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Abstract The core objective of this article is to employ the novel (G’/G?)-expansion method, proposed
here for the first time, for constructing exact traveling wave solutions of the (2 + 1)-dimensional con-
formable space-time breaking soliton equation. To the best of the authors’ knowledge, the equation has
not been solved for its exact solutions by means of the used technique. As a result, the obtained exact so-
lutions of the problem are expressed in terms of hyperbolic, trigonometric and rational function solutions.
Along with the help of a symbolic software package, the method can be simply and efficiently utilized to
solve the equation for acquiring accurate and trustworthy exact traveling wave solutions. Consequently,
the method could be used to determine some new exact solutions for other nonlinear conformable partial

differential equations occurring in physics and engineering.
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1. INTRODUCTION

Nonlinear partial differential equations (NPDEs) are used to describe complex physical

phenomena in scientific fields such as mechanics [1], electrostatics [2], fluid mechanics [3],
quantum mechanics [1], optical fibers [5], plasma [0], oceanology [7], finance [3], applied
physics [9], chemistry [10] and biology [I1]. As is well known, exact traveling wave so-

lutions of NPDEs play a significant role in exactly portraying wave and other physical
phenomena because they are analytical solutions without any errors, unlike numerical
solutions. Recently, exact traveling wave solutions of NPDEs have been consequently
investigated through accurate and reliable techniques. The powerful approaches used
to find exact traveling wave solutions of NPDEs are the exp-function method [12, 13],
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the ansatz method [14, 15], the F-expansion method [16, 17], the Jacobi elliptic func-
tion method [18, 19], the first integral method [20, 21], the improved Bernoulli sub-
equation function method [22], the modified extended tanh-function method [23, 24], the
Riemann-Hilbert method [25, 26], the Lie symmetry method [27], the (G’/G)-expansion
method [28, 29], the (G'/G,1/G)-expansion method [30, 31] and the novel (G'/G)-
expansion method [32].

The following interesting wave problem which fascinated us is the (2 + 1)-dimensional
breaking soliton equation. The equation reads [33, 3]

Upt — AUgylUy — 2UzplUy — Uggay = 0, (1.1)

where u(z,y,t) is a traveling wave solution of the equation. Equation (1.1), initially
established by Calogero and Degasperis [35, 30], describes the (2 + 1)-dimensional in-
teraction of a Riemann wave propagating along the y-axis with a long wave propagated
along the z-axis [37]. If we let y = x in (1.1) and integrate the resulting equation, then
the breaking soliton equation (1.1) is transformed to the KdV equation, which is a crucial
mathematical model for special waves called solitons on shallow water surfaces. The main
characteristic feature of breaking soliton equations is that the spectral parameter utilized
in the Lax representations possesses so-called breaking behavior [38]. Finding exact so-
lutions of (1.1) and its modified Riemann-Liouville derivative and stochastic versions by
some existing methods can be reviewed in [39-11].

In this article, we develop equation (1.1) by substituting its classical partial deriva-
tives with the conformable partial derivatives as shown below. The (2 4 1)-dimensional
conformable space-time breaking soliton equation can be expressed as

8_0‘&_4 0%u 08 [(0Pu _g 08 (0P 0%
ot 9P oxP oyP \ 0xP oxB \ OxP oyP
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N o (0% [0° [0Pu _0 (1-2)
oyP \ 0zf \ 0z \ 0xP -
where 0 < a, 8 < 1 are the fractional-orders of the conformable partial derivatives gTO;, %
and % which will be defined in section 2. A recent literature review for extracting explicit
exact solutions for equation (1.2) using the simplified tan(@)—expansion method can be
found in [42]. Furthermore, we will establish a new method called the novel (G'/G?)-
expansion method, which is modified from the novel (G’/G)-expansion method [32]. This

new method has not been studied and used by any scholar researchers before. Therefore,
it is quite interesting to solve (1.2) by utilizing the novel (G’/G?)-expansion method for
its exact traveling wave solutions.

The outline of this paper is as follows. The definition and some important properties of
the conformable derivative are provided in section 2. In section 3, we summarize steps of
the novel (G’/G?)-expansion which is first proposed here. The application of the method
for extracting analytical exact solutions of (1.2) is explored in section 4, followed by some
graphical representations in section 5. Finally, we give some conclusions in section 6.

2. DEFINITION AND PROPERTIES OF CONFORMABLE DERIVATIVE

In this section, we provide fundamental concepts of the conformable derivative includ-
ing its definition and important properties as follows.
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Definition 2.1. Suppose f is a function such that f : [0,00) — R. Then the conformable
derivative of f of order a where 0 < o <1 is defined as [30, 43-18]
t+ett=) — f(t
Do F() = tim LEFEETD = FO) 2.1)

e—0 S

for all ¢ > 0. If the limit in (2.1) exists, then we can state that f is a-conformable
differentiable at a point ¢ > 0. Moreover, if f is a-conformable differentiable in some
(0,a), a > 0 and lim;_,o+ DY f(t) exists, then we define D¢ f(0) = lim;_,o+ D§* f(¢).

The fundamental properties of the conformable derivative, for instance, the conformable
derivatives of a sum or a division of two functions and the relationship between the con-
formable and classical derivatives, can be found in [30, 13, 44,46, 17,19, 50]. Also, the con-
formable derivatives of some interesting functions were formulated in [30, 43, 44, 46, 47].

Theorem 2.2. [0, /7, /9, 51, 52] Suppose that the functions f, g : (0,00) — R are
differentiable and also a-conformable differentiable. Further, assume that g is a function
defined in the range of f. Then, we have

D (fog)(t) =t'""f"(g(t))g'(t),
where the prime symbol (") represents the ordinary derivative.

Utilizing the definition (2.1), the definition of the conformable partial derivative of a
function such as u = u(x,t) with respect to ¢ of order v € (0, 1] can be defined as [30)]

Nu(z,t) .. ulz,t+et?™) —u(z,t)
———~> = lim
oty e—0 5

The higher-order definition of the conformable derivative and its properties can be dis-
covered in [13, 50, 53].

, t>0. (2.2)

3. ALGORITHM OF THE NOVEL (G’/G?)-EXPANSION METHOD

In this section, we are proposing the new method for finding exact traveling wave so-
lutions of classical and conformable NPDEs named the novel (G’/G?)-expansion method.
The description of the approach is concisely given as follows. Consider a nonlinear con-
formable partial differential equation in an unknown function v = u(z1, za, ..., x,,t) of
the independent variables x1, g, ..., z, and t as

0% ! 9P o~ [ 95
P (u, %u, (9:1:?1 Uy ey e Uy Uty Uy g s +oey U, Eve (83:?1 ul,...] =0, (3.1)

n

where 0 < «, (1, B2, ..., Bn < 1. The symbol aa;u is a generic term for the conformable

partial derivative of u with respect to v of order v € (0,1] and the subscript symbols
denote the classical partial derivatives, for example, u;; = ‘9—22u. The function P in (3.1)

ot
is a polynomial of v and its various partial derivatives.

Step 1: Transform the nonlinear conformable partial differential equation (3.1) into an
ordinary differential equation (ODE) using the fractional complex traveling wave trans-
formation in a variable £ as shown below
clchl 023352 cnxﬁ" kte

6 g v tTE Ta

u(x1, T2, ey Tp,t) = U (§), €= (3.2)
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where cq, o, ...,cn, k are nonzero constants which will be determined at a later step.
Applying transformation (3.2) to (3.1) and then integrating the resulting equation with
respect to £ as much as possible, we obtain the following ODE in U = U (&) as

Q (U, vulu, ) —0, (3.3)

where @ is a polynomial function of U () and its various integer-order derivatives. The
prime notation () denotes the ordinary derivative with respect to &.

Step 2: Suppose that a solution of the ODE (3.3) can be expressed in terms of v (§)
as

N
U =3 a@©), (3.4)

where

V€)= d+6(€) with 6(6) = oS, (35)

G*(¢)
The coefficients a; (i = 0,£1,%2,...,4£N) and d are unknown constants, which are
determined later under the condition that (a_x)? + (ax)? # 0. The function G = G(€)

satisfies the following nonlinear second-order ODE:

G2G" = pG* + \G2G' + (2G + v — 1) (G')°, (3.6)

where the prime notation (") denotes the ordinary derivative with respect to £ and where
A, i, and v are real parameters.

_ (In(G*(©))e _ G’(&))

The following transformation ¢ (§) = 5GE) reduces equation (3.6) into

the generalized Riccati equation [54, 55]:

¢'(&) = 1+ Ad(€) + (v — 1)¢*(6). (3.7)

It has been discovered that equation (3.7) has thirty nine solutions (see [54, 55] and
Appendix in [50]).

Step 3: The value of the positive integer N in (3.4) can be calculated by utilizing the
homogeneous balance principle, i.e., balancing between the highest-order linear terms and
the highest-order nonlinear terms occurring in (3.3). More precisely, if the degree of U(§)
is Deg[U(&)] = N, then the degree of the following terms can be determined as follows

|:
d1U(€)
dgs

Deg [dqwo

28] Nt pes|wior (

) ] = Np+ s(N +q). (3.8)

Step 4: Substituting equation (3.4) along with equations (3.5) and (3.6) into equation
(3.3), we get a polynomial in 1) (§) = d + ¢(§). Collecting all coefficients of like-power of
the resulting polynomial to zero, we obtain an over-determined set of algebraic equations
for the unknowns a; (i = 0,+1,+2, ..., +N), d, ¢1, ca,..., ¢, and k.

Step 5: Assuming that the algebraic equations in Step 4 can be solved for the unknowns
via Maple software, we substitute the values of the unknowns together with the solutions
of (3.7) into (3.4) to obtain exact traveling wave solutions of the nonlinear conformable
partial differential equation (3.1) with £ defined in (3.2).
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4. APPLICATION OF THE METHOD

In this section, we demonstrate an application of the novel (G’/G?)-expansion method
for finding exact solutions of the (2 + 1)-dimensional conformable space-time breaking
soliton equation (1.2). Before extracting exact traveling wave solutions of (1.2) via the
novel (G’'/G?)-expansion method, one must convert the conformable equation into an
ordinary differential equation using the following transformations

B «
u(z,y,t) =U(&) and & = ky <— + kot — ct—> ) (4.1)

where kq, ko are ¢ are constants determined at a later step. Applying (4.1) to (1.2), we
obtain the ordinary differential equation in the variable U = U(&) as

koUW — 6k3kU'U" — ck2U" = 0, (4.2)

where the prime notation (') represents the ordinary derivative with respect to &. Inte-
grating equation (4.2) with respect to £ and letting the constant of integration to be zero,
one finally get the following ODE

K kU™ — 3k3 ks (U')? — ck2U" = 0. (4.3)

Using the solution form (3.4) and balancing the highest-order derivative U”’ with the

highest-order nonlinear term (U’)?, we obtain N = 1 via the formulas in (3.8). Hence,
the solution of (4.3) can be expressed as

U€) =a1 (¥ (&) +ao+a (¥ ()", (4.4)

where a_1, ag, a1 are unknown constants and ¥ (§) = d + ¢ (§) with ¢ (&) = g;(é))

satisfying the generalized Riccati equation (3.7). Substituting (4.4) into (4.3), the left
hand side of (4.3) is transformed into polynomials of (¢ (£))! = (d+ ¢ (£))’ where
j = 0,£1,+2 43, +4. Equating the coefficient of each power of v (£) to zero, we ob-
tain the following set of nonlinear algebraic equations:

() o — 6kThadvPa_y 4 18k kad®v?a_q + 18k kod® Mo?a_y — 18k kad®va_4
— 36k1d® \va_ ko — 18k{d* \2va_1ky — 18k}d* pva_1ky + 6kidCa_ ko
+ 18kTd® Na_1 ko + 18kTkoa_1N2d* + 36kTd* pva_1ky — 3kikea® |v?d*
+ 6ktkoa_1 N3d® + 36k kya_  opd® — 18kt koa_ i pd* + 6k3kaa® [ vd?
— 36k d®Apa_1ky + 6kSkoa®  Mod® — 18k1d* N2 pa_1ko — 3k3koa? | d*
— 18k{d*u*va_1 ko — 6kikea® | N> — 3k3koa® | N2d* + 18k1d*pPa_1ko
— 6k koa®  pvd® + 18kTd\p*a_1 ko + 6k koa® | ud? + 6k3 kaa®  A\ud
— 6ktkoa_1p® — 3k3koa®  p? =0,
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V3(€) ¢ 24kidPvia_1ky — T2kTd v a_1ky — 60kTd* M3 a_1ky + T2kTkadva_y

+ 120k d* Ma_1 ko + 48k 1d® N2va_1 ko + 48k dP pvPa_1ky — 6k koa® A
— 24ktkod®a_1 — 60kid* Na_1ko — 48kTkoa 1 N2d® — 96kTd> pva_ ko

+ 12k kpa® (0% d® — 12k ka1 N3d? — 72k koa_ i opd? + 48k T kya_q pd®
— 24k3koa® Jud® + T2k dP Apa_ 1 ky — 18k3koa®  Avd? + 24kTdN% pa_ 1 ko

+ 24ktdpva_1ky + 12k3kaa® | d® + 18k kaa® | Nd? + 6kFkaa® | \2d

— 24kthoa_qpPd 4+ 123 koa® | pvd — 12kTkoa_y A — 12k koa® | pud = 0,

o — 36kid*va_1ky + 6k3d* % a_1a1ky + 108kid v a_ ko

+ T2k{d3  vPa_ 1 ky — 12k3d*va_1a ke — 108kTd*va_ ko

— 12k \va_qa1kod® — 144kTd* Mva_1ky — 43kTd* Nva_1ky

— 44k d? pvPa_1ko 4+ 6k3a_1arked® + 36kid a_1ky + 12k3d* Na_1a1 ks
+ T2k{d3 Na_1ky + 6E3d*N2a_1a1ky + 43d2N2a_ 1k} ks

+ 12d2 pva_1a1 k3 ko 4 88d2 pwa_ 1 kiky — 18d2v%a% [ k3 ko + TdN3a_1kiky
+ ddd \pwa_ 1 ktky — 12k3d% pa_1a1 ko — 44k kya_y pd® + 36k3koa? [ vd?
— 12k pa_qarkad — 44kTdrpa_1ko + 18k koa® | Mvd — Tkikoa_1 )%
— 8ktkoa_jvp® — 18k kga® (d* — 18kTkga® | Nd — 3k koa® | N2

+ 6ki’u2a_1a1k2 + Skfkga_l,uz — Gki)’kgaz,lﬁw + k%cva_1d2

+ 6k kga® p — kica_1d* — k3icha_1d + k3cpa_1 = 0,

VH(E) : 24kidPvia_1ky — 24k3dPva_1arke — T2k1dPvPa_1ko — 36k1d*MvPa_ ko

+ A8k dPva_qarky + T2k{d%va_ 1 ko 4 36k Ma_ia1kod? + T2kTd* va_1 ks
+ 14k1dN2va_1ky + 16k} dpva_1ky — 24k3a_1a1kod® — 24kid3a_ ko

— 36k3d*Na_1a1ko — 36k d* Na_1ky — 12k3dN%a_1a1ky — 14kTkoa_1N2d

— 24k} pwa_1a1kod — 32k dpva_1ko 4+ 12k kea® (v?d — kikoa_1 N?

— 8ktkoa_1 vy + 24k3dpa_jarks + 16k ka1 pd — 24k koa® (vd

+ 12k A pa_1a1ko 4 8kikoa_1 \u — 63 koa® | v 4 12k3koa? | d + 6k koa® |\
— Qkfcva_ld + Qk%ca_ld + k%c)\a_l =0,

PO (&) : 6kivdarkad — 3302 a3 kod? — 18Kk v arkod? — 12k d3 M2arky + 6K valkod?

+ 18k var kod* 4 6k3d> Mva2ky + 24k1d® \vay ko + Tkid* Nvay ko
+ 8kid*pvtar ke — 6kid*v3a_1ky — 3kiatked* — 6kiaikod* — 6k NaTkod?

— 12Kkt Narkad® — 3k3N202kod® — TEIN2a1kod? — 63 d% pvaiky — 16kid? pvay ko

+ 36ki’d2v2a_1a1k2 + 18k‘11d2v2a_1k2 — k‘fA?’aled — Sk‘f)\uvalkgd
+ 6kid \v?a_1ky + 6k} palkod? + 8kiuarked? — 72k d*va_qa1ks
— 18k{d*va_1ky + 6k3d\paks + 8kidApar ke — 36k A\va_jaiked

(4.5)
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— 12k{d\va_1ky + ktkoay N2y — ktkoa_1 N0 + 2kTkoaivp?® — 2kTkoa_q pv?
+ 36k3a_1a1kod? 4 6kid*a_1ky + 36k3dAa_1aiky + 6kidNa_1ks — kica_y
+ 6k N%a_jarke + kikoa 1 N — 3k koalu® — 2kikearp® + 12k3 pva_1aq ko
+ 4kf‘k2a_1,tw — 3ki’k2a2,1v2 — ki 2cvayd?® — 12k3 Tpa_rarks — 2k1 koa_1p
+ 6k3k2a2 10+ /<:2calol2 + k2c)\a1d — 3k3k2a_1 - cklal,u + k:lcva_l =0,
V(&) — 24k{viarked® 4 12k3v%aTkod® 4+ T2k 102 ar kod® + 36k d* A2 ar ks

— 24k3vatked® — T2kTvaiked® — 18k d* Avatky — T2k1d* Mvay ks
— 14kidN?vaiky — 16k dpvar ke + 12k3atked® + 24kt ar kod® + 18k Natkod?
+ 36k Na1kad? + 6k3N2a2kod + 14kiN2a1kod 4+ 123 dpva®ky + 32k dpvar ko
— 24k3dva_1arky + kN arke + SkiApuvaiky — 12k3 patked — 16k} paykod
+ 48k3dva_1a1ky — 6k Nuatky — SkiApar ks + 12k3 \va_1a ko
— 24k3a_qarkod — 12k3Na_1a1ks + 2k?cvard — 2k3card — kicha; = 0,

V2 (&) : 36kTv3arked? — 18k3v%a2kod?® — 108kivarkad? — 36kTdM\v?ay ks + 36k3valkod?
+ 108k var kad? + 18k d \vaiky + T2kid\var ko + ThiN var ko + 8k pv?a ko
— 18k3atkod?® — 36k arkad® — 18k Nakod — 36ki Aatkad — 3k N2 a3 ky
— 7]4:11/\2(11]@ 6k1 ,uvalkg 16/{:1 pvarks + 6klv a_1a1ks + 6k1ua1k2
+ Skf‘,uale — 12k1va 1a1ks + ﬁkla 1a1ky — klcval + klcal =0,

Y3(€) 1 = 24k{viarkad + 12k30% a3 kod + T2k 102 a1 kod + 12k 1 M2 ar ke — 24K3va2 kod
— T2k varkod — 6k Avaiky — 24k var ks + 12k a2 kod + 24kTarkad
+ 6k Nadky + 12k Aaike = 0,

V(&) : 6kfviatky — 3k3v%alky — 18kTv2arky + 6kSvalks + 18k varks — 3k3a2ks
- 6k1a1k2 =0.

Using the symbolic computation software such as Maple 17 to solve system (4.5), one can

obtain the following three cases of the unknown constants a_1,ag, a1,d, k1, k2, c.
Case 1:

a_1 = —2d°vky +2d°k1 + 2d\ky — 2uk1 , a1 =0, ¢ =kiko (\> —4dpv +4p),  (4.6)

where ag, k1 # 0, ko # 0, u, A\, v, d are arbitrary constants.
Case 2 :

a_1 =0, a1 =2vk; —2k1, c= k%kg ()\2 —4duv + 4,u) , (4.7)

where ag, k1 # 0, ko # 0, , A\, v, d are arbitrary constants.
Case 3 :

ki (A2 — dpw + 4p) A
= 20k — 2 ==
w1y T 2k =2k d=gaa (4.8)
c=4k?ky ()\2 —4duv + 4,u) )

a_1 =

where ag, k1 # 0,k # 0, u, \,v # 1 are arbitrary constants.
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For computational convenience, we denote
A=) —4u(v—1). (4.9)

All of the following exact traveling wave solutions u (x,y,t) for (1.2) are simplified and
expressed in terms of the solutions of the generalized Riccati equation, which are separated
into four families as mentioned in the Appendix of [50], the change of variables in (4.1)
and the symbol A in (4.9). All of them have been substituted into (4.3) with the aid of
the Maple package program to confirm that they correctly satisfy the equation.

Exact solutions of (1.2) using the unknown constants of Case 1: The exact
traveling wave solutions of (1.2), obtained using the solution form (4.4), the unknown
constants in (4.6) together with (4.1) and (4.9), are expressed as follows.

Family 1. When A > 0 and A(v — 1) # 0 (or u(v — 1) # 0), the hyperbolic function
solutions of (1.2) are as follows:

4k (d?v — d? —d\ + p)(v — 1)

1
ul,l(xvyut) = + aop, (410)
VA tanh (Y55~ 2dv + 2 + A
ey (v — d% — dX + ) (v — 1
ul gy, 1) = ald W=D ., (4.11)

VA coth (Y3£) — 2dv + 24 + A

4k1 (d?v — d? — dX + p)(v — 1) cosh(v/A€)

Ha-al ) = T T N com(VAE) — VAmh(vAg T 1 (1
1 Ak (d?v — d? — dA + p)(v — 1) sinh (ﬂg)
el ) = T od y sinh(VAE) + VAoh(vAg 7 1) T 41
u%,?('fﬂv Y, t) =
8k1(d?v — d* — d\ + p)(v — 1) cosh (@) sinh <@> (4.14)

1
2(—2dv 4 2d + \) cosh (@) sinh (@) +VA <2 cosh? (@) _ ) + ao,

u%,8—9(x’ Y, t) =

B Aky (d2v — d? — dX + p)(v — 1)(Asinh(VAE) + B) a (4.15)
(2dv — 2d — \)(Asinh(VAE) + B) — AVA cosh(VAE) + /(A2 + BHA

U%,m—u(ﬂ?ay,t) =
Ak (d?v — d® — dX + p) (v — 1)(A cosh(VAE) + B) (4.16)

 (2dv — 2d— N (Acosh(VAE) + B) — AvVAsmh(vVAE) ¥ V(BT = A0

where A and B are two nonzero real constants and satisfy the condition that B2 — A2 > 0,

U’ilZ(a"a Y, t) =

2k (d20 — d® — dA+ i) (Acosh (Y35 — VAsinh (V55)) (4.17)
_ (dX\ — 2p) cosh (@) — dv/Asinh (@) + ao,
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ui13(x7 Y, t) =

20y (@0 — & — d\+ ) (VB cosh (Y55 ) — Asinh (Y55 ) ) (4.18)
_ dv/A cosh (@) + (21 — d\) sinh (@) + ao,

u%714_15(m,y,t) =
2%k (420 — d® — d\ + p) <\/Z(i + sinh(VAE)) F /\cosh(\/Z@) (4.19)
- dvV/A(i £ sinh(VAE)) F (dX — 2u) cosh(vVAE) a0,

u%,16—17(xayat) =
2% (d2v — d® — d\ + p) (\/Z(cosh(\/zg) +1) - Asinh(\/Zg)) (4.20)
- dv/A (cosh(VAE) + 1) — (dA — 2p1) sinh(VAE) a0,

“1,18(337 y,t) =
2k (d?v — d? — dX\ + ) (—2)\cosh (@) sinh (@) + VA(2 cosh? (@) — 1)) (42]_)

- 2dv/A(cosh? (@) — 1) — 2(dX + 2p) sinh (‘/4Z£) cosh (@) ao-

Family 2. When A <0 and A(v —1) # 0 (or p(v — 1) # 0), the trigonometric function
solutions of (1.2) are as follows:

Aky (d?v — d? — dX + p) (v — 1)

1
u2,1(‘r7y7 t) = + ao, (422)
V= tanh (Y524) — 2dv + 2d + A
ey (d20 — d2 — d 1
(e, t) = ——Fald a2l Gl B (4.23)

\/—Acot< ;A5> —2dv+2d+ A

W (gt = — (@ =& = A+ ) — 1 cos(V=AY)
2,3-4\, Y, (2dv — 2d — \) cos(v/—AE) + v/ —A(sin(v/—AE) £ 1)

4k (d?v — d? — d\ + p) (v — 1) sin(v/—A¢)

+ aop, (424)

1 —
U25-6(0:9:) = (2do — 2d — \) sin(V=2E) + V=B (—cos(V=2E) F1) (4.25)
u%,?(xa Y, t) =
8k1(d?v — d* — d\ + p)(v — 1) cos (‘/?5) sin (‘/?£> (4.26)
+ ag,

2(—2dv + 2d + \) cos <_TA£) sin (@) + vV —A(2cos? (\/?5) —1)

U%,S—g@c?y?t) =
Ak (d®v — d? — dX + p) (v — 1)(Asin(vV=Af) + B) (4.27)
(—2dv + 2d + \)(Asin(v/=A¢) + B) + AV—Acos(vV—AE) + /—(A%2 — B2)A
u%,lofll(wayat) =
Ak (d*v — d* — dX + p) (v — 1)(Asin(v—A¢) + B) (4.28)
(—2dv + 2d + \)(Asin(vV/—AE) + B) + AV—=Acos(v—AE) F /—(A2 — B2)A
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where A and B are two nonzero real constants and satisfy the condition that A2 — B? > 0,
u%,m(x?yvt) -
2k (d?v — d* — dX\ + ) ()\ ( N ;A§> ++v/—Asin (—V;Ai» (4.29)

) (dX — 2p) cos (F ) + dv/=Asin (\/?5> + ao,

u%,ls(l’»yi) =
2k (@0 — d* — d\ + ) (V=R cos (VL) — Asin (ALY (4.30)
- dv/—A cos <\/_27Af> (2u — dX) sin (ﬁg) o

U%,14—15(3371% t) =
(o~ — A+ ) (VEAEI(EAY £ 1) + Acos(V-AY) (4.31)
dv/=A(sin(v=AE) £ 1) + (d — 2p) cos(v—AE) o

u%,lﬁ—l?(‘rv Y, t) =
2ky (d?v — d? — d\ + p) (V=A(cos(v—AE F 1)) + Asin(v/—Af)) ta (4.32)
dv—A(cos(vV—AE) £ 1) — (dX — 2) sin(v—Af) o

uj (2, y,t) =
21 (@20 — d? — X+ 1) (—2hcos (L5EE ) sin (Y5RE) 4 2= Rcos? (Y558) - VZA)  (4.33)
- dv/—A(2 cos? (@) —1)—2(d)\—2u)cos<\/?5)sin<\/?£> o

Family 3. When = 0 and A(v — 1) # 0, the hyperbolic function solutions of (1.2) are

expressed as:

2k1 (d?v — d? — d\) (cosh(AE) — sinh(\€) + c1v — ¢1)
d(cosh(A¢) — sinh(A&)) + (dv —d — M)y

uili,l(m: yvt) == + agp, (434)

U-iz(l', Y, t) =
2k (d?v — d? — d\)(v — 1)(2cosh(AE)ey + €2 + 1) N (4.35)
— a
2c1d(v — 1) cosh(AE) — c1 A(cosh(AE) + sinh(AE)) + dcfv — ded + dv —d — A 0

where ¢y is an arbitrary constant.
Family 4. When p = XA = 0 and v — 1 # 0, the rational function solution of (1.2) is
shown below:

2k (d?v — d?)(v€ — € + c2)
dvé — d€ + dey — 1

ui,l(‘xa Y, t) = - + aop, (436)
where co is an arbitrary constant.

Exact solutions of (1.2) using the unknown constants of Case 2: The exact
traveling wave solutions of (1.2), obtained using the solution form (4.4), the unknown
constants in (4.7) together with (4.1) and (4.9), are listed as follows.
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Family 1. When A > 0 and A(v — 1) # 0 (or u(v — 1) # 0), the hyperbolic function
solutions of (1.2) are as follows:

uil(m,y,t) =ag — k1 <\/_ta h <\/_€> — 2dv + 2d + )\> , (4.37)

uiQ(x, y,t) = ag — k1 (\/ZC th <\/_£> — 2dv + 2d + A) , (4.38)

u%,3—4($7 yat) =
ki (v — 1)((—=2dv + 2d + X) cosh(v/A€) + VA sinh(VAE) + m/_ (4.39)
cosh(vVAE)(v — 1)

apg —

u%,5—6(m7 Y, t) =
k1(v — 1)((—=2dv + 2d + ) sinh(v/A€) + VA cosh(VAE) + VA ) (4.40)
sinh(vVA€)(v — 1)

apg —

u%,?(xayat) =
ki (2(— 2dv+2d+)\)cosh<

2
=
=
—
,,;‘D
ax%
+
E
o
o
o
wn
=
[\o]
—
,,;‘D
ax%
~—
~N
=
=

ag —

U%,S—g(l‘?yat) =
_ ki((=2dv+2d+ ) (4 sinh(VAE) + B) + AVA cosh(VAE) T /(A2 + B2)A) (4.42)
Asinh(VA¢) + B ’

U%lo 11(2,9,t) = ao
 Ea((=2dv + 2d + M) (A cosh(VAE) + B) + AVAsinh(VAE) £ /(B2 — 42)A ) (4.43)
Acosh(vVAE) + B

where A and B are two nonzero real constants and satisfy the condition that B2 — A2 > 0,

2k1 (v —1) (d\/Zsinh (@) + (2 — dX) cosh (@))

ui 1oz, y,t) =a (4.44
’ (@91) o ﬂsinh(@) )\Cosh<\ﬁ§> ( )
k(v — dv/A cosh (VA< — d)\)sinh (Y2¢
i) —ag o TV Ee () 4 O (5))
’ V/A cosh (@) — Asinh (@)
.2 . . 2k1 (v — 1)(dVA(sinh(vVAE) i) + (2i — d\) cosh(VAE))
114-15(%, 9, 1) = ao + VA(Snh(VAE) £ 1) — Acosh(VAE) ,(4.46)
u%,16—17($, y,t) = ao + 2k1 (v~ D(AVALcosh(VAY £ 1) + (21— dA) sinh(VAL)) (4.47)

—Asinh(VA¢) 4+ vV A(cosh(VAE) + 1)
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U?,ls(l’»y»t) =
2k (v — 1) (d\/z@ cosh® (@) — 1) + (4 — 2d)\) sinh (fé“) cosh (%)) (4.48)
\/Z(2 cosh? (@) — 1) — 2\ sinh (%) cosh (@)

Family 2. When A < 0 and A(v — 1) # 0 (or pu(v — 1) # 0), the trigonometric function
solutions of (1.2) are listed below:

k(v —1) (Mtan (@) + 2dv — 2d — A)

ag +

u3 1 (@,y,t) = ao + p— : (4.49)
k(v — 1) (\/_Acot <ﬁ5> — 2dv + 2d + A)
uj o2, y,t) = ag — e , (4.50)
a0 t) = a0 + ky ((2dv — 2d — \) cos(;(/JS—(_A\/g_)_;;/ﬁ(sin(Mg) +1)) s
B o o(0,) = a0 kr ((—2dv + 2d + X) sm(szflz_j% Z)M(COS(MO +1)) (452)
U%j(%, Y, t) =
kr (2(—2dv + 2d + \) cos ( ) \/_(2 cos (“?5) — 1))(4.53)

apg —

sin (55
2cos(ﬁ)

( 9
2
Uz g_o(T,y,t) =

1((=2dv + 2 + X)(Asin(V=AE) + B) + AV=A cos(V=AE) ¥ (A7~ BHA) (4.54)
Asin(v/—A&)+ B

ag —

2
Uz 10-11 (T Y, ) =

1 (=2dv 424 + \)(Asin(V=BE) + B) + AV=A cos(V=RE) + (V=(A7 = B)X)) (4.55)
Asin(v/—A¢) + B

ag —

where A and B are two nonzero real constants and satisfy the condition that A2 — B? > 0,
2k (v —1) (d\/—A sin (—V_Ag> + (dA — 2p) cos ( N _2A§>)
— = , (4.56)
\/—Asm( £)—F)\cos( 5)

ug,m(l‘a@/a t) = ap +

2k1(v—1( mg) (2u — d)\)81n(mg>) (457
—Asm(rg)—l—MCos(ﬁg) 7

Ug,ls(l‘ay;t) =ag +

U§,14—15($ y,t) =
L 1)(dv/—=A(sin(v/—A¢) £ 1) + (dX\ — 2u) cos(v—AE))  (4.58)
0t V—=A(sin(v/—=A¢) £ 1) + Acos(v/—AE) ’
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U%,16—17($a Y, t) =

2 (v — 1) (dvV=A(cos(vV—AE) + 1) + (21 — dN) sin(vV—Ag))  (4.59)

o V=D (cos(v—DE) £ 1) — Asin(v_Af) ’
“3,18(17 y,t) =
oo+ 2k (v — 1) (dm@ cos? (@) — 1)+ 2(2pu — dX\) sin (‘/?5) cos (‘/?5)) ' (460)

—2Acos (\/?g) sin (\/?5) + v—A(2cos? (@) —-1)

Family 3. When = 0 and A(v — 1) # 0, the hyperbolic function solutions of (1.2) are

as follows:

2k1 (v — 1)(dvey — dey — ep A)(d cosh(AE) — dsinh(AE))
cosh(AE) — sinh(AE) + c1v — &1 ’

ui i (z,y,t) = ao + (4.61)

2k1((dv — d — X)(cosh(AE) + sinh(XE)) — dei + dvey)
cosh(A) + sinh(X§) + ¢ ’

u3 o(w,y,t) = ao + (4.62)

where ¢; is an arbitrary constant.

Family 4. When 4 = A = 0 and v — 1 # 0, the rational function solution of (1.2) is

expressed below:

2k1 (v — 1)(dv€ — d€ + deg — 1)
v§ — &+ c2

ui,l(wv Y, t) =ao + ’ (463)
where ¢o is an arbitrary constant.

Exact solutions of (1.2) using the unknown constants of Case 3: The exact
traveling wave solutions of (1.2), obtained using the solution form (4.4), the unknown
constants in (4.8) together with (4.1) and (4.9), are shown as follows.

Family 1. When A > 0 and A(v — 1) # 0 (or u(v — 1) # 0), the hyperbolic function
solutions of (1.2) are as follows:

3 - kl\/z \/_€
uy 4 (z,y,t) = —@ — k1V/Atanh ( ) (4.64)

kv A
“?,2(1‘;3/;75) = —W\/\/—&) + ag — k1V'A coth (Cf) , (4.65)
oM 2

k1V/A cosh(v/AE) a k1 A(sinh(vVAE) % 4)

uil’;’3_4(x’ y7t) = - smh(\/Zg) py 0 — cosh(\/Zﬁ) ) (466)
_ kiWAsinh(VAE) k1vV/A(cosh(vAE) £ 1)
U’?,5—6("E7 Y, t) - COSh(\/Zf) +1 +aop — Sth(\/Zf) ’ (467)
u?,?(aj Y, ) =
2k /A sinh (V3¢ ) osh (%) VA (2c0s0® (Y25) <1)  (a68)
—_ + CLO —_

2cosh<f€) sinh (£>
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ul g o(x,y,t) = — ki A(Asinh(VAE) + B)
1,8-9(Z, Y, AVA cosh(VAE) F /(A2 + B2)A

ag

B k1 (A\/ZCOSh(\/Zg) T (A2 4 B2)A) (4.69)

Asinh(VAS) 1 B ’

w3 (2,9, ) = — k1 A(A cosh(VAE) + B) .
1,10-11\0 Y, 1) = AVAsinh(VAE) + /(B2 — A2)A 0 -

_ ki(AVAsinh(VAE) +/(B% — A%)A)
Acosh(vVAE) + B

where A and B are two nonzero real constants and satisfy the condition that B2 — A2 > 0,

A (x/Zsinh (@> — Acosh (@))

AV/A sinh (ﬂf) A cosh (*F5>

ki (VEsinh (Y2€) — Acosh (¥5¢))
VA sinh (Q) ~ Acosh (@) ’

k12 (V& cosh (YV2€) — nsinh (¥2¢))

AV/A cosh (Wﬁ >

k1 ()\\/Kcosh @) — Asinh ﬂ))
VA cosh (%) — Asinh (@ ’

Y

u?,lQ(*r?y?t) = + ag

(4.71)

+

u?,l?,(x?y?t) =

D

— A sinh ( 2A @72)

+

w14 15(2,y,1) _ B AWA(Inh(VA) £i) — Acosh(VAY)
1,14-15\%: Y5 M/A(sinh(v/A€) 4 14) — A cosh(vV/Af) ’

B (AWVA(sinh(VAE) + 1) — A cosh(vVAE))
VA(sinh(VAE) £ i) — Acosh(VAE)
kA </\ sinh(vVAE) — VA cosh(VAE) + \/Z)
Asinh(vAE) + MWA(— cosh(vAE) + 1)
Ky (A sinh(vVAE) + AVA(— cosh(VAE) + 1))
Asinh(VAE) + VA(—cosh(VAE) £1)
kA (VAR eosh? (Y5) — 1) - 27sinh (X5£) cosh (¥5) )
AWVA(2cosh? (Y5£) = 1) — 24 sinh (Y55 cosh (V5
by (A\/Z(Q cosh? (@) 1) — 2A sinh ( ) ( ))
VA(2 cosh? (@) 1) — 2Asinh ( ) cosh ( ) '

(4.73)
_|_

U?,16—17(9ﬁ'7y,t> = + ag

(4.74)

u?,lS(xv Y, t) =

N——"

_|_
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Family 2. When A <0 and A(v —1) # 0 (or u(v — 1) # 0), the trigonometric function
solutions of (1.2) are shown below:

. kl\/ —A N/—Af
“g,l(xayat) ——W—i—ao—i—hv—Atan( 5 ) ) (4.76)
 kiv-A V—AE
ugg(:n,y,t) = W + a9 — k1vV—Acot (T) , (4.77)

_k1MCOS(M§) kiv/—A(sin(v/—A¢) + 1)

1137374(93, v1) = sin(v/—A¢) £ 1 a0 cos(v/—AE) ’ (4.78)
.2 . _ k1v/—Asin(yv/—Af) . k1vV/—A(cos(v/—AE) £ 1)
25-6(®:, 1) cos(v/—AE) £ 1 a0 sin(y/—A¢) ’ (479)
ug,?(xa Y, t) =

2k1v/—Asin (‘/?5) Cos (@)
2 cos? (mg) -1

kiv—A (2 cos? (F&) 1) (4.80)
2 cos (VTg) sin <*/T£> ’

+a0—

i (@) = — A(Asin(v/—A¢) + B) 1 ag
2EmONT AV=A cos(v—=AE) F /—(A2 — B2)A (4.81)
 ki(AV=Acos(V=AY F /(A7 - BY)A) '
Asin(v/—A¢) + B ’
¥ (2,9 ) = — A(Asin(v/—A€) + B) ta
0= AV—A cos(v—AE) £ /(A2 _BOA 52)

| ki(AV=Acos(V=RAE) + /— (47 — BYA)
Asin(v/—A¢) + B ’

where A and B are two nonzero real constants and satisfy the condition that A% — B2 > 0,

k1A (x/_Asm (‘/7‘5> + A cos (ﬁg))
VvV —AM\sin (@) + A cos (@)

u§,12(m7 Y, t) =

+ ag

(4.83)

+

(4.84)
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¥ (z.y.t) = A (Acos(vV=AE) + vV—A(sin(v—AE) £ 1)) ta
214-1515 8 A cos(v—DE) + AW —A(sin(vV_AL) £ 1) 0
N k1 (A cos(vV—AE) + A\W/—A(sin(v—AE) £ 1))
Acos(v—AE) + V—A(sin(v—=A¢E) £1)

3 = A (/\ sin(v/—A¢) + v/ —A(— cos(v—AE) £ 1))
Uo7 ) = R 4 WA (—cos(V B £1)
k1 (Asin(vV=AE) + AW—=A(— cos(vV—=AE) £ 1))
Asin(v/—A¢) + V=A(—cos(v—AE +1)
ki A <M(2 cos? (@) 1) —2Asin (ﬁ£> cos (*/?5))
A/ —A(2 cos? (ﬂ) 1) — 2Asin (ﬁg) cos (‘/?5)

kq ()\\/_(2cos (mg) —1)—2Asin(\/_4j£> cos(mg>)

(4.85)

(4.86)

ug,lS(Zan)t) = + ag

(4.87)

7}
v —A(2 cos? (J—?g) —1) —2Asin (*6?5) Ccos (@)

Family 3. When = 0 and A(v — 1) # 0, the hyperbolic function solutions of (1.2) are
as follows:

k1A(cosh(AE) — sinh(A) + c1v — ¢1)

3 —
31 8) =3 h08) — smh(0E) T o — ) T Lss
k1 A(cosh(AE) — sinh(AE) + ¢1 — c1v) (4.88)
cosh(A§) — sinh(A§) + c1v — ¢
u§,2(m7 Y, t) =
_ k1A(cosh(AE) + sinh(AE) + 1) ki A(cosh(AE) 4+ sinh(A\) —¢p)  (4.89)

A(cosh(AE) + sinh(AE) — ¢1) o~ cosh(A§) 4+ sinh(A) +¢;
where ¢; is an arbitrary constant.

Family 4. When = X\ = 0 and v — 1 # 0, the rational function solution of (1.2) is
expressed as:

A(vE — €+ ¢2) ki(—2v + 2)
3 £ = S —
uy 1 (@,y,t) ots T e g

where co is an arbitrary constant.

(4.90)

5. GRAPHICAL REPRESENTATIONS AND DISCUSSIONS

In this section, interesting graphical representations of some selected exact solutions of
the (2 + 1)-dimensional conformable space-time breaking soliton equation (1.2), obtained
via the novel (G’/G?)-expansion method, are depicted as 3D, 2D and contour graphs.
On the following domains: Dy = {(z,y,t) | =30 < 2 < 30,y = 1 and 0 < ¢t < 30}
for all 3D and contour graphs and Dy = {(z,y,t) | =30 < z < 30,y = 1 and ¢t = 2}
for all 2D plots, the exact traveling wave solutions u? 5(z,y,t) in (4 66), u3 3(x,y,t) in
(4.78), u3 1o(z,y,t) in (4.82) and w3, (z,y,t) in (4.88) are chosen to graphlcally portray
on the domains for solution behaviors when values of the fractional-orders a, (B are varied.
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Particularly, « = =1, a = f = 0.8 and a = § = 0.4 are inserted into (1.2) to investigate
effects of the fractional-orders on the solution simulations.

In Figure 1, various graphs of the exact solution u§’73(a:,y,t) in (4.66) are plotted on
the mentioned domains using the parameter values ag = 1, k1 = ko = 1, A = 1, u =
0.1, v = 0.5. Particularly, Figure 1 (a)-(c), 1 (d)-(f) and 1 (g)-(i) demonstrate the 3D, 2D
and contour plots for the exact solution (4.66) evaluated at « = =1, « = = 0.8 and
a = 8 = 0.4, respectively. As observed from the 3D graphs of Figure 1, solution (4.66) is
characterized as a solitary wave soliton of kink type.

(c) contour

(f) contour

(g) 3D (h) 2D (i) contour

FIGURE 1. Solution plots for u? 5(z
novel (G’/G?)-expansion method: (a

x,y,t) in (4.66) obtained using the
)-(
a=[£=0.8; (g)-(i) when o = = 0.4.

c) when o = 8 = 1; (d)-(f) when

Associated graphs of w3 3(x,y,t) in (4.78) are drawn on the domain, as shown in
Figure 2, by employing the parameter valuesag =1, k1 = ko =1, A=0.5, u =1, v = 1.5.
Especially, Figure 2 (a)-(c), 2 (d)-(f) and 2 (g)-(i) present the 3D, 2D and contour plots
for the exact solution (4.78) evaluated at « = =1, a = =08 and o = 5 = 0.4,
respectively. By classifying a shape of the 3D graphs in Figure 2, solution (4.78) can be
identified as a singularly periodic wave solution.

Figure 3 displays the associated graphs of u3 ;o(x,y,t) in (4.82), which are computed
using ag = 1, k1 = ke = 1,A =05, p =1, v—15,A—1 B = 0.5 and plotted on the
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FIGURE 2. Solution plots for u3 3(z,y,t) in (4.78) obtained using the
novel (G'/G?)-expansion method: (a)-(c) when a = 8 = 1; (d)-(f) when
a=L=0.8; (g)-(i) when a = = 0.4.

specified domains. In particular, Figure 3 (a)-(c), 3 (d)-(f) and 3 (g)-(i) describe the 3D,
2D and contour graphs for the exact solution (4.82) evaluated at a = =1, a = =0.8
and a = § = 0.4, respectively. From the 3D graphs of Figure 3, the physical behavior of
solution (4.82) is considered as a singularly periodic wave solution.

Various plots of u3 ; (z,y,t) in (4.88) are depicted on the specified domain, as shown in
Figure 4, by using the parameter values ag =1, k1 = ko =1, A=05, u=0,v=2,¢; =
2. Moreover, Figure 4 (a)-(c), 4 (d)-(f) and 4 (g)-(i) provide the 3D, 2D and contour
graphs for the exact solution (4.88) calculated utilizing « = f = 1, = f = 0.8 and
a = 8 = 0.4, respectively. By identifying a shape of the 3D graphs in Figure 4, solution
(4.88) can be characterized as a singular kink wave solution.



An application of the novel (G’/G?)-expansion method for solving the conformable breaking soliton equation 72

(c) contour

(i) contour

FIGURE 3. Solution plots for uj o(x,y,t) in (4.82) obtained using the
novel (G’/G?)-expansion method: (a)-(c) when o = 8 = 1; (d)-(f) when
a==0.8; (g)-(i) when a = = 0.4.

6. CONCLUSIONS

In this paper, the novel (G’/G?)-expansion method, established for the first time, is
developed from the novel (G’/G)-expansion method. The proposed technique differs from
the original one by using the new auxiliary equation (3.6), which still satisfies the gen-
eralized Riccati equation through a certain transformation. The new method is applied
to the (2 + 1)-dimensional conformable space-time breaking soliton equation (1.2) for
constructing various solitary wave solutions. We successfully obtain abundant new exact
traveling wave solutions, based on the plentiful solutions of the generalized Riccati equa-
tion as expressed in [50], such as hyperbolic function, trigonometric function and rational
function solutions as reported in section 4. In addition, the variation of the fractional-
orders «, § in equation (1.2) is studied in terms of the solution graphs including the 3D,
2D and contour plots as shown in section 5. The selected exact solutions are plotted to
show their graphical behaviors and to disclose their distinct physical characteristics, for
instance, a cross kink-wave solution, a singularly periodic wave solution and a singular
kink wave solution. However, all of the exact solutions, obtained by the method, are
verified by substituting them back into the relevant ODE (4.3) with the help of Maple.
According to the reported results in this investigation, it has been noticed that the novel
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(b) 2D (c) contour
: ;' n
UV‘T—Z'O—'—S‘O 10 20 30
(e) 2D (f) contour
(h) 2D (i) contour

) in (4.88) obtained using the

FIGURE 4. Solution plots for u3 1(z,y,t
(a)-(c) when ao = 3 = 1; (d)-(f) when

novel (G’/G?)-expansion method: (a)-
a=[£=0.38; (g)-(i) when o = =0.4.

(G’ /G?)-expansion method along with the aid of the Maple package program is a power-
ful, efficient and reliable mathematical tool which may be used to scrutinize a wide range
of nonlinear PDEs including the conformable derivative cases because it provides several
types of exact traveling wave solutions and generally gives much more explicit solutions
than other existing methods.
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