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Abstract This research aimed to apply Extreme Value Theory (EVT) to describe maximum rainfall

events in Nakhon Ratchasima Province. We considered the Generalized Extreme Value (GEV) distribu-

tion and Generalized Pareto (GPD) distribution models for the highest monthly rainfall data in Nakhon

Ratchasima Meteorological Station from January 1982 to December 2021. Our findings revealed that the

Fréchet distribution is the most suitable model from the GEV family. Whereas the exponential distribu-

tion provided an optimal model for monthly rainfall data above the 235 mm. threshold, we found that

an increase in the return period improved the return level. Comparing the return levels between GEV

and GPD, our results show that GPD is higher than GEV. Our second goal was to investigate VaR to

determine the maximum rainfall risk for the following year using the Block Maxima (BM) and Peak over

Threshold (POT). Using VaR backtesting, the POT outperformed the BM because in-sample data had

actual violations close to the expected number.
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1. Introduction

As low-pressure systems move from the South China Sea through Vietnam and into
northeastern Thailand, it rains primarily in Nakhon Ratchasima province. Rain typically
blows through the Northeast 2-3 times per year, resulting in the appropriate amount of
rain. However, it is still causing frequent flooding in Nakhon Ratchasima, as it has in the
past, such as in 1984, 2007, 2010, and 2021, and has done so for the past ten years due
to heavy rain in many areas. The number of consecutive rainy days exceeds the monthly
average, particularly in Nakhon Ratchasima and the surrounding areas. Furthermore,
the ability of cities and communities to drain water from upstream to downstream is
insu�cient to support flooding. The construction of several dams and the size of canals
is not enough to drain the proper amount of water. The continuous development of cities
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and communities also results in the invasion of water areas. As a result, drainage e�ciency
is low, causing the water volume to be much higher than expected, resulting in damage
to housing, the economy, society, and agriculture.

Rainfall forecasting has been done using time series and the decomposition method.
Monthly rainfall forecasts for Nong Khai Province ([14]) and Nakhon Ratchasima Province
([9]) used exponential smoothing methods and Box-Jenkins techniques. This study exam-
ined all of the data models. In addition, most researchers considered maximum rainfall in
rainfall forecasting using extreme values. Extreme Value analysis is a statistical tool that
would use the maximum or minimum value. ([10]), including infrequent simulated events
([11]), such as maximum-minimum rainfall, maximum wind speed, maximum-minimum
temperature, and so on. This extreme analysis employs two distribution models: the Gen-
eralized Extreme Value Distribution (GEV) and Generalized Pareto distribution (GPD),
e.g., Panpharisa et al.,([13]) used a GEV to create a model of the highest rainfall in
Thailand’s upper north. Kaewmun ([1]) modeled the highest rainfall in the central and
northeastern regions in addition to finding the return level of the highest rainfall in the
return period. Rattanawan et al.,([16]) modeled the lower northeastern maximum rain
using a GED and the highest rainfall’s degree of recurrence during the year. Also Charin
et al., ([3]), used a generalized extreme distribution to model monthly rainfall and a
generalized Pareto distribution to model daily precipitation and calculate the minimum
temperature change in winter and the summer peak temperature in the central North-
east. In addition, he used a generalized Pareto distribution to model the daily minimum
temperature in winter and the daily maximum color temperature in summer.

We can estimate how often the extreme quantiles occur at a certain return level based
on the extreme value theory. The return value is defined as a value that is expected to
be equaled or exceeded on average once every interval of time (T) (with T = 1

p

when p is

a probability of extreme value distribution). However, it is di�cult to calculate a 100%
accuracy (p = 1) forecasting the return levels with T = 1 as the time horizon. For this
reason, we apply method as a substitue of return levels with T = 1. The technique would
be used to calculate the maximum expected rainfall over a given period. It is measured
in months by a statistical confidence level known as the percentage of confidence (% of
confidence level), such that we apply the Value at Risk (VaR). VaR is the most popular
method of measuring financial risk in this study. It must measure the amount of rainfall
the following year to predict the threat of heavy rain and flooding the following year. The
greater the VaR, the more likely the event. Heavy rains may cause flooding, but it also
means that rainfall is unlikely to exceed that VaR amount.

Therefore, we are interested in finding the return level and VaR as information to help
plan and prepare for problems caused by changes in rainfall and weather conditions in
Nakhon Ratchasima.

2. Value at risk (VaR).

Value at Risk (VaR) is mainly concerned with market risk. We define the VaR over
the time horizon with probability ↵ as ([15])

1� ↵ = Pr[L > V aR] = 1� F (V aR), (2.1)

when L is the value of a stochastic variable with cumulative distribution function F . We
will apply the VaR to determine the risk of the highest rainfall in this research in a unit
of time given one year.
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3. Extreme value theory

In this section, we want to find the distribution of extreme events, such as peak rainfall,
that are not routine. There are two methods for determining a catastrophic event. First,
the data is separated into sets. This set is called a blog. For example, our information
divides into years, consisting of a data set within the year. The most important obser-
vations in each block are separate from each other. This method is called block maxima.
In the second method, all data above certain limits called thresholds are extreme. The
following presents more detail about both.

3.1. Block maxima (BM)

Figure 1. Example of the maximum observation in each set or block as
an extreme event.
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The Fisher-Tippett theorem states that M
n

converges in distribution to the generalized
extreme value (GEV) family. The GEV family is given by
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exp(�exp(�(x�u

�
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where u is the location parameter, � is the scale parameter, and ⇠ is the shape parameter.
If ⇠ > 0, then M

n

follows the Fréchet distribution, when ⇠ = 0, M
n

follows the Gumbel
distribution, and has exponential distribution for ⇠ < 0.

Let H(x) = p where p is the probability of GEV family. Thus, by inverting (3.2), we
get

x
p

=

⇢
u� �

⇠

(1� (�lnp)�⇠), ⇠ 6= 0,
u� �ln(�lnp), ⇠ = 0.

(3.3)

We call x
p

the quantile of the GEV.
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The quantiles of the GEV distribution are of particular interest because of their inter-
pretation as return levels : the value expected to be exceeded on average once every in T
is a time horizon when T = 1

p

, where 1�p is the probability associated with the quantile.

We seek x
p

such that H(x
p

) = 1� p , where H is as in (3.2). The associated return level
x
p

is

x
p

=

⇢
u� �

⇠

(1� (�ln(1� p))�⇠), ⇠ 6= 0,
u� �ln(�ln(1� p)), ⇠ = 0.

(3.4)

Recall, Pr(L > V aR
↵

) = 1 � ↵, is equivalent to Pr(L  V aR
↵

) = ↵, can be written
as F (V aR

↵

) = ↵ . Hence, to find V aR
↵

as a quantile of F , it is impossible to find
the quantile by simply inverting F because F is unknown. However, we now know that
Pr(V aR
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) = Pr(M
n

 x) = (F (x))n and Pr(M
n

 x) can be approximated by H for
large n, so that we get
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Thus, if p = ↵n we get
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=

⇢
u� �

⇠

(1� (�nln↵)�⇠), ⇠ 6= 0,
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(3.5)

which is the desired quantile ([15]).

3.2. Peaks-over-threshold (POT)

Figure 2. The observation above the threshold u as an extreme event in POT.

Let X
1

, X
2

, ..., X
N

be a sequence of iid random variables. In the POT method, we
want to find F (x) of all excess observations greater than threshold (u) see Figure 2. Let

F
u

(x) = Pr(X � u  x)|X > u) =
F (u+ x)� F (u)

1� F (u)
. (3.6)

However, F
u

(x) is unknown since F (x) is unknown. We use the Pickands-Balkema-de
Haan theorem: PBdH([12]) to find a (positive measurable) function � that depends on
the threshold u such that

lim
u!xF

sup
0x<xF�u

|F
u

(x)�G
⇠,�

(x)| = 0,
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where F (x) is in the domain of attraction of G
⇠

, ⇠ 2 R . So, x
F

 1 is the right endpoint
of F (x) and G(x) is the distribution function of General Pareto Distribution (GPD),
defined as

G
⇠,�

(x) =

⇢
1� (1 + ⇠x/�)�1/⇠, ⇠ 6= 0,
1� exp(�x/�), ⇠ = 0,

(3.7)

with shape parameter ⇠ and scale parameter �. The G(x) includes three distributions
when ⇠ = 0, it is the Exponential distribution, when ⇠ > 0 it is the Ordinary Pareto
distribution and, when ⇠ < 0, it is Pareto-II type distribution.

Thus, we can approximate F
u

(x) by G
⇠,�

and (3.6) can written as

G
⇠,�
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.
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In equation (3.8), the F (x + u) is stated, so we change variables from (x + u) to x,
such that

F (x) = G
⇠,�
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We still have to calculate F (u) = Pr(X  u) Denote N as the total number of
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u

, the number of observations that are greater than u. Then F (u)
can be approximated by
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N
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N
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Now, by (3.7) and (3.9), we have two cases to find F (x). Firstly, ⇠ 6= 0, such that
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which can be simplified to
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Lastly, ⇠ = 0, we get
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u

N
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�
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The probability of exceeding the threshold u called p is required. The value x
m
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is exceeded on average once every N

u

observations ( return level) is
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Finding VaR, we use the quantile of (3.11), respectively for (3.12), for the confidence
level ↵ By setting F (V aR

↵

) = ↵ and solve V aR
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in (3.11) and (3.12), we get
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We Choose the threshold, according to the PBdH theorem, the selection of u should be
as high as possible. On the other hand, higher thresholds produce less intense observa-
tions. This results in a high variance for estimating distribution parameters. Therefore, a
lower threshold is preferred. But that satisfies the finite hypothesis of the theorem quite
well. Simulation studies by McNeil and Frey ([2]) concluded that the optimal level is
when the observation of 10% is considered extreme. We use hill plots to help select the
chosen threshold.

3.3. Backtesting

Backtesting VaR in this paper, we considered V aR
0.95

By (2.1), we have

Pr(L > V aR
0.95

) = 0.05.

Therefore, we expect peak rainfall to exceed VaR 5% of the total time. We cannot
expect the actual number of VaR violations to be precisely 5%. Therefore, the questions
are how much average rainfall can deviate from the expected rainfall frequency and how
much expected rainfall frequency is considered acceptable. We use the Kupiec test ([6])
to answer this question. We use the binomial distribution,

Pr(X = k) =
n!

k!(n� k)!
pk(1� p)n�k,

this means that the probability of success k from the n trial with a probability of success
is equal to p. The cumulative distribution function is given by

Pr(X  k) =
kX

i=1

n!

i!(n� i)!
pi(1� p)n�i.

If the number of violations is less than expected, we calculate Pr(X  k), where k is
the number of violations. On the contrary, If the actual number of violations exceeds the
expected number, Pr(X � k) is calculated, while k is the absolute number of violations.
Finally, these probabilities are compared with the selected significance level. The null
hyperthesis was rejected if the probability is less than a significant degree. Otherwise, we
used a two-tailed test following ([6]). We will find the confidence interval for the expected
number of VaR violations by using the inverse of the binomial distribution ([8]).

4. Empirical methodology

4.1. Data

The monthly rainfall data set used in this study ranges from January 1982 to De-
cember 2021 (t =1,...,480 observations). The Nakhon Ratchasima Meteorological Station
provided the data set. In the first step, we use data to determine return levels for two tech-
niques. The second step divides the VaR data set into in-sample (R =360 observations)
and out-of-sample (n =12 observations). Figure 3 depicts the rainfall plot.

Figure 3 shows no trend in monthly rainfall data from Nakhon Ratchasima Meteoro-
logical Station. The highest recorded maximum rainfall was 546.10 mm in September
2005. The heavy rain event in September 2017 came in second, with 451.0 mm of rain
causing widespread flooding in Nakhon Ratchasima province and e↵ectively halting the
province’s economy. We will use extreme value theory to analyze the rainfall, which in-
cludes two methods: the Block maxima technique with GEV and the Peak over threshold
(POT) technique with GPD.
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Figure 3. Monthly Rainfall at Nakhon Ratchasima Meteorological Sta-
tion from 1982 to 2021.

Table 1. Generalized Extreme Value Parameter Estimates for maxi-
mum rainfall at Nakhon Ratchasima Meteorological Station.

Rainfall (mm.) u � ⇠
Parameter Estimates 46.12 63.04 0.14
Parameter Standard Errors 1.94 1.77 0.02
Confidence Interval (CI) (95%) (40.54, 52.18) (58.03, 68.64) (0.07, 0.21)
Anderson-Darling Statistics: 0.1671 P-Value: 0.9381

Table 2. Generalized Extreme Value Return Level for maximum rainfall
at Nakhon Ratchasima Meteorological Station.

Return Periods 2 Years 5 Years 10 Years 20 Years 100 Years

Return Levels 69.81 151.04 212.15 276.95 449.44

CI (95%) (62.20 ,77.06)(138.29 ,163.89)(192.97, 232.41)(247.72, 309.81)(385.81, 530.64)

4.2. Generalized Extreme Value Modelling.

This section shows the results and discussion for modeling extreme rainfall in Nakhon
Ratchasima province using GEV.

Table 1 shows the results of GEV modeling on extreme rainfall data in Nakhon
Ratchasima province using the Block Maxima approach. The GEV parameters were
estimated using the L-moments method, with a shape parameter greater than zero im-
plying that the Fréchet distribution is the best model for the GEV family, as confirmed
by Anderson-Darling Statistics of 0.1671 and P-Value of 0.9381.

Figure 4 depicts a GEV diagnostic diagram. The diagonal is close to the QQ plot point.
This implies that the GEV distribution function is suitable. The density plot represents
the relationship between the fitted GEV distribution function and the observed density.
The return level plot in the final panel shows that the empirical return level is well-
matched to the level from the fit distribution function.
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Figure 4. GEV Diagnostic Plots for maximum rainfall at Nakhon
Ratchasima Meteorological Station.

Table 3. Generalized Pareto Distribution Parameter Estimates for
maximum rainfall at Nakhon Ratchasima Meteorological Station.

Rainfall (mm.) � ⇠
Parameter Estimates 48.06 0.07
Parameter Standard Errors 7.34 0.11
Confidence Interval (CI) (95%) (29.44, 73.48) (-0.30, 0.35)
Anderson-Darling Statistics: 0.3467 P-Value: 0.4811

Table 2 shows the predicted maximum rainfall return level (in mm) and 95% confidence
intervals for return periods of 2, 5, 10, 20, and 100 (in years). Table 2 shows that increasing
the number of return periods leads to an increase in the number of return levels.

4.3. Generalized Pareto Distribution Modelling.

The threshold was determined using the hill plot in Figure 5. The threshold is chosen
from the field containing the order statistics’ relatively stable tail index. The tail index is
long-lasting, we select the last area k=10% of 480 = 48. There are a total of 48 extreme
data points with a threshold of 235 mm. where the Hill estimator is more stable. The
mean excess function allows the establishment of the behavior of the distribution tail
looking at the linear shape.

Table 3 shows the parameter estimates of the Generalized Pareto Distribution using
L-moments estimation because there are 48 extreme data points. The confidence interval
⇠ has a value of zero. As a result, the exponential distribution very well fits the data, as
confirmed by Anderson-Darling statistics of 0.3467 and a P-Value of 0.4811.

Figure 6 shows the model diagnostic plot for GPD for rainfall data in Nakhon Ratchasima
province. This means that the GPD is an excellent match for the block maxima.

Table 4 shows the predicted maximum rainfall return level (in mm) and 95% confidence
intervals for return periods of 10, 20, 50, and 100 (in years). The results show that
increasing the return periods results in an increase in the return levels.
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Figure 5. Hill Plot and Mean excess plot for maximum rainfall at
Nakhon Ratchasima Meteorological Station.

Figure 6. GPD Diagnostic Plots for maximum rainfall at Nakhon
Ratchasima Meteorological Station.

When we compare the return levels for the GEV and GPD, we see that the GPD
provides higher return levels and that the return levels provided are closer to reality for
all return periods than the GEV.
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Table 4. Generalized Pareto Distribution Return Level for maximum
rainfall at Nakhon Ratchasima Meteorological Station.

Return Periods 2 Years 5 Years 10 Years 20 Years 100 Years

Return Levels 477.96 540.03 589.79 642.09 774.08

CI (95%) (384.48, 621.53)(401.17, 783.42)(411.79, 943.16)(420.46, 1130.32)(436.10, 1816.68)

Table 5. In-sample and out-sample periods for the data.

in-sample out-sample
1982-2011 2012
1983-2012 2013
1984-2013 2014
1985-2014 2015
1986-2015 2016
1987-2016 2017
1988-2017 2018
1989-2018 2019
1990-2019 2020
1991-2020 2021

4.4. VaR

The rainfall data are separated into in-sample and out-sample according to table 5,
where the observations in the in-sample are 360 observations, and the out-sample is 12
observations.

The GEV and GPD distribution parameters calculate for each in-sample period. Find-
ing the parameters (u,�, ⇠) of the GEV distribution, extracting the most significant rain-
fall each year, and then applying the L-moments to out-sample data.

For the GPD, the threshold has to decide at 235 mm. The observations are extreme,
closer to the proposed 10% ([2]). Thus, the threshold was 235 mm. The L-moments were
applied to rainfall greater than 235 mm.

The V aR
0.95

is calculated by (3.5) and (3.14) for out-sample period using the param-
eters of the corresponding in-sample period. The number of violations of VaR, i.e., how
much rainfall is greater than VaR. In the last column, apply the Kupiec test to the number
of violations for ↵ = 0.95, at the 95% level of confidence.

We have 30 monthly block maxima with n=12 observations in each block. The param-
eters (u,�, ⇠) for the GEV shown in Table 5. Estimates, VaR calculates by (3.5). Note
that the estimates from 1982-2011 calculate the VaR of the year 2012, the VaR of 2013
from the estimate of 1983-2012, etc. The estimates of VaR are presented in Table 6. We
have 360 observations in the in-sample periods. We expect (0.05)(360) = 18 violations of
VaR under this period in-sample 1986-2015, 1987-2016, 1988-2017 and 1990-2019. Out-
sample, we have 12 observations from 2012-2021. We expect (0.05)(12) = 0.6 violations
of VaR under this period out-sample 2013-2017 and 2020.

We proceed with the results of the POT model. The frequency of extreme observations
for each in and out-sample period is given in Table 5. We can note that the frequency
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Table 6. L-moments of the parameters in the GEV and VaR for the
years in-sample under the GEV distribution.

in-sample u � ⇠ V aR95 n violations in-sample n violations out-sample

1982-2011 45.62 62.13 0.12 267.11 17 0

1983-2012 46.45 62.40 0.11 264.48 16 2

1984-2013 46.52 62.12 0.11 266.05 16 1

1985-2014 46.24 61.99 0.12 267.37 17 2

1986-2015 45.46 61.77 0.13 268.67 18 1

1987-2016 46.76 63.04 0.12 272.39 18 3

1988-2017 47.78 64.50 0.13 280.20 18 0

1989-2018 47.55 63.60 0.12 275.40 17 0

1990-2019 46.66 62.63 0.13 274.06 18 1

1991-2020 47.38 63.91 0.12 278.80 17 0

Table 7. L-moments of the parameters in the GPD distribution in-
sample and frequency of threshold exceedances for each in-sample and
out-sample period.

in-sample � ⇠ V aR95 n of exceedances in-sample n of exceedances out-sample

1982-2011 54.13 0.04 258.92 17 0

1983-2012 50.68 0.09 255.55 16 3

1984-2013 52.06 0.09 258.00 17 1

1985-2014 52.37 0.07 259.98 18 2

1986-2015 48.58 0.09 261.41 18 1

1987-2016 50.73 0.05 265.75 19 3

1988-2017 47.18 0.14 268.99 21 0

1989-2018 43.25 0.20 263.76 19 0

1990-2019 43.25 0.20 263.76 19 2

1991-2020 39.22 0.23 265.33 21 1

is more significant for the in-sample periods than for the out-sample periods. Further,
the L-moments of the parameters of the GPD and estimates of VaR is then calculated
by the same in-sample and out-sample periods as in the previous model. The results are
presented in Table 7.

In total, we have 360 observations in the in-sample periods. Therefore we expect
18 violations of VaR under this period in the sample between 1985-2014 to 1991-2020.
Out-sample, we have 12 observations in the period 2012-2021. Therefore we expect 0.6
violations of VaR under this period out-sample 2013-2017 and 2020-2021. Both models
prove rather reasonable overall rainfall in the backtest, in which in-sample is By the way,
in out-of-sample, GPD outperformed GEV.

5. conclusion

This study demonstrates the use and significance of EVT in describing maximum rain-
fall events in Nakhon Ratchasima. For the highest monthly rainfall data in Nakhon
Ratchasima from January 1982 to December 2021, the GEV and GPD models were
used. L-moments estimation was used to estimate model parameters. The block maxima
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method corresponds to the maximum typical value distribution, whereas the peak over
threshold method corresponds to the joint Pareto distribution.

According to our findings, the Fréchet distribution is the best model from the GEV
family for monthly peak rainfall data. We discovered that, while the exponential dis-
tribution provided the best model for monthly rainfall data above 235 mm, increasing
the return period increased the level of yield. When we compare GEV and GPD return
levels, we find that GPD return levels are higher yearly than GEV. Model diagnostics
demonstrate that the model is appropriate for modeling rainfall data.

The study will assist decision-makers in Nakhon Ratchasima in being aware of heavy
rainfall events during the review period to help reduce crop infrastructure damage and
make appropriate decisions to minimize crop infrastructure damage. This research will
be useful in flood mitigation, early warning, management, preparedness, and response.
Nakhon Ratchasima, on the other hand, is taking the right steps to create an environment
conducive to climate change response. Future research could, however, simulate and
predict severe rainfall in Nakhon Ratchasima across di↵erent regions. It is also a viable
research strategy.

The second goal was to investigate the BM and POT of the most accurate VaR model
for VaR estimation and backtesting. When VaR was backtested, we discovered that the
POT method outperformed the BM method. BM performed better than POT in other
studies, including K. Anderson ([7]), Cerovic and Karadzic ([5]), and Marineln et al. ([4]).
Remember Embrechts et al.’s for choosing POT over BM ([12]).

Many other studies have concluded that POT is superior to BM; our findings are con-
sistent with this study. This report, however, is based on a larger number of observations
in Cerovic and Karadzic ([5]) and Marineln et al. ([4]). The benefits of POT over BM,
as demonstrated by Embrechts et al. ([12]), clearly demonstrate that the POT does not
discard useful information such as extremes as the number of observations increases.

Most studies sample extremes using the approach of block maxima, i.e., maximum
daily, maximum monthly, and so on. The disadvantage of this method is that specific
higher values from a block responsible for extreme events may be rejected. To overcome
the disadvantage of block maxima, a Peak over Threshold approach can be used to sample
extremes. Moreover, the discussion for a larger number of observations indicates that the
method should work just as well as it did for Bekiros and Georgoutsos ([17]).

Furthermore, the frequency of the excess peak rainfall was higher during the sample
period compared to the relevant o↵-sample period. Because the POT isolates severe
losses more e↵ectively than the BM (see [12]), this may indicate that risk is overestimated
during the non-sampled period. This may explain why the POT underestimates risk while
overestimating the BM. We can avoid this type of overestimation by using larger data
sets. Combining the two models is another option. Divide the data into blocks and use
the POT with the most observations extracted from each block.

As a result, when we use VaR to assess risk, we overestimate risk. Because of the
optional POT model, VaR is superior for evaluating both models.
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