all z € @1, the set of all order-decreasing full formulas of a
given type is further studied. An algebra of type (n 4 1) consisting of the set of all order-decreasing full

formulas and a superposition operation which satisfies the axiom of superassociativity is proved.
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1. INTRODUCTION AND PRELIMINARIES

The wide use of terms or trees as a natural structure in computer science allows us to
consider its theoretical basics [1]. In sense of the study of logic, terms can be regared as one
of the important tools in both first and second-order languages [2]. Consider a family {f; |
i € I} of operation symbols, indexed by the set I. The type is the sequence 7 = (n;);cr
of the natural number arities of the symbols f;. For a set X = {x1, 22, 23,...}, we denote
a countably infinite set of alphabet whose elements are called variables, particularly, we
let X,, = {x1,...,2,}. Notationally, the set W, (X,,) of all n-ary terms of type 7 over the
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alphabet X, consist of expressions of two forms: z; € X, for all 1 < j < n and a term
fi(t1, ... ty,) of the inductive term t1,...,t,, and the n;-ary operation symbol f; for all
i € I. Moreover, W, (X) denotes the set of all terms of type 7. For other basic facts and
recent contributions on terms, one can refer the reader to [3-9].

We now illustrate some examples of terms. Let us consider a set I = {1,2} and the
type 7 = (3,3) with two ternary operation symbols f; and fo. Then we have

T1, T2, 3, f1(22, 11, 73), fo(w2, f1(22,21,23),71) € W(3,3)(X3);

T4, fo(24, 21, 23), f1(22, 5, 71) ¢ W(3.3)(X3).
The variety of all generalized clones [10] is a family of algebras satisfying the following
four identities:

(C1) S™(S™(Z,Y1,...,Yy), X1, ..., Xp) = SMZ, 5" (Y1, X1, s Xn)y oo, S (Vo Xa,y oo, X))

(C2) gn(Aj,)N(l, D @S Xj, for 1 <j<mn;

(Cg) gn(Aj,Xl, R ,Xn) ~ /\j7 for 7 > n;

(C4) S™(Y, A1,..., ) =Y
where S” is an operation symbol, Z, 371, e ,?H,Xl, e ,Xn,f/ are variables, and \; are
symbols for variables. In general, (C1) is said to be the superassociative law since it
generalizes the associative law. In fact, if we set n = 1, one can reduce it to the associative
law of the form -(-(a,b),c) = -(a,-(b,c)). For more on the study of varieties and clones,

see [2, 11-13]. Recall from [I4, 15] that a nonempty set G with operation defined on
G satisfying (C1) is called an superassociative algebra. Current developments in such
algebras may be found in [16, 17]. Generally, an algebra of type (n + 1) is said to be a

superassociative algebra with infinitely many nullary operations if it satisfies (C1)-(C4).

One of the most important operations on terms is a generalized superposition operation.
Basically, a new term is obtained after substituting all variables occuring in a former term
by the other terms. This can be described by the (n + 1)-generalized superpostion S,
n > 1,

SP WL (X)"H = W (X)

defined inductively by the following steps: for ¢,t1,...,t, € W, (X)

(1) If t =2;; 1 < i <n, then S;(aci,tl, coyty) =1

(2) Ift = x;; n <, then Sy (@i, t1,...,t,) == ;.

(3) Ift = fi(s1,...,5n,), then

Sg(t,tl, ce ,tn) = fi(Sg(Sla tl, ce ,tn>, ceey Sg(sn“tl» ce ,tn)).

We can form the algebra (W-(X), Sy, (z;);>1) of type (n +1,0,0,0,...) consisting the
universe W7 (X) together with one (n + 1)-ary operation S;' and the variable terms as in-
finitely many nullary operations. According to [10], the superassociative algebra of terms
with infinitely many nullary operations was constructed. Hence, the superassociative al-
gebra (W, (X,), Sy ) satisfying (C1) is formed. Adding a variable z; which act as a nullary
operation, the algebra (W, (X,), Sy, (z:)i>1) which satisfies (C1)-(C4) is obtained.

One of the outstanding structures that plays a vital role in the first and second order
languages considered in theoretical computer science is an algebraic system. It is a triplet
consisting of a nonempty set A, a sequence of n;-ary operations defined on A, and a
sequence of n;-ary relations on A. Normally, we may write A = (A, (f)ier, (7;4) jeg) for
an algebraic system of type (7,7') where 7 = (n;);er and fA : A — A for each i € I and
7" = (n;);es and 'yjA C A" for each j € J. We remark here that if a sequence of n;-ary
relations on A is not defined, this structure is reduced to an original algebra of type T,
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ie., A= (A (f)ier). Clearly, any ordered semigroup is a basic example of algebraic

systems of type ((2),(2)). For extensive information on algebraic systems, the reader is

referred to the monograph of A.I. Malcev [18]. Among recent contributions in algebraic
systems are [19-22]. To investigate several properties of algebraic systems of type (7,77),
we need the concept of formulas. Recall from [23, 24] that for n € N an n-ary formula of

type (7,7") is defined in the following way:
(1) If t1,ts are n-ary terms of type 7, then the equation t; ~ to is an n-ary formula
of type (1,7').

(2) If j € J and t4,...,t,; are n-ary terms of type 7 and +; is an nj-ary relation
symbol, then ~;(t1,...,t,,) is an n-ary formula of type (7,7').

(3) If F is an n-ary formula of type (7,7’), then =F is an n-ary formula of type
(1,7").

(4) If Fy and Fy are n-ary formulas of type (7,7’), then F} V F5 is an n-ary formula
of type (1,7').
(5) If F is an n-ary formula of type (7,7’) and z; € X,,, then Jx;(F) is an n-ary
formula of type (7,7’).
Let Fir (W (X)) and Fr o) (Wr (X)) := Upen Fir,m) (Wr(X5)) be the set of all n-ary
formulas of type (7,7') and the set of all formulas of type (7,7"), respectively. By an
atomic formula of type (1,7"), we refer to the formula of the form (1) and (2).

Example 1.1. Let (7,7") = ((3),(2)) be the type with a ternary operation symbol f and
a binary relation symbol 7. We provide lists of some elements in J((3),(2))(W(3)(X3)). For
this, some atomic formulas are determined as follows: 7 &~ x3, T2 ~ xa, f(x1, 22, 23) ~

w1, f(22, T2, 2) & f(21, 23, 71), (71, T2), ¥(¥3, 23), V(T2, 23), Y(f (23, 73, T2), f (21,73, 71)).
Apart form these are obtained by using the following three logical connectors, say —, 3, V.

In this paper, we mainly focus on terms of type 7 of all arities and formulas of an
arbitrary type. Applying the generalized superposition operation S¢ of terms, the partial
operation of formulas is determined. The presentation of this paper is organized as follows:
First, in Section 2, the partial operation defined on the union of the set of all terms and
the set of all formulas is considered. The fact that this partial operation satisfies the
superassociativity as a weak identity is mentioned. In section 3, based on some classes of
transformation semigroups on a finite chain and order-decreasing full terms of type 7,,
a particular class of formulas arising from order-decreasing full terms is introduced and
some properties of such formulas with one operation of the arity (n + 1) are studied.

2. PARTIAL SUPERASSOCIATIVE ALGEBRAS OF TERMS AND FORMULAS

In this section, we mainly focus on a type (7,7') with the corresponding arbitrary
operation symbols and relation symbols of all arities indexed by I and J, respectively.
To acheive this aim, the operation defined on the set of all formulas is recalled. The
operation

Rg : (WT(X) U ./_"(T’T/)(WT(X))) X (WH(X))" - W (X)U .7:(777-/)(W7-(X))
are defined in the following way:

(1) Ift € Wi (X), then R} (t,s1,...,50) := Sy (t,51,.-.,5n).

(2) If ty =ty € Fr 7y (Wr(X)), then Ry (t1 = t2,51,...,5,) is the formula

RZ(tl,sl, .. .,Sn) ~ Rg(tg,sl, .. .,Sn).
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(3) If (1, ..o tn,) € Frrny(Wr(X)), then Ry (v;(t1,... tn,),81,...,5,) is the
formula ’yj(R'g(tl, SlyeveySn)ye-- ,R’g(tnj,sl, ceeySn)).
(4) If F € Fir oy (W7(X)), then Ry (—F,s1,...,sy) is the formula

Ry (F,81,...,5n)
(5) If F1, Fy € Frry(Wr(X)), then Ry (Fy V F, s1,...,8y) is the formula
RZ(FI’ S1y.-+y Sn) V RZ(F27517 . ,Sn).
(6) If 324 (F) € F(r7y(Wr(X)), then Ry (3z;(F), s1,...,5n) is the formula
3z (R (F, 81, -+, 5n))-
Now we let
W./_"(T,T/) =W (X)U f(Tﬂ_/)(WT(X)).
The partial superposition operation of type (n + 1) which is a partial mapping

E; : (WF(T’T/))n+1 —0— WJT'.(T’T/)
can be defined by

n

— Rl (a,by,...,b,) if WFirrny, b1,y by € Wo(X),
Rg(mbl"_"bn):{ g(a,bi,....by) ifac€ (r,77), 01 € (X)

not defined otherwise.

Some examples that demonstrate the process of this partial operation are now men-
tioned. Let [I| =1 = |J| and let (7,7") = ((2),(2)) be a type with the corresponding
operation symbol and relation symbol, say f and -, respectively. The set W F(; /) consist
of all terms of type (2) and all formulas of type ((2),(2)). Prepare the following tools:

ay is a variable x1, as is a term f(z1,x3),
as is a term f(f(x4,21),22), ay is a formula f(x5,21) = z1,
as is a formula y(z¢, f(z2,21)), ag is a formula y(x3, f(z2,21)) V =(f(24, 21) = 27),
by is a term f(x2,x1), by is a variable 3.
Obviously, ai, az, ..., ae, b1, bz are elements in W F((2) (2)). Furthermore, We have

}_Ri(al,bl,bg) = Sﬁ(al,bl,bg) = b1 = f(:l?g,l‘l),
Ro(a2,b1,b2) = S2(az, b1, by) = f(br,a5) = f(f(22,21), 23),
Ei(a;;, by,be,a3) = Rg(a4,b1, by, az) which equals to f(zs5,b1) = b1, and thus
. f(x5,f(x2,$1)) %f(x%xl)?
R, (as,b1,b2) = RZ(as, by, by) = y(xe, f(ba, b1)), which equals to y(xzg, f(x2, f(x2,21))).

On the other hand, Ez(a(;, as, aq) and }_%;l(al, as, by, as,ay) are not defined.
As a result, we can form the following two partial algebras. The first one is the

partial algebra (W.F(; ), RZ) of type (n + 1) and the second one is the partial algebra
(W]-"(TJ/),EZ, (x;)j>1) of type (n+1,0,0,0,...). We show that (W}"(T,T/),EZ) satisfies
(C1) as a weak identity. For this, the concept of weak identities is needed. We recall from
[25] that an equation s ~ t is said to be a weak identity in an algebra A if one side is

defined then another side is also defined and both sides are equal.

Theorem 2.1. (WF(; .1, RZ) is a partial superassociative algebra.
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Proof. Assume that a,by,...,by,d1,...,d, are elements in W.F(; .,y. To show that, E:
satisfies (C1) as a weak identity, we replace an operation symbol S™ by EZ, replace variable
symbols Z ,%,Xj for all 1 < 57 < n by terms a, b;,d;, respectively. This means that we
have R, (R, (a,b1,...,bn),d1,...,dn) = Ry (a, Ry (b1, d1,...,dn),..., Ry (bp,di,....dy)).
Suppose that the left-hand side of this identity is defined. Then we have the following
two cases: a,by,...,b,,d1,...,d, are terms of type 7 in the first case and a is a formula
of type (7,7") but by,...,bp,d1,...,d, are terms of type 7 in the second case.

Consider the first case when a,bq,...,b,,dq,...,d, are terms of type 7. We obtain
that B, (R, (a,b1,...,by),d1,...,dn) equals to S7(S™(a,bi, ..., by),d1,.. ., dy,). Addition-
ally, for each j = 1...,n, R;(bj,dl, .+, dp) is defined and equals to S§(b;,d1,...,dy).
This implies that R, (a, R, (b1,d1,...,dy), ..., Ry (bn,di,...,dy,)) is defined and equals
to Sy (a, Sy (b1,di, ... dpn), ..., S5 (bn,d1,...,dy)). It was mentioned in [10] that the gen-
eralized superposition S satisfies (C1) which means S (Sy (a,by,...,b,),d1,...,dy) =
Sg’((l, Sg(bl,dl, ceey dn), ey Sg(bn,dl, R dn))

We now consider the case when a is a formula F of type (7,7') and by, ...,b,,d1,...,d,
are terms of type 7. It imples that the left-hand side E;(Rg(a, bi,...,bp),d1,...,dy)
equals to R"(R(a,by,...,by),d1,...,dy,). For each j = 1,...,n, R,(bj,di,...,dy) is
also defined and equals to R;‘(bj, di,...,d,). Because we know that, for each j =1...,n,
Rg(bj, dy,...,dy) is a term of type 7, we further obtain that the right-hand side is defined
and equals to Ry (a, R} (b1,dy,...,dn),...,Ry(bn,di,...,dyn)). Finally, we prove that
Ry (Ry(a,by,...,bn),dy, ... dy) and Ry (a, Ry (b1,dy,...,dy), ..., Ry (by,di,...,dy,)) are
identical. For this, a proof by a definition of a formula a is given. If a is a formula of the

form «;(ay,...,an,,), it was mentioned in [26] that R} (R} (vj(a1,...,an,;),b1,...,bn),d1,. .. dy)
and Ry (v;j(a,...,an;), Ry (b1, d1,. .. dn), ..., Ry (by,dy,...,dy)) are equal. If a is an
equation s; &~ sp for any terms s1 and sz, then we have that R} (R} (s = t,b1,...,b,),d1,...,dy)

equals to Ry (Sy (s1,b1,-..,bn) = S§(s2,b1,...,bn),d1,...,d,) which equals the expres-
sion S (Sg (51,01, ,bn),d1,. .. dn) = S§(Sy(s2,b1,...,bn),d1,...,dy,). Since we known
from the first case that for each j = 1,2, Sy(Sy(s;j,b1,...,bn),d1,...,dn) equals to
Sy (85,85 (b1,du, ... dp), ..., S¢(bn,d1,...,dy)), it is not hard to continue the process
that Sy (Sy (51,01, .. ,bn),d1,. .. dn) = S§(Sy(s2,b1,...,bn),d1,...,dy) equals to Ry (s1 ~
52,55 (b1,d1, ..., dn), ..., S) (bn,dy, ..., dpn)). Suppose now that a formula a satisfies (C1).
By the definition of the generalized superposition operation Ry, we have

RZ(RZ(—'a,bl, .. .,bn),dl, ce ,dn) = R;L(_'(I, R;(bl,dl, ce ,dn), ce ,Rg(bn,dl, NN ,dn))

and RP(R?(32i(a), b1, .. bn),dy, - dn) = RPFai(a), RE(bryday -y d),y oy R by iy d)).
Finally, in the case a is a formula F; V Fy, the proof is directly obtained. ]

On the partial algebra (W}"(T’T/),RZ), one can derive the following partial binary
operation as follows: For any a,b € WF(; .y, we define @ : (W]-"(T’T/))2 —o— WF )
by

a®b=R,(a,b).

As a consequence, the binary partial algebra (W.F(, ./, ®) is obtained. Obviously,
from Theorem 2.1, by taking n = 1, the binary partial algebra (W F(, ./, ®) is a partial
semigroup.
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We now explain a subsemigroup of the partial semigroup (W]:(T,T/), @) in a specific
type by the following multiplicative table.

Example 2.2. Consider the type (7,7") = ((2), (2)) with one binary operation symbol f
one binary relation symbol p and a subset

A ={z1, f(x2,24), 23 = 5, p(x3, f(22,22))}

of W F((2),(2)) with respect to a partial binary operation & which is defined by the following
table.

D | T1 f(w2,14) T3 = Tp p(xs, f(z2,72))

x1 x1 f(xa,x4) not defined  not defined
f(z2,x4) f(z2,z4) f(za,z4) not defined  not defined
T3 X Ts T3 ~ Ts T3 X Ts not defined not defined

p(xs, f(xa,22)) | p(as, f(x2,22)) plas, f(x2,22)) not defined  not defined
It is not difficult to show that the binary operation @ defined on A is associative. To
illustrate some examples, we consider elelemts x1, f(x2,z4) and p(x3, f(x2,22)) in A. To
show that an equation

(p(z3, f(22,72)) © 71) @ f(22,74) = p(3, f(72,72)) © (71 D f(72,74))

is a weak identity, assume that the left-hand side is defined. We have (p(z3, f(x2,22)) ®
1) ® f(xa,x4) = p(xs, f(z2,22)) ® f(x2,24) = p(z3, f(x2,22)). Then the right-hand side
is defined and equals to p(zs, f(x2,x2)) ® f(x2,x4), subsequently, p(zs, f(x2,x2)). This
shows that the above equation satisfies an associative law as a weak identity.

Consequently, (A,®) froms a partial semigroup. Furthermore, it is also a partial
subsemigroup of (W.F((QL(Q)), @).

Considering a variable from an alphabet X, the following theorem is stated.

Theorem 2.3. (W}'(T’T/),EZ, (x5);>1) is a partial superassociative algebra with infinitely
many nullary operations.

Proof. The proof of (C1) follows by a direct verification of Theorem 2.1. To prove (C2)
we substitute a symbol S by a partial operation EZ, a symbol A; by a variable x; for
1 < j <n, and X by an element by, € W F(z . Then we have Eg(mj, bi,...,by). Sup-
pose that the left-habd side of (C2) is defined. We have that b, ..., b, are terms of type
7. Thus E;(J}j, bi,...,bn) = Ry(xj,b1,...,b,) = bj. Therefore, (C2) is proved. To show
that (C3) holds as a weak identity, we continue from (C2) but replace a symbol \; by a
variable z; for j > n. Assume that the left-hand side of (C3) is defined. We obtain that
bi,...,by € Wr(X) and thus R, (z;,b1,...,b,) = R2(x,b1,...,b,) = z;. Hence, (C3) is
also verified. Finally, in (C4), we replace Y by an element a € W F((r),(+1)), @ symbol \; by
a variable z; for 1 < k£ < n. Then we have ﬁ;(a, Z1,...,Ty) &~ a. It is not hard to see that

the left-hand side is defined and thus Eg(a, T1,. . 2n) = Ry(a,21,...,2,). If ais a term

of type 7, from [10], we have R} (a,x1,...,7,) = Si(a,z1,...,2,) = a. For a formula a,

we give a proof by the following way: If a is an equation s ~ ¢, then Rg(s Rt Ty, ., Ty) =

Sy (8,21, xn) = Syt x1,...,0,) = s & t. If a has a form v;(t1,...,t,,), we have

Ry(vj(tes oo stn; )1y mn) = %5 (Sg (B, 21505 Tn)y oo oy Sg (Bnyy 15 -+ @) = 5 (E, -5 tny)-
Assume that a is satisfied Cy as a weak identity. Then we obtain R’;(—'a, TyyennyTpy) =

—Ry(a,r1,...,7,) = ma and Ry(Jzi(a),v1,...,2,) = Jzi(Ry(a,71,...,2,)) = Jzi(a).
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Finally, suppose that F} and Fy are satisfied. Then we have RZ<F1 V Fy,xq,...,x,) =
Ry(Fi,21,...,20) V Ry (Fo, 1, ..., 2,) = F1 V Fa. The proof is completed. [

3. FORMULAS DEFINED BY ORDER-DECREASING TRANSFORMATIONS

Based on the theory of transformations semigroups, especially transformations of order-
decreasing on a finite chain, the first aim of this section is to apply one of the outstanding
classes of terms of type 7,, which is called order-decreasing full term, to introduce othe
classes of formulas.

Let X be a nonempty set and let 7'(X') denote the semigroup of the full transformations
from X into itself under the usual composition of mappings. By the symbol 7, we mean
a chain {1,...,n} with a natural order <. If X = n we write T, instead of T'(X). We
consider the set

OD, ={aeT, |Vke{l,...,n},ak) <k}
of all order-decreasing full transformations which is a submonoid of T,,. More details on
order-decreasing transformations may be found in [27, 28]
For a positive integer n, let 7,, = (n,...,n) be a type indexed by a nonempty set I,
——

11|
with each operation symbol f; of arity n for every i € I.
Definition 3.1. [29] For each i € I, let f; be an n-ary operation symbol and « € OD,,.
An n-ary order-decreasing full term of type 7, is inductively defined by

(1) fi(za(1),---»Taw)) is an n-ary order-decreasing full term of type 7,,
(2) if t1,...,t, are n-ary order-decreasing full terms of type 7, then f;(¢1,...,t,)
is an n-ary order-decreasing full term of type 7,.

Let WT(Z Pn(X,) be the set of all n-ary order-decreasing full terms of type 7,,.
Now we present some concrete examples of order-decreasing full terms of some types.

Example 3.2. Let 73 = (3,3, 3) be a type with three ternary operation symbols f, g, and
h. Then we have

f(x1,21,21), 9(21, 22, 3), h(21, 22, 22) € WT(;DS(X:%),

1 2 3 1 2 3 1 2 3
because <1 1 1>,<1 9 3),<1 9 2)60173 and
9(f(z1,21,21), h(z1, 22, 22), g(T1, 22, 23)) € WgDS(XB)-
On the other hand,

fxa, 23,21), 9(21, 3, 22), (23, 73, 1), M(T2, T2, T2) & W3 (X3),

. 1 2 3 1 2 3 1 2 3 1 2 3
i (2 3 1)’(1 3 2>’(3 3 1>’<2 2 2)¢0D3'
The set WTOn Pn(X,,) of all n-ary order-decreasing full terms of type 7, is closed under

the following superposition
S (WEP (X)) — WoPn(X,,)

given by:
(1) Sn(fi(l‘a(l), NN ,l‘a(n)),tl, NN ,tn) = fi(ta(1)7 . 7t0c(n)>; and
(2) Sn<fi(81, N .,Sn),tl,. . ,tn) = fi(Sn(Sl,tl,. N ,tn>, N .,S”(sn,tl,. N ,tn)).
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As a result, in [29], the algebra (W2P"(X,,), S") was formed. Furthermore, it was shown
that this algebra satisfied the equation (C1).
Let us consider the type 7/, = (m,...,m) of all arities of relation symbols and all
——
7]

j € J. We define the new concept of full formulas of type (7,,7,,) for natural numbers
n,m > 1.

Definition 3.3. Let n € N. An n-ary order-decreasing quantifier free full formula of type
(Tn, 7)) (for short, order-decreasing full formula) is defined in the following way:

(1) If s,t are n-ary order-decreasing full terms of type 7, then the equation s ~ ¢
is an n-ary order-decreasing full formula of type (7,,7,,).

(2) If tq,...,t,, are n-ary order-decreasing full terms of type 7,, and ~; is a relation
symbol of type 7,,, then v;(t1,...,t,,) is an n-ary order-decreasing full formula
of type (n, 7y,)-

(3) If F is an n-ary order-decreasing full formula of type (7,,,7/,), then =F is also
an n-ary order-decreasing full formula of type (7,,7,,).

(4) If F; and F, are n-ary order-decreasing full formulas of type (7,,7},), then

Fy Vv F» is an n-ary order-decreasing full formula of type (7,,7;,).

Let f(OTDT, )(Wg Pn(X,,)) be the set of all order-decreasing full formulas of type (7,,, 7/,,).
We now give some examples.

Example 3.4. Let (74,75) = ((4,4,4,4),(3,3,3)) be a type of algebraic system, i.e., we
have four quaternary operation symbols f1, fs, f3, f4 and three ternary relation symbols
Y1,72,v3- We see that the following terms

t1 = fi(z1, 21,01, 21), to = fo(wr, 21, 22, 22),

i3 = f4(x1a332,$37 4)7 tg = f4($1,$2,$1, 3):

ts = fa(x1, 22,22, 21), te = fo(x1,21,21,22),

tr = fi(z1,m2,73,23), ts = fa(x1,72,72,74)
are elements W94 (Xy4) because

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

11 1 1) 11 2 2) 1 2 3 4)° 1 2 1 3)

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 2 1) 1 1 1 2)° 1 2 3 3)° 1 2 2 4
are order-decreasing transformations on 4. As a result, we have that

b &t ts &~ o, i (ta, bs, fa(tos trots, t1)) € FOpt (WEPH (X))

We also obtain other full formulas by applying the logical connectors =, — and V, for
example,

—(t = tr), ~(te = t), ~(3(tr, te, t5)), (ta = t3) V (t1 = fa(ts, te, t1,t2))
and

(ts = t7) V = (ts = t2), (2(y3(ta, t1,t7)) V (t7 = ta)) V y2(ts, te, t2).

Now, we extend the definition of superposition operation of order-decreasing full terms
to order-decreasing full formulas by replacing variables occuring in an order-decreasing
full formula by order-decreasing full terms.

Definition 3.5. Let m,n be natural numbers. The operation
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R" (WP (Xn)) x (WP (Xu)™ = FQ2r, (WP (X))

(Tnﬂ'/ )

f(Tn ; )
can be defined by the following inductive steps:

(1) If s,t € W2P»(X,,), then R"(s ~ t,s1,...,5,) is an order-decreasing full

formula S™(s,s1,...,8,) &~ S™(t,81,...,5n).
(2) If t1,...,t;,m € WT?LD”(Xn), then R"™(v;(t1,...,tm),51,...,5,) is an order-
decreasing full formula ~;(S™(t1,51,...,8n),--, 8™ (tm, 51, -+, 5n)).

3) If F e J-"(OD , )(WOD (X,)), then R™(=F,sy,...,s,) is an order-decreasing
full formula —-R" (F S1y.vy8Sn)-

4) It Fi, Fy € FOPn, )(WOD (X,)), then R"(Fy V Fy,s1,...,5,) is an order-
decreasing full formula R™(F}, $1,...,8,)V R™"(F,81,...,8n).

Below we present an example of Definition 3.5 that demonstrates a method for substi-
tuting order-decreasing full formulas by order-decreasing full on some finite set.

Example 3.6. Let (73,75) = ((3,3,3),(3,3,3)) be a type of algebraic systems with three
ternary operation symbols hq, hs, hs and three ternary relation symbols ny,n2,73. Con-
sider the superposition

R®: FO0u (WP (X)) x (WP (X)) — FO22 (WEP2 (X3))

(13,75) (73,7

and these three ternary order-decreasing full terms say s1 = hi(Z(1), T(2), T(3)); 52 =
ha(xy(1), Tr(2), Tr(3)) and s3 = h3(sz,s1,51) in WgDif(Xg) where v and k are mappings
in ODs3 defined by v = (} g 2) and K = <1 ? g) Then we have the following:

(1) If s ~ ¢ has the form gi(z1,21,21) ~ g2(21,22,22), then R*(g1(x1,21,21)
g2(w1, T2, T2), 51, 82, 83) is an order-decreasing full formula S3(g1(x1,x1,21), 81, S2, $3)
S3(go (w1, 12, 22), 51, 52, 53). By the superposition S3, we further have

Q

g1 (815 S1, Sl) ~ 92(81a 52, 82)-

(2) If n3(ss, s2, 1) is an order-decreasing full formula in J-'(O3D33 (W2QP3(X3)), then we
obtain that
R3(n3(s3, s2,81), 81, 82, 83). By Definition 3.5 and S3, it is equal to

773(53(83, 81, 82, 53), 53(827 S1, 52, 53), 53(51, 81, 82, 83))-

Moreover, applying logical connectors ~,— and V, we obtain other order-decreasing full
formulas on a set 3.

Then we can form the many-sorted algebra

(WOP(X,), F2Pm, (WP (X,)), 8™, R")

(7n700)

which is called the clone of order-decreasing full formulas of type (7,,7),). We may use

OD,

the notation Formclone™ ™" (7,7} ) for the clone of order-decreasing full formulas of type

(Trs Th)-

Furthermore we prove

Theorem 3.7. The algebra Formclone®? (r,,, 7/

7)) satisfies the axiom of superassociativ-
ity.
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Proof. Firstly, we replace Z by an order-decreasing full formula F' in F 8 i)’:;n) (WOPn(X,,))

and substitute all symbols fﬁ,...,ffn and Xl,...,Xn by order-decreasing full terms
PlyeeesPnyql,---,qn. Firstly, if F' is an order-decreasing full formula s = t, since the
satisfaction in (C1) of S™, we have R"(R™(s &= t,D1,--+,Dn)sq1s- -+ qn)
= Sn(Sn(Sapla s 7pn)7 qi, .- .- 7qn) ~ Sn(Sn(tapla s 7pn)’QI7 s 7Qn)
= Sn(57 Sn(pla ai, .- . aqn)a ) Sn(pn:(ha v 7Qn))
~ STt ST, @1y s Gn)y s S (Prs Q1 - -5 Gn))

= Rn(s ~ t: Sn(placIla ) QTL)7 ceey Sn(prw(]la cee 7Qn))-
Secondly, if F' is an order-decreasing full formula ~v;(u1,...,uy), where uy, ..., uy €

WOPn(X,), it follows from the satisfaction of (C1) that
R™(R™(vj(uts- -y Um)s D1y s Pn),q1s -+ Gn)
= R"(v;(S™(u1,p1,---s0n)s - S (Ums D1y, Pn)) Qs - - -1 Q)
= 3 (S™(u1, S"(P1,q1, -1 qn), S Py @1y 0))s s
S™(Ury S (D1, q1y e o3 Gn)y - o3 S™" Py G1y -+ -5 qn)))

= Rn(’}/j(ulv s 7u7ﬂ)7 Sn(p17 qi,- - - ,Qn)y R Sn(pnv qi,-- -, Q'n))
Assume that an order-decreasing full formula F' satisfies the statement of the theorem.

Then
R™(R"(=F,p1,..-yPn)sq1y- - Gqn)
= R"(~R™FE,p1,y.-yPn)sq1ys---+qn)
= R"(R™(F,p1,.-yPn)sq1y---+qn)
= =R"(F,S"(p1,q1,--sqn)s---sS™"(Pnsq1s -, qn))

= Rn(_'Fv Sn(plv qi,-- -, qn): ceey Sn(pru qi, - - - 7qn))
Suppose that order-decreasing full formulas F; and F; satisfy the statement of the theo-

rem. Then
R"(R™(F1V Fo,p1,- .y Pn)sq1y -« qn)
= RYR"(F1,p1,--,Pn)s @1y, Gn) V R (R (F2,p1, - ,Pn), 15+ -+ 5 qn)
= Rn(FhSn(plaQL---7Qn)a"'7Sn(pn7Q1a---aQn))
VR™(Fo, S™(P1,G1s- -1 Gn)s- -y S"(Pny @1y -5 qn))

- Rn(Fl \ F27Sn(p17QI7 cee 7Qn)a ) Sn(meIh ) Qn))
This finishes the proof. [

To investigate some properties of the algebra Formclone??" (7,,, 7/ ), a concept of order-
decreasing full formulas generated by 5 € OD,, is introduced.
For t € WTOn Pn(X,) and 8 € OD,,, we define a term ¢ that arises from j3 as follows:

(1) tg := fi(xﬁ(a(l))a o :IE,B(a.(n))) ift= fi(Ia(l), - ,J}a(n)).

(2) tﬁ = fl((tl),g, ovey (tn)ﬁ) lf t= fi(tla e ,tn).
It is observed that for all 8 € WTCZ Pn(X,), ts is again an n-ary order-decreasing full term
of type 7, if £ is.
Proposition 3.8. [20] Let t € WT?LD" (Xn),B,v € OD,,. Then

tyop = (t8)y-
Definition 3.9. An order-decreasing full formula F of type (7, 7,,) arising from a map-
ping 8 € OD,,, denoted by F, can be inductively defined by the following steps:
) If Flis s = t, then Fg = (s = t)g := sg = tg3.
) If Fis ’Yj(tla ce ,tm), then FB = (’Yj(tla ce atm)),@ = ,Yj((tl)ﬁ7 ceey (tm)/j)
) (—F)g = ~(Fp) where Fj is already defined.
) (F1V Fy)g = (F1)p V (Fa)p where (F1)g, (F»)p are already defined.



The Partial Operation of Formulas... 88

For instance, consider all preparations of Example 3.4 and 8 = (1 9 g 4

Then a formula (t3 =~ t5)s is equal to

(f4($1, o, x37$4) ~ f3<x17$27 o, xl))ﬁ

and thus f4(z1,x2,r3,24)8 = f3(x1, 2,22, 21)a, which implies

fa(wy, 2o, w2, 04) = f3(1, 29, T2, 21) € FO L4 (WT(ZD4(X4))-

(74,75)

Similarly, if v2(t4, te, ts) € ]:(%D“ (W2P+(Xy)), then 72 (ts, e, ts)p is a formula

3)
Yo (fa(1, 22, 1, 23) 8, fa(1, 01,21, 22) 5, fa21, 2, T2, w4)8),
which means
Yo (fa(x1, 22, 21, 22), fo(21, 01, %1, 22), fa(w1, T2, T2, 24)).
The following statement establishes a relationship between F € FOP» (WP (X))

(TnsTp)

and two mappings in OD,,.
Proposition 3.10. For any F in FOPr (WOPn (X)), we have

(T'rn”_yln)
F’YOB = (F,B)v
for all v, 6 € OD,,.

Proof. Let F € }"OTf:, )(WgDn (X,)). We give a proof by the following steps. If F" has a

form s ~ t, then by Proposition 3.8, we get

Frop = (8 R t)yop = Syop R tyop = (5p)y = (t)y = (sp = tp)y = (s ® 1))y = (F)-
If Fis a full formula v;(s1,...,sm), where s1,...,s,m € WEP(X,), and (sk)yop =
((sk)p)y for all 1 < k < n, then by Proposition 3.8, we have

nyoﬂ == 7j<517~~~75m)706

= ((51)08, -+ (8m)yo8)
= 75 (((s1)8)y,- -5 ((5m)8)v)
= ('ng(sl),é’w--’)(sgn)ﬁ))v

= (v(s1,---55m)8)~
= (Fp)y-
Assume now that F' satisfies F,o3 = (Fj3)y. Then

(_‘F)'yOﬁ = _‘(FWOB) = _‘((FB)W) = _‘(FB)'Y = (_'Fﬁ)v‘
Finally, suppose that F} and F, satisfy the statement. Then (F1 V F3)yop = (F1)yop V
(F2)yop = ((F1)p)y V ((F2)s)y = (F1)p V (F2)p)y = ((F1 V F2)p)y. We conclude that
Fyop = (F3), for all F e FOP» (WOP=(X,,)). "

(Tns7})
Combining Definitions 3.5 and 3.9 and Proposition 3.10, the following corollary is
obtained.

/

Corollary 3.11. On the algebra Formclone®?r (Tn, T),), the equations

Rn(FB,Sl, ce ,Sn) = Rn(F, 85(1), ce 73,8(n)) = Rn(F,Sl, .. .,Sn)ﬁ
are satisfied for all F' € f(iTD" (WP (X)) and s, ...,s, € WOP(X,,).

L7T7/n)
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4. CONCLUSION

This paper presents a connection among terms in universal algebra, formulas in al-
gebraic systems, and semigroups of full transformations on a finite chain. A partial
operation on the union set between terms and formulas is introduced. We notice that the
results obtained extend the construction of full terms presented in the paper [29] and full
formulas mentioned in the paper [24]. In closing this paper, we give some open problems.

(1) Characterize idempotency, regularity, and Green’s relations on a partial semi-
group (W F; 11, ®).

(2) Determine a generating system of the algebra Formclone®?" (7,,, 7/ ).

(3) Apply a concept of formula languages introduced in [30] to study a particular

class of formulas arising from order-decreasing mappings.
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