An extragradient approximation method for system of equilibrium problems and variational inequality problems ${ }^{0}$

C. Jaiboon and P. Kumam

Abstract

The purpose of this paper is to investigate the problem of finding the common element of the set of common fixed points of an infinite family of nonexpansive mappings, the set of solutions of a system of equilibrium problems and the set of solutions of the variational inequality problem for a monotone and ζ-Lipschitz continuous mapping in Hilbert spaces. Then, we prove that the strong convergence of the proposed iterative algorithm to the unique solutions of variational inequality, which is the optimality condition for a minimization problem. Our results extend and improve the corresponding results of Colao, Marino and Xu [V. Colao, G. Marino and H.K. Xu b, An iterative method for finding common solutions of equilibrium and fixed point problems, J. Math. Anal. Appl. 344 (2008) 340-352] and Peng and Yao [J.W. Peng and J.C. Yao, A viscosity approximation scheme for system of equilibrium problems, nonexpansive mappings and monotone mappings, Nonlinear Analysis. Doi.org/10.1016/j.na.2009.05.028] and many others.

Keywords : Nonexpansive mapping; Monotone mapping; Variational inequality; Fixed points; System of equilibrium problems; Extragradient approximation method
2000 Mathematics Subject Classification : 47H09, 47J20 (2000 MSC)

1 Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. In addition, Let $B: C \rightarrow H$ be a nonlinear mapping. The classical variational

[^0]Copyright (c) 2009 by the Mathematical Association of Thailand. All rights reserved.
inequality problem is to find $x \in C$ such that

$$
\begin{equation*}
\langle B x, y-x\rangle \geq 0, \quad \forall y \in C \tag{1.1}
\end{equation*}
$$

The set of solutions of (1.1) is denoted by $V I(C, B)$, that is,

$$
\begin{equation*}
V I(C, B)=\{x \in C:\langle B x, y-x\rangle \geq 0, \quad \forall y \in C\} . \tag{1.2}
\end{equation*}
$$

Let F be an bifunction of $C \times C$ into \mathbb{R}, where \mathbb{R} is the set of real numbers. The equilibrium problem for $F: C \times C \rightarrow R$ is to find $x \in C$ such that

$$
\begin{equation*}
F(x, y) \geq 0, \quad \forall y \in C \tag{1.3}
\end{equation*}
$$

The set of solutions of (1.3) is denoted by $E P(F)$, that is,

$$
\begin{equation*}
E P(F)=\{x \in C: F(x, y) \geq 0, \quad \forall y \in C\} \tag{1.4}
\end{equation*}
$$

Given a mapping $T: C \rightarrow H$, let $F(x, y)=\langle T x, y-x\rangle$ for all $x, y \in C$. Then $z \in E P(F)$ if and only if $\langle T z, y-z\rangle \geq 0$ for all $y \in C$, i.e., z is a solution of the variational inequality problems. Numerous problems in physics, optimization, saddle point problems, complementarity problems, mechanics and economics reduce to find a solution of (1.3). In 1997, Combettes and Hirstoaga 3] introduced an iterative scheme of finding the best approximation to initial data when $E P(F)$ is nonempty and proved a strong convergence theorem.

Let $\Im=\left\{F_{k}\right\}_{k \in \Lambda}$ be a family of bifunctions from $C \times C$ into \mathbb{R}, where \mathbb{R} is the set of real numbers. The system of equilibrium problems for $\Im=\left\{F_{k}\right\}_{k \in \Lambda}$ is to determine common equilibrium points for $\Im=\left\{F_{k}\right\}_{k \in \Lambda}$ such that

$$
\begin{equation*}
F_{k}(x, y) \geq 0, \quad \forall k \in \Lambda \quad \forall y \in C \tag{1.5}
\end{equation*}
$$

where Λ is an arbitrary index set. The set of solutions of (1.5) is denoted by $S E P(\Im)$, that is,

$$
\begin{equation*}
S E P(\Im)=\left\{x \in C: F_{k}(x, y) \geq 0, \quad \forall k \in \Lambda \quad \forall y \in C\right\} . \tag{1.6}
\end{equation*}
$$

If Λ is a singleton, then the problem (1.5) is reduced to the problem (1.3). The problem (1.5) is very general in the sense that it includes, as special case, some optimization, variational inequalities, minimax problems, the Nash equilibrium problem in noncooperative games, economics and others (see, for instance, [1, 3, (4).

Recall that the (nearest point) projection P_{C} from H onto C assigns to each $x \in H$ the unique point in $P_{C} x \in C$ satisfying the property

$$
\left\|x-P_{C} x\right\|=\min _{y \in C}\|x-y\|
$$

The following characterizes the projection P_{C}.
In order to prove our main results, we need the following lemmas.

Lemma 1.1. For a given $z \in H, u \in C$,

$$
u=P_{C} z \Leftrightarrow\langle u-z, v-u\rangle \geq 0, \quad \forall v \in C .
$$

It is well known that P_{C} is a firmly nonexpansive mapping of H onto C and satisfies

$$
\begin{equation*}
\left\|P_{C} x-P_{C} y\right\|^{2} \leq\left\langle P_{C} x-P_{C} y, x-y\right\rangle, \quad \forall x, y \in H \tag{1.7}
\end{equation*}
$$

Moreover, $P_{C} x$ is characterized by the following properties: $P_{C} x \in C$ and for all $x \in H, y \in C$,

$$
\begin{equation*}
\left\langle x-P_{C} x, y-P_{C} x\right\rangle \leq 0 \tag{1.8}
\end{equation*}
$$

It is easy to see that (1.8) is equivalent to the following inequality:

$$
\begin{equation*}
\|x-y\|^{2} \geq\left\|x-P_{C} x\right\|^{2}+\left\|y-P_{C} x\right\|^{2} . \tag{1.9}
\end{equation*}
$$

Using Lemma 1.1, one can see that the variational inequality (1.1) is equivalent to a fixed point problem.

It is easy to see that the following is true:

$$
\begin{equation*}
u \in V I(C, B) \Leftrightarrow u=P_{C}(u-\lambda B u), \quad \lambda>0 . \tag{1.10}
\end{equation*}
$$

The variational inequality has been extensively studied in the literature; see, for instance [5, 6, 8, 10, 22. This alternative equivalent formulation has played a significant role in the studies of the variational inequalities and related optimization problems.

Recall the following definitions:
(1) A mapping B of C into H is called monotone if

$$
\langle B x-B y, x-y\rangle \geq 0, \quad \forall x, y \in C .
$$

(2) B is called β-strongly monotone (see [2, 14]) if there exists a constant $\beta>0$ such that

$$
\langle B x-B y, x-y\rangle \geq \beta\|x-y\|^{2}, \quad \forall x, y \in C .
$$

(3) B is called ζ-Lipschitz continuous if there exists a positive real number ζ such that

$$
\|B x-B y\| \leq \zeta\|x-y\|, \quad \forall x, y \in C
$$

(4) B is called β-inverse-strongly monotone (see [2, 14]) if there exists a constant $\beta>0$ such that

$$
\langle B x-B y, x-y\rangle \geq \beta\|B x-B y\|^{2}, \quad \forall x, y \in C
$$

Remark 1.2. It is obvious that any β-inverse-strongly monotone mapping B is monotone and $\frac{1}{\beta}$-Lipschitz continuous.
(5) A mapping T of C into itself is called nonexpansive (see [23]) if

$$
\|T x-T y\| \leq\|x-y\|, \quad \forall x, y \in C .
$$

We denote $F(T)=\{x \in C: T x=x\}$ be the set of fixed points of T.
(6) Let $f: C \rightarrow C$ is said to be a α-contraction if there exists a coefficient α $(0<\alpha<1)$ such that

$$
\|f(x)-f(y)\| \leq \alpha\|x-y\|, \quad \forall x, y \in C
$$

(7) An operator A is strongly positive on H if there exists a constant $\bar{\gamma}>0$ with the property

$$
\langle A x, x\rangle \geq \bar{\gamma}\|x\|^{2}, \quad \forall x \in H
$$

(8) A set-valued mapping $T: H \rightarrow 2^{H}$ is called monotone if for all $x, y \in H$, $f \in T x$ and $g \in T y$ imply $\langle x-y, f-g\rangle \geq 0$.
(9) A monotone mapping $T: H \rightarrow 2^{H}$ is maximal if the graph of $G(T)$ of T is not properly contained in the graph of any other monotone mapping.
It is known that a monotone mapping T is maximal if and only if for $(x, f) \in$ $H \times H,\langle x-y, f-g\rangle \geq 0$ for every $(y, g) \in G(T)$ implies $f \in T x$.
Let B be a monotone map of C into H and let $N_{C} v$ be the normal cone to C at $v \in C$, that is,

$$
N_{C} v=\{w \in H:\langle u-v, w\rangle \geq 0, \forall u \in C\}
$$

and define

$$
T v= \begin{cases}B v+N_{C} v, & v \in C \\ \emptyset, & v \notin C\end{cases}
$$

Then T is the maximal monotone and $0 \in T v$ if and only if $v \in V I(C, B)$; see [20].
In 1976, Korpelevich 13 introduced the following so-called extragradient method:

$$
\left\{\begin{array}{l}
x_{0}=x \in C \tag{1.11}\\
y_{n}=P_{C}\left(x_{n}-\lambda B x_{n}\right) \\
x_{n+1}=P_{C}\left(x_{n}-\lambda B y_{n}\right)
\end{array}\right.
$$

for all $n \geq 0$, where $\lambda \in\left(0, \frac{1}{\zeta}\right), C$ is a closed convex subset of \mathbb{R}^{n} and B is a monotone and ζ-Lipschitz continuous mapping of C into \mathbb{R}^{n}. He proved that if $V I(C, B)$ is nonempty, then the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$, generated by (1.11), converge to the same point $z \in V I(C, B)$. For finding a common element of the set of fixed points of a nonexpansive mapping and the set of solution of variational inequalities for an β-inverse-strongly monotone, Takahashi and Toyoda [24] introduced the following iterative scheme:

$$
\left\{\begin{array}{l}
x_{0} \in C \text { chosen arbitrary }, \tag{1.12}\\
x_{n+1}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) S P_{C}\left(x_{n}-\lambda_{n} B x_{n}\right), \quad \forall n \geq 0
\end{array}\right.
$$

where B is β-inverse-strongly monotone, $\left\{\alpha_{n}\right\}$ is a sequence in $(0,1)$ and $\left\{\lambda_{n}\right\}$ is a sequence in $(0,2 \beta)$. They showed that if $F(S) \cap V I(C, B)$ is nonempty, then the sequence $\left\{x_{n}\right\}$ generated by (1.12) converges weakly to some $z \in F(S) \cap V I(C, B)$. Recently, Iiduka and Takahashi [12] proposed a new iterative scheme as following

$$
\left\{\begin{array}{l}
x_{0}=x \in C \text { chosen arbitrary } \tag{1.13}\\
x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) S P_{C}\left(x_{n}-\lambda_{n} B x_{n}\right), \quad \forall n \geq 0
\end{array}\right.
$$

where B is β-inverse-strongly monotone, $\left\{\alpha_{n}\right\}$ is a sequence in $(0,1)$, and $\left\{\lambda_{n}\right\}$ is a sequence in $(0,2 \beta)$. They showed that if $F(S) \cap V I(C, B)$ is nonempty, then the sequence $\left\{x_{n}\right\}$ generated by (1.13) converges strongly to some $z \in F(S) \cap V I(C, B)$.

Iterative methods for nonexpansive mappings have recently been applied to solve convex minimization problems; see e.g., [11, 29, 30, 31] and the references therein. Convex minimization problems have a great impact and influence in the development of almost all branches of pure and applied sciences. A typical problem is to minimize a quadratic function over the set of the fixed points a nonexpansive mapping on a real Hilbert space H :

$$
\begin{equation*}
\min _{x \in C} \frac{1}{2}\langle A x, x\rangle-\langle x, b\rangle, \tag{1.14}
\end{equation*}
$$

where A is a linear bounded operator, C is the fixed point set of a nonexpansive mapping S on H and b is a given point in H. Moreover, it is shown in [15] that the sequence $\left\{x_{n}\right\}$ defined by the scheme

$$
\begin{equation*}
x_{n+1}=\epsilon_{n} \gamma f\left(x_{n}\right)+\left(1-\epsilon_{n} A\right) S x_{n} \tag{1.15}
\end{equation*}
$$

converges strongly to $z=P_{F(S)}(I-A+\gamma f)(z)$. Recently, Plubtieng and Punpaeng [17] proposed the following iterative algorithm:

$$
\left\{\begin{array}{l}
F\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \forall y \in H \tag{1.16}\\
x_{n+1}=\epsilon_{n} \gamma f\left(x_{n}\right)+\left(I-\epsilon_{n} A\right) S u_{n}
\end{array}\right.
$$

They proved that if the sequence $\left\{\epsilon_{n}\right\}$ and $\left\{r_{n}\right\}$ of parameters satisfy appropriate condition, then the sequences $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ both converge to the unique solution z of the variational inequality

$$
\begin{equation*}
\langle(A-\gamma f) z, x-z\rangle \geq 0, \quad \forall x \in F(S) \cap E P(F) \tag{1.17}
\end{equation*}
$$

which is the optimality condition for the minimization problem

$$
\begin{equation*}
\min _{x \in F(S) \cap E P(F)} \frac{1}{2}\langle A x, x\rangle-h(x) \tag{1.18}
\end{equation*}
$$

where h is a potential function for γf (i.e., $h^{\prime}(x)=\gamma f(x)$ for $x \in H$).
In 2009, Peng and Yao [16] introduced an iterative scheme for finding a common element of the set of solutions of the system equilibrium problems (1.5), the set of solutions to the variational inequality for a monotone and Lipschitz continuous mapping and the set of common fixed points of a countable family of nonexpansive mappings in a Hilbert spaces and proved a strong convergence theorem.

Definition 1.1. [27]. Let $\left\{T_{n}\right\}_{n=1}^{\infty}$ be a sequence of nonexpansive mappings of C into itself and let $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ be a sequence of nonnegative numbers in [0,1]. For any $n \geq 1$, define a mapping W_{n} of C into itself as follows:

$$
\begin{align*}
U_{n, n+1} & =I \\
U_{n, n} & =\mu_{n} T_{n} U_{n, n+1}+\left(1-\mu_{n}\right) I \\
U_{n, n-1} & =\mu_{n-1} T_{n-1} U_{n, n}+\left(1-\mu_{n-1}\right) I \\
& \vdots \tag{1.19}\\
U_{n, k} & =\mu_{k} T_{k} U_{n, k+1}+\left(1-\mu_{k}\right) I \\
U_{n, k-1} & =\mu_{k-1} T_{k-1} U_{n, k}+\left(1-\mu_{k-1}\right) I \\
& \vdots \\
U_{n, 2} & =\mu_{2} T_{2} U_{n, 3}+\left(1-\mu_{2}\right) I \\
W_{n}=U_{n, 1} & =\mu_{1} T_{1} U_{n, 2}+\left(1-\mu_{1}\right) I
\end{align*}
$$

Such a mappings W_{n} is nonexpansive from C to C and it is called the W-mapping generated by $T_{1}, T_{2}, \ldots, T_{n}$ and $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$.

On the other hand, Colao et al. [7] introduced and considered an iterative scheme for finding a common element of the set of solutions of the equilibrium problem (1.3) and the set of common fixed points of a finite family of nonexpansive mappings on C. Starting with an arbitrary initial $x_{0} \in C$ and defining a sequence $\left\{x_{n}\right\}$ recursively by

$$
\left\{\begin{array}{l}
F\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \forall y \in H \tag{1.20}\\
x_{n+1}=\epsilon_{n} \gamma f\left(x_{n}\right)+\beta x_{n}+\left((1-\beta) I-\epsilon_{n} A\right) W_{n} u_{n}
\end{array}\right.
$$

where $\left\{\epsilon_{n}\right\}$ be a sequences in $(0,1)$. It is proved [7] that under certain appropriate conditions imposed on $\left\{\epsilon_{n}\right\}$ and $\left\{r_{n}\right\}$, the sequence $\left\{x_{n}\right\}$ generated by (1.20) converges strongly to $z \in \cap_{n=1}^{\infty} F\left(T_{n}\right) \cap E P(F)$, where z is an equilibrium point for F and the unique solution of the variational inequality (1.17), i.e., $z=P_{\cap_{n=1}^{\infty} F\left(T_{n}\right) \cap E P(F)}(I-(A-\gamma f)) z$.

In 2009, Colao et al. 9 introduced and considered an implicit iterative scheme for finding a common element of the set of solutions of the system equilibrium problems (1.5) and the set of common fixed points of an infinite family of nonexpansive mappings on C. Starting with an arbitrary initial $x_{0} \in C$ and defining a sequence $\left\{z_{n}\right\}$ recursively by

$$
\begin{equation*}
z_{n}=\epsilon_{n} \gamma f\left(z_{n}\right)+\left(1-\epsilon_{n} A\right) W_{n} J_{r_{M, n}}^{F_{M}} J_{r_{M-1, n}}^{F_{M-1}} J_{r_{M-2, n}}^{F_{M-2}} \ldots J_{r_{2, n}}^{F_{2}} J_{r_{1, n}}^{F_{1}} z_{n} \tag{1.21}
\end{equation*}
$$

where $\left\{\epsilon_{n}\right\}$ be a sequences in $(0,1)$. It is proved 9 that under certain appropriate conditions imposed on $\left\{\epsilon_{n}\right\}$ and $\left\{r_{n}\right\}$, the sequence $\left\{x_{n}\right\}$ generated by (1.21) converges strongly to $z \in \cap_{n=1}^{\infty} F\left(T_{n}\right) \cap\left(\cap_{k=1}^{M} S E P\left(F_{k}\right)\right)$, where z is the unique solution of the variational inequality (1.17) and which is the optimality condition for the minimization problem (1.18).

In this paper, motivated by Colao et al. [7, Colao et al. 9 and Peng and Yao [16, we introduce a new iterative scheme in a Hilbert space H which is mixed the iterative schemes of (1.20) and (1.21). We prove that the sequence converges strongly to a common element of the set of solutions of the system equilibrium problems (1.5), the set of common fixed points of an infinite family of nonexpansive mappings and the set of solutions of variational inequality (1.1) for be a monotone and ζ-Lipschitz continuous mapping in Hilbert spaces by using the extragradient approximation method. The results obtained in this paper improve and extend the recent ones announced by Colao, Marino and Xu [7], Colao, Acedo and Marino [9] and Peng and Yao [16] and many others.

2 Preliminaries

Let H be a real Hilbert space with norm $\|\cdot\|$ and inner product $\langle\cdot, \cdot\rangle$ and let C be a closed convex subset of H. When $\left\{x_{n}\right\}$ is a sequence in H, we denote strong convergence of $\left\{x_{n}\right\}$ to $x \in H$ by $x_{n} \rightarrow x$ and weak convergence by $x_{n} \rightharpoonup x$. In a real Hilbert space H, it is well known that

$$
\|\lambda x+(1-\lambda) y\|^{2}=\lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda)\|x-y\|^{2},
$$

for all $x, y \in H$ and $\lambda \in[0,1]$.
Lemma 2.1. 19] Let $(C,\langle.,\rangle$.$) be an inner product space. Then for all x, y, z \in C$ and $\alpha, \beta, \gamma \in[0,1]$ with $\alpha+\beta+\gamma=1$, we have
$\|\alpha x+\beta y+\gamma z\|^{2}=\alpha\|x\|^{2}+\beta\|y\|^{2}+\gamma\|z\|^{2}-\alpha \beta\|x-y\|^{2}-\alpha \gamma\|x-z\|^{2}-\beta \gamma\|y-z\|^{2}$.
Lemma 2.2. [18]. Each Hilbert space H satisfies Opial's condition, i.e., for any sequence $\left\{x_{n}\right\} \subset H$ with $x_{n} \rightharpoonup x$, the inequality

$$
\liminf _{n \rightarrow \infty}\left\|x_{n}-x\right\|<\liminf _{n \rightarrow \infty}\left\|x_{n}-y\right\|,
$$

hold for each $y \in H$ with $y \neq x$.
Lemma 2.3. 15. Let C be a nonempty closed convex subset of H and let f be a contraction of H into itself with $\alpha \in(0,1)$, and A be a strongly positive linear bounded operator on H with coefficient $\bar{\gamma}>0$. Then, for $0<\gamma<\frac{\bar{\gamma}}{\alpha}$,

$$
\langle x-y,(A-\gamma f) x-(A-\gamma f) y\rangle \geq(\bar{\gamma}-\alpha \gamma)\|x-y\|^{2}, \quad x, y \in H
$$

That is, $A-\gamma f$ is strongly monotone with coefficient $\bar{\gamma}-\gamma \alpha$.
Lemma 2.4. [15]. Assume A be a strongly positive linear bounded operator on H with coefficient $\bar{\gamma}>0$ and $0<\rho \leq\|A\|^{-1}$. Then $\|I-\rho A\| \leq 1-\rho \bar{\gamma}$.

For solving the equilibrium problem for a bifunction $F: C \times C \rightarrow \mathbb{R}$, let us assume that F satisfies the following conditions:
(A1) $F(x, x)=0$ for all $x \in C$;
(A2) F is monotone, i.e., $F(x, y)+F(y, x) \leq 0$ for all $x, y \in C$;
(A3) for each $x, y, z \in C, \lim _{t \downarrow 0} F(t z+(1-t) x, y) \leq F(x, y)$;
(A4) for each $x \in C, y \mapsto F(x, y)$ is convex and lower semicontinuous.
The following lemma appears implicitly in [1].
Lemma 2.5. 1. Let C be a nonempty closed convex subset of H and let F be a bifunction of $C \times C$ into \mathbb{R} satisfying (A1)-(A4). Let $r>0$ and $x \in H$. Then, there exists $z \in C$ such that

$$
F(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \quad \forall y \in C
$$

The following lemma was also given in 4].
Lemma 2.6. 4]. Assume that $F: C \times C \rightarrow R$ satisfies (A1)-(A4). For $r>0$ and $x \in H$, define a mapping $J_{r}^{F}: H \rightarrow C$ as follows:

$$
J_{r}^{F}(x)=\left\{z \in C: F(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \quad \forall y \in C\right\}
$$

for all $z \in H$. Then, the following hold:
(1) J_{r}^{F} is single- valued;
(2) J_{r}^{F} is firmly nonexpansive, i.e., for any $x, y \in H$,

$$
\left\|J_{r}^{F} x-J_{r}^{F} y\right\|^{2} \leq\left\langle J_{r}^{F} x-J_{r}^{F} y, x-y\right\rangle
$$

(3) $F\left(J_{r}^{F}\right)=E P(F)$; and
(4) $E P(F)$ is closed and convex.

For each $n, k \in \mathbb{N}$, let the mapping $U_{n, k}$ be defined by (1.19). Then we have the following crucial conclusions concerning W_{n}. You can find them in [28]. Now we only need the following similar version in Hilbert spaces.

Lemma 2.7. 28. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T_{1}, T_{2}, \ldots be nonexpansive mappings of C into itself such that $\cap_{n=1}^{\infty} F\left(T_{n}\right)$ is nonempty, let μ_{1}, μ_{2}, \ldots be real numbers such that $0 \leq \mu_{n} \leq b<1$ for every $n \geq 1$. Then, for every $x \in C$ and $k \in \mathbb{N}$, the limit $\lim _{n \rightarrow \infty} U_{n, k} x$ exists.

Using Lemma 2.7, one can define a mapping W of C into itself as follows:

$$
\begin{equation*}
W x=\lim _{n \rightarrow \infty} W_{n} x=\lim _{n \rightarrow \infty} U_{n, 1} x \tag{2.1}
\end{equation*}
$$

for every $x \in C$. Such a W is called the W-mapping generated by T_{1}, T_{2}, \ldots and μ_{1}, μ_{2}, \ldots. Throughout this paper, we will assume that $0 \leq \mu_{n} \leq b<1$ for every $n \geq 1$. Then, we have the following results.

Lemma 2.8. 28. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T_{1}, T_{2}, \ldots be nonexpansive mappings of C into itself such that $\cap_{n=1}^{\infty} F\left(T_{n}\right)$ is nonempty, let μ_{1}, μ_{2}, \ldots be real numbers such that $0 \leq \mu_{n} \leq b<1$ for every $n \geq 1$. Then, $F(W)=\cap_{n=1}^{\infty} F\left(T_{n}\right)$.

Lemma 2.9. 26. If $\left\{x_{n}\right\}$ is a bounded sequence in C, then $\lim _{n \rightarrow \infty} \| W x_{n}-$ $W_{n} x_{n} \|=0$.

Lemma 2.10. 21]. Let $\left\{x_{n}\right\}$ and $\left\{z_{n}\right\}$ be bounded sequences in a Banach space X and let $\left\{\beta_{n}\right\}$ be a sequence in $[0,1]$ with $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup _{n \rightarrow \infty} \beta_{n}<1$. Suppose $x_{n+1}=\left(1-\beta_{n}\right) z_{n}+\beta_{n} x_{n}$ for all integers $n \geq 0$ and $\lim \sup _{n \rightarrow \infty}\left(\| z_{n+1}-\right.$ $\left.z_{n}\|-\| x_{n+1}-x_{n} \|\right) \leq 0$. Then, $\lim _{n \rightarrow \infty}\left\|z_{n}-x_{n}\right\|=0$.

Lemma 2.11. [25]. Assume $\left\{a_{n}\right\}$ is a sequence of nonnegative real numbers such that

$$
a_{n+1} \leq\left(1-l_{n}\right) a_{n}+\sigma_{n}, n \geq 0,
$$

where $\left\{l_{n}\right\}$ is a sequence in $(0,1)$ and $\left\{\sigma_{n}\right\}$ is a sequence in \mathbb{R} such that
(1) $\sum_{n=1}^{\infty} l_{n}=\infty$,
(2) $\limsup \sin _{n \rightarrow \infty} \frac{\sigma_{n}}{l_{n}} \leq 0$ or $\sum_{n=1}^{\infty}\left|\sigma_{n}\right|<\infty$.

Then $\lim _{n \rightarrow \infty} a_{n}=0$.
Lemma 2.12. . Let H be a real Hilbert space. Then for all $x, y \in H$,
(1) $\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, x+y\rangle$,
(2) $\|x+y\|^{2} \geq\|x\|^{2}+2\langle y, x\rangle$.

3 Main Results

In this section, we deal with the strong convergence of extragradient approximation method (3.1) for finding a common element of the set of solutions of the system equilibrium problems (1.5), the set of common fixed points of infinite family of nonexpansive mappings and the set of solutions of variational inequality (1.1) for be a monotone and ζ-Lipschitz continuous mapping in Hilbert spaces.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H, let $F_{k}, k \in\{1,2,3, \ldots, M\}$ be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)(A4), let $\left\{T_{n}\right\}$ be an infinite family of nonexpansive mappings of C into itself and let B be a monotone and ζ-Lipschitz continuous mapping of C into H such that

$$
\Theta:=\cap_{n=1}^{\infty} F\left(T_{n}\right) \cap\left(\cap_{k=1}^{M} S E P\left(F_{k}\right)\right) \cap V I(C, B) \neq \emptyset
$$

Let f be a contraction of H into itself with $\alpha \in(0,1)$ and let A be a strongly positive linear bounded operator on H with coefficient $\bar{\gamma}>0$ and $0<\gamma<\frac{\bar{\gamma}}{\alpha}$. Let $\left\{x_{n}\right\},\left\{y_{n}\right\}$ and $\left\{u_{n}\right\}$ be sequences generated by
$\left\{\begin{array}{l}x_{1}=x \in C \text { chosen arbitrary }, \\ u_{n}=J_{r_{M, n}}^{F_{M}} J_{r_{M-1, n}}^{F_{M-1}} J_{r_{M-2, n}}^{F_{M-2}} \ldots J_{r_{2}, n}^{F_{2}} J_{r_{1, n}}^{F_{1}} x_{n}, \\ y_{n}=P_{C}\left(u_{n}-\lambda_{n} B u_{n}\right), \\ x_{n+1}=\epsilon_{n} \gamma f\left(W_{n} x_{n}\right)+\beta_{n} x_{n}+\left(\left(1-\beta_{n}\right) I-\epsilon_{n} A\right) W_{n} P_{C}\left(u_{n}-\lambda_{n} B y_{n}\right), \quad \forall n \geq 1,\end{array}\right.$
where $\left\{W_{n}\right\}$ is the sequence generated by (1.19) and $\left\{\epsilon_{n}\right\},\left\{\beta_{n}\right\}$ are two sequences in $(0,1),\left\{\lambda_{n}\right\} \subset[a, b] \subset\left(0, \frac{1}{\zeta}\right)$ and $\left\{r_{k, n}\right\}, k \in\{1,2,3, \ldots, M\}$ are a real sequence in $(0, \infty)$ satisfy the following conditions:
(C1) $\lim _{n \rightarrow \infty} \epsilon_{n}=0$ and $\sum_{n=1}^{\infty} \epsilon_{n}=\infty$,
(C2) $0<\lim \inf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n}<1$,
(C3) $\liminf _{n \rightarrow \infty} r_{k, n}>0$ and $\lim _{n \rightarrow \infty}\left|r_{k, n+1}-r_{k, n}\right|=0$ for each $k \in\{1,2,3, \ldots, M\}$,
(C4) $\lim _{n \rightarrow \infty} \lambda_{n}=0$.
Then, $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ converge strongly to a point $z \in \Theta$ which is the unique solution of the variational inequality

$$
\begin{equation*}
\langle(A-\gamma f) z, x-z\rangle \geq 0, \quad \forall x \in \Theta \tag{3.2}
\end{equation*}
$$

Equivalently, we have $z=P_{\Theta}(I-A+\gamma f)(z)$.
Proof. Note that from the condition (C1), we may assume, without loss of generality, that $\epsilon_{n} \leq\left(1-\beta_{n}\right)\|A\|^{-1}$ for all $n \in \mathbb{N}$. From Lemma 2.4, we know that if $0 \leq \rho \leq\|A\|^{-1}$, then $\|I-\rho A\| \leq 1-\rho \bar{\gamma}$. We will assume that $\|I-A\| \leq 1-\bar{\gamma}$. Since A is a strongly positive bounded linear operator on H, we have

$$
\|A\|=\sup \{|\langle A x, x\rangle|: x \in H,\|x\|=1\}
$$

Observe that

$$
\begin{aligned}
\left\langle\left(\left(1-\beta_{n}\right) I-\epsilon_{n} A\right) x, x\right\rangle & =1-\beta_{n}-\epsilon_{n}\langle A x, x\rangle \\
& \geq 1-\beta_{n}-\epsilon_{n}\|A\| \\
& \geq 0
\end{aligned}
$$

this show that $\left(1-\beta_{n}\right) I-\epsilon_{n} A$ is positive. It follows that

$$
\begin{aligned}
\left\|\left(1-\beta_{n}\right) I-\epsilon_{n} A\right\| & =\sup \left\{\left|\left\langle\left(\left(1-\beta_{n}\right) I-\epsilon_{n} A\right) x, x\right\rangle\right|: x \in H,\|x\|=1\right\} \\
& =\sup \left\{1-\beta_{n}-\epsilon_{n}\langle A x, x\rangle: x \in H,\|x\|=1\right\} \\
& \leq 1-\beta_{n}-\epsilon_{n} \bar{\gamma}
\end{aligned}
$$

Let $Q=P_{\Theta}$, where $\Theta:=\cap_{n=1}^{\infty} F\left(T_{n}\right) \cap\left(\cap_{n=1}^{\infty} S E P\left(F_{k}\right)\right) \cap V I(C, B) \neq \emptyset$. Note that f is a contraction of H into itself with $\alpha \in(0,1)$. Then, we have

$$
\begin{aligned}
\|Q(I-A+\gamma f)(x)-Q(I-A+\gamma f)(y)\| & =\left\|P_{\Theta}(I-A+\gamma f)(x)-P_{\Theta}(I-A+\gamma f)(y)\right\| \\
& \leq\|(I-A+\gamma f)(x)-(I-A+\gamma f)(y)\| \\
& \leq\|I-A\|\|x-y\|+\gamma\|f(x)-f(y)\| \\
& \leq(1-\bar{\gamma})\|x-y\|+\gamma \alpha\|x-y\| \\
& =(1-\bar{\gamma}+\gamma \alpha)\|x-y\| \\
& =(1-(\bar{\gamma}-\gamma \alpha))\|x-y\|, \quad \forall x, y \in H .
\end{aligned}
$$

Since $0<1-(\bar{\gamma}-\gamma \alpha)<1$, it follows that $Q(I-A+\gamma f)$ is a contraction of H into itself. Therefore by the Banach Contraction Mapping Principle, which implies that there exists a unique element $z \in H$ such that $z=Q(I-A+\gamma f)(z)=$ $P_{\Theta}(I-A+\gamma f)(z)$.

We will divide the proof of Theorem 3.1 into seven steps.
Step 1. We claim that $\left\{x_{n}\right\}$ is bounded.
Indeed, pick any $p \in \Theta$. Moreover, by taking $\Im_{n}^{k}=J_{r_{k, n}}^{F_{k}} J_{r_{k-1, n}}^{F_{k-1}} J_{r_{k-2}, n}^{F_{k-2}} \ldots J_{r_{2, n}}^{F_{2}} J_{r_{1, n}}^{F_{1}} x_{n}$ for $k \in\{1,2,3, \ldots, M\}$ and $\Im_{n}^{0}=I$ for all n. From the definition of $J_{r_{k, n}}^{F_{k}}$ is nonexpansive for each $k=1,2,3, \ldots, M$, then \Im_{n}^{k} also and $p=\Im_{n}^{k} p$, we note that $u_{n}=\Im_{n}^{M} x_{n}$. If follows that

$$
\left\|u_{n}-p\right\|=\left\|\Im_{n}^{M} x_{n}-\Im_{n}^{M} p\right\| \leq\left\|x_{n}-p\right\| .
$$

Put $v_{n}=P_{C}\left(u_{n}-\lambda_{n} B y_{n}\right)$. Then, from (1.9) and the monotonicity of B, we have

$$
\begin{aligned}
\left\|v_{n}-p\right\|^{2} \leq & \left\|u_{n}-\lambda_{n} B y_{n}-p\right\|^{2}-\left\|u_{n}-\lambda_{n} B y_{n}-v_{n}\right\|^{2} \\
= & \left\|u_{n}-p\right\|^{2}-\left\|u_{n}-v_{n}\right\|^{2}+2 \lambda_{n}\left\langle B y_{n}, p-v_{n}\right\rangle \\
= & \left\|u_{n}-p\right\|^{2}-\left\|u_{n}-v_{n}\right\|^{2} \\
& +2 \lambda_{n}\left(\left\langle B y_{n}-B p, p-y_{n}\right\rangle+\left\langle B p, p-y_{n}\right\rangle+\left\langle B y_{n}, y_{n}-v_{n}\right\rangle\right) \\
\leq & \left\|u_{n}-p\right\|^{2}-\left\|u_{n}-v_{n}\right\|^{2}+2 \lambda_{n}\left\langle B y_{n}, y_{n}-v_{n}\right\rangle \\
= & \left\|u_{n}-p\right\|^{2}-\left\|u_{n}-y_{n}\right\|^{2}-2\left\langle u_{n}-y_{n}, y_{n}-v_{n}\right\rangle-\left\|y_{n}-v_{n}\right\|^{2} \\
& +2 \lambda_{n}\left\langle B y_{n}, y_{n}-v_{n}\right\rangle \\
= & \left\|u_{n}-p\right\|^{2}-\left\|u_{n}-y_{n}\right\|^{2}-\left\|y_{n}-v_{n}\right\|^{2} \\
& +2\left\langle u_{n}-\lambda_{n} B y_{n}-y_{n}, v_{n}-y_{n}\right\rangle .
\end{aligned}
$$

Moreover, since $y_{n}=P_{C}\left(u_{n}-\lambda_{n} B u_{n}\right)$ and (1.8), we have

$$
\begin{equation*}
\left\langle u_{n}-\lambda_{n} B u_{n}-y_{n}, v_{n}-y_{n}\right\rangle \leq 0 . \tag{3.3}
\end{equation*}
$$

Since A is ζ-Lipschitz continuous, from (3.3) we obtain that

$$
\begin{aligned}
& \left\langle u_{n}-\lambda_{n} B y_{n}-y_{n}, v_{n}-y_{n}\right\rangle \\
& \quad=\left\langle u_{n}-\lambda_{n} B u_{n}-y_{n}, v_{n}-y_{n}\right\rangle+\left\langle\lambda_{n} B u_{n}-\lambda_{n} B y_{n}, v_{n}-y_{n}\right\rangle \\
& \quad \leq\left\langle\lambda_{n} B u_{n}-\lambda_{n} B y_{n}, v_{n}-y_{n}\right\rangle \\
& \quad \leq \lambda_{n}\left\|B u_{n}-B y_{n}\right\|\left\|v_{n}-y_{n}\right\| \\
& \quad \leq \lambda_{n} \zeta\left\|u_{n}-y_{n}\right\|\left\|v_{n}-y_{n}\right\| .
\end{aligned}
$$

Thus, we have

$$
\begin{align*}
\left\|v_{n}-p\right\|^{2} & \leq\left\|u_{n}-p\right\|^{2}-\left\|u_{n}-y_{n}\right\|^{2}-\left\|y_{n}-v_{n}\right\|^{2}+2 \lambda_{n} \zeta\left\|u_{n}-y_{n}\right\|\left\|v_{n}-y_{n}\right\| \\
& \leq\left\|u_{n}-p\right\|^{2}-\left\|u_{n}-y_{n}\right\|^{2}-\left\|y_{n}-v_{n}\right\|^{2}+\lambda_{n}^{2} \zeta^{2}\left\|u_{n}-y_{n}\right\|^{2}+\left\|v_{n}-y_{n}\right\|^{2} \\
& =\left\|u_{n}-p\right\|^{2}+\left(\lambda_{n}^{2} \zeta^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2} \tag{3.4}\\
& \leq\left\|u_{n}-p\right\|^{2}
\end{align*}
$$

and hence

$$
\begin{equation*}
\left\|v_{n}-p\right\| \leq\left\|u_{n}-p\right\| \leq\left\|x_{n}-p\right\| . \tag{3.5}
\end{equation*}
$$

Thus, we can calculate

$$
\begin{align*}
\left\|x_{n+1}-p\right\| & =\left\|\epsilon_{n}\left(\gamma f\left(W_{n} x_{n}\right)-A p\right)+\beta_{n}\left(x_{n}-p\right)+\left(\left(1-\beta_{n}\right) I-\epsilon_{n} A\right)\left(W_{n} v_{n}-p\right)\right\| \\
& \leq\left(1-\beta_{n}-\epsilon_{n} \bar{\gamma}\right)\left\|v_{n}-p\right\|+\beta_{n}\left\|x_{n}-p\right\|+\epsilon_{n}\left\|\gamma f\left(W_{n} x_{n}\right)-A p\right\| \\
& \leq\left(1-\beta_{n}-\epsilon_{n} \bar{\gamma}\right)\left\|x_{n}-p\right\|+\beta_{n}\left\|x_{n}-p\right\|+\epsilon_{n}\left\|\gamma f\left(W_{n} x_{n}\right)-A p\right\| \\
& =\left(1-\epsilon_{n} \bar{\gamma}\right)\left\|x_{n}-p\right\|+\epsilon_{n} \gamma\left\|f\left(W_{n} x_{n}\right)-f(p)\right\|+\epsilon_{n}\|\gamma f(p)-A p\| \\
& \leq\left(1-\epsilon_{n} \bar{\gamma}\right)\left\|x_{n}-p\right\|+\epsilon_{n} \gamma \alpha\left\|x_{n}-p\right\|+\epsilon_{n}\|\gamma f(p)-A p\| \\
& =\left(1-(\bar{\gamma}-\gamma \alpha) \epsilon_{n}\right)\left\|x_{n}-p\right\|+(\bar{\gamma}-\gamma \alpha) \epsilon_{n} \frac{\|\gamma f(p)-A p\|}{\bar{\gamma}-\gamma \alpha} \tag{3.6}
\end{align*}
$$

By induction that

$$
\begin{equation*}
\left\|x_{n}-p\right\| \leq \max \left\{\left\|x_{1}-p\right\|, \frac{\|\gamma f(p)-A p\|}{\bar{\gamma}-\gamma \alpha}\right\}, \quad n \in \mathbb{N} . \tag{3.7}
\end{equation*}
$$

Hence, $\left\{x_{n}\right\}$ is bounded, so are $\left\{u_{n}\right\},\left\{v_{n}\right\},\left\{B u_{n}\right\},\left\{B v_{n}\right\},\left\{W_{n} v_{n}\right\}$ and $\left\{f\left(W_{n} x_{n}\right)\right\}$.
Step 2. We claim that, if ω_{n} be a bounded sequence in C. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\Im_{n}^{k} \omega_{n}-\Im_{n+1}^{k} \omega_{n}\right\|=0 \tag{3.8}
\end{equation*}
$$

for every $k \in\{1,2,3, \ldots, M\}$. From Step 2 of the proof Theorem 3.1 in [7], we have that for $k \in\{1,2,3, \ldots, M\}$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|J_{r_{k, n+1}}^{F_{k}} \omega_{n}-J_{r_{k, n}}^{F_{k}} \omega_{n}\right\|=0 \tag{3.9}
\end{equation*}
$$

Note that for every $k \in\{1,2,3, \ldots, M\}$, we obtain

$$
\Im_{n}^{k}=J_{r_{k, n}}^{F_{k}} J_{r_{k-1, n}}^{F_{k-1}} J_{r_{k-2, n}}^{F_{k-2}} \ldots J_{r_{2, n}}^{F_{2}} J_{r_{1, n}}^{F_{1}}=J_{r_{k, n}}^{F_{k}} \Im_{n}^{k-1} .
$$

So, we have

$$
\begin{align*}
& \left\|\Im_{n}^{k} \omega_{n}-\Im_{n+1}^{k} \omega_{n}\right\| \tag{3.10}\\
= & \left\|J_{r_{k, n}}^{F_{k}} \Im_{n}^{k-1} \omega_{n}-J_{r_{k, n+1}}^{F_{k}} \Im_{n+1}^{k-1} \omega_{n}\right\| \\
\leq & \left\|J_{r_{k, n}}^{F_{k}} \Im_{n}^{k-1} \omega_{n}-J_{r_{k, n+1}}^{F_{k}} \Im_{n}^{k-1} \omega_{n}\right\|+\left\|J_{r_{k, n+1}}^{F_{k}} \Im_{n}^{k-1} \omega_{n}-J_{r_{k, n+1}}^{F_{k}} \Im_{n+1}^{k-1} \omega_{n}\right\| \\
\leq & \left\|J_{r_{k, n}}^{F_{k}} \Im_{n}^{k-1} \omega_{n}-J_{r_{k, n+1}}^{F_{k}} \Im_{n}^{k-1} \omega_{n}\right\|+\left\|\Im_{n}^{k-1} \omega_{n}-\Im_{n+1}^{k-1} \omega_{n}\right\| \\
\leq & \left\|J_{r_{k, n}}^{F_{k}} \Im_{n}^{k-1} \omega_{n}-J_{r_{k, n+1}}^{F_{k}} \Im_{n}^{k-1} \omega_{n}\right\|+\left\|J_{r_{k-1, n}}^{F_{k-1}} \Im_{n}^{k-2} \omega_{n}-J_{r_{k-1, n+1}}^{F_{k-1}} \Im_{n}^{k-2} \omega_{n}\right\| \\
& +\left\|\Im_{n}^{k-2} \omega_{n}-\Im_{n+1}^{k-2} \omega_{n}\right\| \\
\leq & \left\|J_{r_{k, n}}^{F_{k}} \Im_{n}^{k-1} \omega_{n}-J_{r_{k, n+1}}^{F_{k}} \Im_{n}^{k-1} \omega_{n}\right\|+\left\|J_{r_{k-1, n}}^{F_{k-1}} \Im_{n}^{k-2} \omega_{n}-J_{r_{k-1, n+1}}^{F_{k-1}} \Im_{n}^{k-2} \omega_{n}\right\| \\
& +\ldots+\left\|J_{r_{2, n}}^{F_{2}} \Im_{n}^{1} \omega_{n}-J_{r_{2, n+1}}^{F_{2}} \Im_{n}^{1} \omega_{n}\right\|+\left\|J_{r_{1, n}}^{F_{1}} \omega_{n}-J_{r_{1, n+1}}^{F_{1}} \omega_{n}\right\| .
\end{align*}
$$

Now, apply (3.9) to conclude (3.8).
Step 3. We claim that $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$.
On the other hand, from $u_{n}=\Im_{n}^{M} x_{n}$ and $u_{n+1}=\Im_{n+1}^{M} x_{n+1}$, by the triangular inequality, we also have

$$
\begin{align*}
\left\|u_{n+1}-u_{n}\right\| & =\left\|\Im_{n+1}^{M} x_{n+1}-\Im_{n}^{M} x_{n}\right\| \\
& =\left\|\Im_{n+1}^{M} x_{n+1}-\Im_{n+1}^{M} x_{n}\right\|+\left\|\Im_{n+1}^{M} x_{n}-\Im_{n}^{M} x_{n}\right\| \\
& \leq\left\|x_{n+1}-x_{n}\right\|+\left\|\Im_{n+1}^{M} x_{n}-\Im_{n}^{M} x_{n}\right\| . \tag{3.11}
\end{align*}
$$

Indeed, we observe that for any $x, y \in C$,

$$
\begin{align*}
\left\|\left(I-\lambda_{n} B\right) x-\left(I-\lambda_{n} B\right) y\right\|^{2} & =\left\|(x-y)-\lambda_{n}(B x-B y)\right\|^{2} \\
& =\|x-y\|^{2}-2 \lambda_{n}\langle x-y, B x-B y\rangle+\lambda_{n}^{2}\|B x-B y\|^{2} \\
& \leq\|x-y\|^{2}+\lambda_{n}^{2} \zeta^{2}\|x-y\|^{2} \\
& =\left(1+\lambda_{n}^{2} \zeta^{2}\right)\|x-y\|^{2} \tag{3.12}
\end{align*}
$$

which implies that

$$
\begin{equation*}
\left\|\left(I-\lambda_{n} A\right) x-\left(I-\lambda_{n} A\right) y\right\| \leq\left(1+\lambda_{n} \zeta\right)\|x-y\| \tag{3.13}
\end{equation*}
$$

Note that

$$
\begin{align*}
\left\|v_{n+1}-v_{n}\right\|= & \left\|P_{C}\left(u_{n+1}-\lambda_{n+1} B y_{n+1}\right)-P_{C}\left(u_{n}-\lambda_{n} B y_{n}\right)\right\| \\
\leq & \left\|u_{n+1}-\lambda_{n+1} B y_{n+1}-\left(u_{n}-\lambda_{n} B y_{n}\right)\right\| \\
= & \|\left(u_{n+1}-\lambda_{n+1} B u_{n+1}\right)-\left(u_{n}-\lambda_{n+1} B u_{n}\right) \\
& +\lambda_{n+1}\left(B u_{n+1}-B y_{n+1}-B u_{n}\right)+\lambda_{n} B y_{n} \| \\
\leq & \left\|\left(u_{n+1}-\lambda_{n+1} B u_{n+1}\right)-\left(u_{n}-\lambda_{n+1} B u_{n}\right)\right\| \\
& +\lambda_{n+1}\left(\left\|B u_{n+1}\right\|+\left\|B y_{n+1}\right\|+\left\|B u_{n}\right\|\right)+\lambda_{n}\left\|B y_{n}\right\| \\
\leq & \left(1+\lambda_{n+1} \zeta\right)\left\|u_{n+1}-u_{n}\right\|+\lambda_{n+1}\left(\left\|B u_{n+1}\right\|+\left\|B y_{n+1}\right\|+\left\|B u_{n}\right\|\right) \\
& +\lambda_{n}\left\|B y_{n}\right\| . \tag{3.14}
\end{align*}
$$

Substituting (3.11) into (3.14), we have

$$
\begin{align*}
\left\|v_{n+1}-v_{n}\right\| \leq & \left(1+\lambda_{n+1} \zeta\right)\left\|u_{n+1}-u_{n}\right\|+\lambda_{n+1}\left(\left\|B u_{n+1}\right\|+\left\|B y_{n+1}\right\|+\left\|B u_{n}\right\|\right)+\lambda_{n}\left\|B y_{n}\right\| \\
\leq & \left(1+\lambda_{n+1} \zeta\right)\left\|x_{n+1}-x_{n}\right\|+\left(1+\lambda_{n+1} \zeta\right)\left\|\Im_{n+1}^{M} x_{n}-\Im_{n}^{M} x_{n}\right\| \\
& +\lambda_{n+1}\left(\left\|B u_{n+1}\right\|+\left\|B y_{n+1}\right\|+\left\|B u_{n}\right\|\right)+\lambda_{n}\left\|B y_{n}\right\| . \tag{3.15}
\end{align*}
$$

Setting

$$
z_{n}=\frac{x_{n+1}-\beta_{n} x_{n}}{1-\beta_{n}}=\frac{\epsilon_{n} \gamma f\left(W_{n} x_{n}\right)+\left(\left(1-\beta_{n}\right) I-\epsilon_{n} A\right) W_{n} v_{n}}{1-\beta_{n}}
$$

we have $x_{n+1}=\left(1-\beta_{n}\right) z_{n}+\beta_{n} x_{n}, n \geq 1$. It follows that

$$
\begin{align*}
z_{n+1}-z_{n}= & \frac{\epsilon_{n+1} \gamma f\left(W_{n+1} x_{n+1}\right)+\left(\left(1-\beta_{n+1}\right) I-\epsilon_{n+1} A\right) W_{n+1} v_{n+1}}{1-\beta_{n+1}} \\
& -\frac{\epsilon_{n} \gamma f\left(W_{n} x_{n}\right)+\left(\left(1-\beta_{n}\right) I-\epsilon_{n} A\right) W_{n} v_{n}}{1-\beta_{n}} \\
= & \frac{\epsilon_{n+1}}{1-\beta_{n+1}} \gamma f\left(W_{n+1} x_{n+1}\right)-\frac{\epsilon_{n}}{1-\beta_{n}} \gamma f\left(W_{n} x_{n}\right)+W_{n+1} v_{n+1}-W_{n} v_{n} \\
& +\frac{\epsilon_{n}}{1-\beta_{n}} A W_{n} v_{n}-\frac{\epsilon_{n+1}}{1-\beta_{n+1}} A W_{n+1} v_{n+1} \\
= & \frac{\epsilon_{n+1}}{1-\beta_{n+1}}\left(\gamma f\left(W_{n+1} x_{n+1}\right)-A W_{n+1} v_{n+1}\right)+\frac{\epsilon_{n}}{1-\beta_{n}}\left(A W_{n} v_{n}-\gamma f\left(W_{n} x_{n}\right)\right) \\
& +W_{n+1} v_{n+1}-W_{n+1} v_{n}+W_{n+1} v_{n}-W_{n} v_{n} . \tag{3.16}
\end{align*}
$$

It follows from (3.15) and (3.16) that

$$
\begin{align*}
\left\|z_{n+1}-z_{n}\right\|-\left\|x_{n+1}-x_{n}\right\| \leq & \frac{\epsilon_{n+1}}{1-\beta_{n+1}}\left(\left\|\gamma f\left(W_{n+1} x_{n+1}\right)\right\|+\left\|A W_{n+1} v_{n+1}\right\|\right) \\
& +\frac{\epsilon_{n}}{1-\beta_{n}}\left(\left\|A W_{n} v_{n}\right\|+\left\|\gamma f\left(W_{n} x_{n}\right)\right\|\right) \\
& +\left\|W_{n+1} v_{n+1}-W_{n+1} v_{n}\right\| \\
& +\left\|W_{n+1} v_{n}-W_{n} v_{n}\right\|-\left\|x_{n+1}-x_{n}\right\| \\
\leq & \frac{\epsilon_{n+1}}{1-\beta_{n+1}}\left(\left\|\gamma f\left(W_{n+1} x_{n+1}\right)\right\|+\left\|A W_{n+1} v_{n+1}\right\|\right) \\
& +\frac{\epsilon_{n}}{1-\beta_{n}}\left(\left\|A W_{n} v_{n}\right\|+\left\|\gamma f\left(W_{n} x_{n}\right)\right\|\right)+\left\|v_{n+1}-v_{n}\right\| \\
& +\left\|W_{n+1} v_{n}-W_{n} v_{n}\right\|-\left\|x_{n+1}-x_{n}\right\| \\
\leq & \frac{\epsilon_{n+1}}{1-\beta_{n+1}}\left(\left\|\gamma f\left(W_{n+1} x_{n+1}\right)\right\|+\left\|A W_{n+1} v_{n+1}\right\|\right) \\
& +\frac{\epsilon_{n}}{1-\beta_{n}}\left(\left\|A W_{n} v_{n}\right\|+\left\|\gamma f\left(W_{n} x_{n}\right)\right\|\right)+\lambda_{n+1} \zeta\left\|x_{n+1}-x_{n}\right\| \\
& +\left(1+\lambda_{n+1} \zeta\right)\left\|\Im_{n+1}^{M} x_{n}-\Im_{n}^{M} x_{n}\right\| \\
& +\lambda_{n+1}\left(\left\|B u_{n+1}\right\|+\left\|B y_{n+1}\right\|+\left\|B u_{n}\right\|\right) \\
& +\lambda_{n}\left\|B y_{n}\right\|+\left\|W_{n+1} v_{n}-W_{n} v_{n}\right\| . \tag{3.17}
\end{align*}
$$

Since T_{i} and $U_{n, i}$ are nonexpansive, we have

$$
\begin{align*}
\left\|W_{n+1} v_{n}-W_{n} v_{n}\right\| & =\left\|\mu_{1} T_{1} U_{n+1,2} v_{n}-\mu_{1} T_{1} U_{n, 2} v_{n}\right\| \\
& \leq \mu_{1}\left\|U_{n+1,2} v_{n}-U_{n, 2} v_{n}\right\| \\
& =\mu_{1}\left\|\mu_{2} T_{2} U_{n+1,3} v_{n}-\mu_{2} T_{2} U_{n, 3} v_{n}\right\| \\
& \leq \mu_{1} \mu_{2}\left\|U_{n+1,3} v_{n}-U_{n, 3} v_{n}\right\| \\
& \vdots \\
& \leq \mu_{1} \mu_{2} \cdots \mu_{n}\left\|U_{n+1, n+1} v_{n}-U_{n, n+1} v_{n}\right\| \tag{3.18}\\
& \leq M_{1} \prod_{i=1}^{n} \mu_{i},
\end{align*}
$$

where $M_{1} \geq 0$ is a constant such that $\left\|U_{n+1, n+1} v_{n}-U_{n, n+1} v_{n}\right\| \leq M_{1}, \quad \forall n \geq 0$. Combining (3.17) and (3.18), we have

$$
\begin{aligned}
\left\|z_{n+1}-z_{n}\right\|-\left\|x_{n+1}-x_{n}\right\| \leq & \frac{\epsilon_{n+1}}{1-\beta_{n+1}}\left(\left\|\gamma f\left(W_{n+1} x_{n+1}\right)\right\|+\left\|A W_{n+1} v_{n+1}\right\|\right) \\
& +\frac{\epsilon_{n}}{1-\beta_{n}}\left(\left\|A W_{n} v_{n}\right\|+\left\|\gamma f\left(W_{n} x_{n}\right)\right\|\right)+\lambda_{n+1} \zeta\left\|x_{n+1}-x_{n}\right\| \\
& +\left(1+\lambda_{n+1} \zeta\right)\left\|\Im_{n+1}^{M} x_{n}-\Im_{n}^{M} x_{n}\right\| \\
& +\lambda_{n+1}\left(\left\|B u_{n+1}\right\|+\left\|B y_{n+1}\right\|+\left\|B u_{n}\right\|\right) \\
& +\lambda_{n}\left\|B y_{n}\right\|+M_{1} \prod_{i=1}^{n} \mu_{i} .
\end{aligned}
$$

which implies that (noting that (C1), (C2), (C4) and $0<\mu_{i} \leq b<1, \quad \forall i \geq 1$)

$$
\limsup _{n \rightarrow \infty}\left(\left\|z_{n+1}-z_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0
$$

Hence, by Lemma 2.10, we obtain

$$
\lim _{n \rightarrow \infty}\left\|z_{n}-x_{n}\right\|=0
$$

It follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=\lim _{n \rightarrow \infty}\left(1-\beta_{n}\right)\left\|z_{n}-x_{n}\right\|=0 \tag{3.19}
\end{equation*}
$$

Applying (3.8), (3.19) and (C4) to (3.11) and (3.14), we obtain that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n+1}-u_{n}\right\|=\lim _{n \rightarrow \infty}\left\|v_{n+1}-v_{n}\right\|=0 \tag{3.20}
\end{equation*}
$$

Step 4. We claim that $\lim _{n \rightarrow \infty}\left\|x_{n}-W_{n} v_{n}\right\|=0$.
Since $x_{n+1}=\epsilon_{n} \gamma f\left(W_{n} x_{n}\right)+\beta_{n} x_{n}+\left(\left(1-\beta_{n}\right) I-\epsilon_{n} A\right) W_{n} v_{n}$, we have

$$
\begin{aligned}
\left\|x_{n}-W_{n} v_{n}\right\| & \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-W_{n} v_{n}\right\| \\
& =\left\|x_{n}-x_{n+1}\right\|+\left\|\epsilon_{n} \gamma f\left(W_{n} x_{n}\right)+\beta_{n} x_{n}+\left(\left(1-\beta_{n}\right) I-\epsilon_{n} A\right) W_{n} v_{n}-W_{n} v_{n}\right\| \\
& =\left\|x_{n}-x_{n+1}\right\|+\left\|\epsilon_{n}\left(\gamma f\left(W_{n} x_{n}\right)-A W_{n} v_{n}\right)+\beta_{n}\left(x_{n}-W_{n} v_{n}\right)\right\| \\
& \leq\left\|x_{n}-x_{n+1}\right\|+\epsilon_{n}\left(\left\|\gamma f\left(W_{n} x_{n}\right)\right\|+\left\|A W_{n} v_{n}\right\|\right)+\beta_{n}\left\|x_{n}-W_{n} v_{n}\right\|,
\end{aligned}
$$

that is

$$
\left\|x_{n}-W_{n} v_{n}\right\| \leq \frac{1}{1-\beta_{n}}\left\|x_{n}-x_{n+1}\right\|+\frac{\epsilon_{n}}{1-\beta_{n}}\left(\left\|\gamma f\left(W_{n} x_{n}\right)\right\|+\left\|A W_{n} v_{n}\right\|\right)
$$

By (C1), (C2) and (3.19) it follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|W_{n} v_{n}-x_{n}\right\|=0 \tag{3.21}
\end{equation*}
$$

Step 5. We claim that the following statements hold:

1. $\lim _{n \rightarrow \infty}\left\|u_{n}-y_{n}\right\|=0$;
2. $\lim _{n \rightarrow \infty}\left\|u_{n}-v_{n}\right\|=0$;
3. $\lim _{n \rightarrow \infty}\left\|W_{n} y_{n}-y_{n}\right\|=0$.

For any $p \in \Theta:=\cap_{n=1}^{\infty} F\left(T_{n}\right) \cap\left(\cap_{n=1}^{\infty} S E P\left(F_{k}\right)\right) \cap V I(C, B)$ and (3.1), we have

$$
\begin{align*}
\left\|x_{n+1}-p\right\|^{2}= & \left\|\left(\left(1-\beta_{n}\right) I-\epsilon_{n} A\right)\left(W_{n} v_{n}-p\right)+\beta_{n}\left(x_{n}-p\right)+\epsilon_{n}\left(\gamma f\left(W_{n} x_{n}\right)-A p\right)\right\|^{2} \\
= & \left\|\left(\left(1-\beta_{n}\right) I-\epsilon_{n} A\right)\left(W_{n} v_{n}-p\right)+\beta_{n}\left(x_{n}-p\right)\right\|^{2}+\epsilon_{n}^{2}\left\|\gamma f\left(W_{n} x_{n}\right)-A p\right\|^{2} \\
& +2 \beta_{n} \epsilon_{n}\left\langle x_{n}-p, \gamma f\left(W_{n} x_{n}\right)-A p\right\rangle \\
& +2 \epsilon_{n}\left\langle\left(\left(1-\beta_{n}\right) I-\epsilon_{n} A\right)\left(W_{n} v_{n}-p\right), \gamma f\left(W_{n} x_{n}\right)-A p\right\rangle \\
\leq & {\left[\left(1-\beta_{n}-\epsilon_{n} \bar{\gamma}\right)\left\|W_{n} v_{n}-p\right\|+\beta_{n}\left\|x_{n}-p\right\|^{2}+\epsilon_{n}^{2}\left\|\gamma f\left(W_{n} x_{n}\right)-A p\right\|^{2}\right.} \\
& +2 \beta_{n} \epsilon_{n}\left\langle x_{n}-p, \gamma f\left(W_{n} x_{n}\right)-A p\right\rangle \\
& +2 \epsilon_{n}\left\langle\left(\left(1-\beta_{n}\right) I-\epsilon_{n} A\right)\left(W_{n} v_{n}-p\right), \gamma f\left(W_{n} x_{n}\right)-A p\right\rangle \\
\leq & {\left[\left(1-\beta_{n}-\epsilon_{n} \bar{\gamma}\right)\left\|v_{n}-p\right\|+\beta_{n}\left\|x_{n}-p\right\|\right]^{2}+c_{n} } \\
\leq & \left(1-\beta_{n}-\epsilon_{n} \bar{\gamma}\right)^{2}\left\|v_{n}-p\right\|^{2}+\beta_{n}^{2}\left\|x_{n}-p\right\|^{2} \\
& +2\left(1-\beta_{n}-\epsilon_{n} \bar{\gamma}\right) \beta_{n}\left\|v_{n}-p\right\|\left\|x_{n}-p\right\|+c_{n} \\
\leq & \left(1-\beta_{n}-\epsilon_{n} \bar{\gamma}\right)^{2}\left\|v_{n}-p\right\|^{2}+\beta_{n}^{2}\left\|x_{n}-p\right\|^{2} \\
& +\left(1-\beta_{n}-\epsilon_{n} \bar{\gamma}\right) \beta_{n}\left(\left\|v_{n}-p\right\|^{2}+\left\|x_{n}-p\right\|^{2}\right)+c_{n} \\
= & {\left[\left(1-\epsilon_{n} \bar{\gamma}\right)^{2}-2\left(1-\epsilon_{n} \bar{\gamma}\right) \beta_{n}+\beta_{n}^{2}\right]\left\|v_{n}-p\right\|^{2}+\beta_{n}^{2}\left\|x_{n}-p\right\|^{2} } \\
& +\left(\left(1-\epsilon_{n} \bar{\gamma}\right) \beta_{n}-\beta_{n}^{2}\right)\left(\left\|v_{n}-p\right\|^{2}+\left\|x_{n}-p\right\|^{2}\right)+c_{n} \\
= & \left(1-\epsilon_{n} \bar{\gamma}\right)^{2}\left\|v_{n}-p\right\|^{2}-\left(1-\epsilon_{n} \bar{\gamma}\right) \beta_{n}\left\|v_{n}-p\right\|^{2}+\left(1-\epsilon_{n} \bar{\gamma}\right) \beta_{n}\left\|x_{n}-p\right\|^{2}+c_{n} \\
= & \left(1-\epsilon_{n} \bar{\gamma}\right)\left(1-\beta_{n}-\epsilon_{n} \bar{\gamma}\right)\left\|v_{n}-p\right\|^{2}+\left(1-\epsilon_{n} \bar{\gamma}\right) \beta_{n}\left\|x_{n}-p\right\|^{2}+c_{n}, \quad(3.22) \tag{3.22}
\end{align*}
$$

where

$$
\begin{aligned}
c_{n}= & \epsilon_{n}^{2}\left\|\gamma f\left(W_{n} x_{n}\right)-A p\right\|^{2}+2 \beta_{n} \epsilon_{n}\left\langle x_{n}-p, \gamma f\left(W_{n} x_{n}\right)-A p\right\rangle \\
& +2 \epsilon_{n}\left\langle\left(\left(1-\beta_{n}\right) I-\epsilon_{n} A\right)\left(W_{n} v_{n}-p\right), \gamma f\left(W_{n} x_{n}\right)-A p\right\rangle .
\end{aligned}
$$

It follows from condition (C1) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} c_{n}=0 \tag{3.23}
\end{equation*}
$$

Substituting (3.4) into (3.22), and using (C4), we have

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2} \leq & \left(1-\epsilon_{n} \bar{\gamma}\right)\left(1-\beta_{n}-\epsilon_{n} \bar{\gamma}\right)\left\|v_{n}-p\right\|^{2}+\left(1-\epsilon_{n} \bar{\gamma}\right) \beta_{n}\left\|x_{n}-p\right\|^{2}+c_{n} \\
\leq & \left(1-\epsilon_{n} \bar{\gamma}\right)\left(1-\beta_{n}-\epsilon_{n} \bar{\gamma}\right)\left\{\left\|u_{n}-p\right\|^{2}+\left(\lambda_{n}^{2} \zeta^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2}\right\} \\
& +\left(1-\epsilon_{n} \bar{\gamma}\right) \beta_{n}\left\|x_{n}-p\right\|^{2}+c_{n} \\
\leq & \left(1-\epsilon_{n} \bar{\gamma}\right)\left(1-\beta_{n}-\epsilon_{n} \bar{\gamma}\right)\left\{\left\|x_{n}-p\right\|^{2}+\left(\lambda_{n}^{2} \zeta^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2}\right\} \\
& +\left(1-\epsilon_{n} \bar{\gamma}\right) \beta_{n}\left\|x_{n}-p\right\|^{2}+c_{n} \\
= & \left(1-\epsilon_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-p\right\|^{2}+\left(1-\epsilon_{n} \bar{\gamma}\right)\left(1-\beta_{n}-\epsilon_{n} \bar{\gamma}\right)\left(\lambda_{n}^{2} \zeta^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2}+c_{n} \\
\leq & \left\|x_{n}-p\right\|^{2}+\left(\lambda_{n}^{2} \zeta^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2}+c_{n} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left(1-\lambda_{n}^{2} \zeta^{2}\right)\left\|u_{n}-y_{n}\right\|^{2} & \leq\left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}+c_{n} \\
& =\left(\left\|x_{n}-p\right\|-\left\|x_{n+1}-p\right\|\right)\left(\left\|x_{n}-p\right\|+\left\|x_{n+1}-p\right\|\right)+c_{n} \\
& \leq\left\|x_{n}-x_{n+1}\right\|\left(\left\|x_{n}-p\right\|+\left\|x_{n+1}-p\right\|\right)+c_{n} .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} c_{n}=0$ and from (3.19), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}-y_{n}\right\|=0 \tag{3.24}
\end{equation*}
$$

By the same argument as in (3.4), we obtain

$$
\begin{align*}
\left\|v_{n}-p\right\|^{2} & \leq\left\|u_{n}-p\right\|^{2}-\left\|u_{n}-y_{n}\right\|^{2}-\left\|y_{n}-v_{n}\right\|^{2}+2 \lambda_{n} \zeta\left\|u_{n}-y_{n}\right\|\left\|v_{n}-y_{n}\right\| \\
& \leq\left\|u_{n}-p\right\|^{2}-\left\|u_{n}-y_{n}\right\|^{2}-\left\|y_{n}-v_{n}\right\|^{2}+\left\|u_{n}-y_{n}\right\|^{2}+\lambda_{n}^{2} \zeta^{2}\left\|v_{n}-y_{n}\right\|^{2} \\
& =\left\|u_{n}-p\right\|^{2}+\left(\lambda_{n}^{2} \zeta^{2}-1\right)\left\|y_{n}-v_{n}\right\|^{2} \\
& \leq\left\|x_{n}-p\right\|^{2}+\left(\lambda_{n}^{2} \zeta^{2}-1\right)\left\|y_{n}-v_{n}\right\|^{2} . \tag{3.25}
\end{align*}
$$

Substituting (3.25) into (3.22), and using (C4), we have

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2} \leq & \left(1-\epsilon_{n} \bar{\gamma}\right)\left(1-\beta_{n}-\epsilon_{n} \bar{\gamma}\right)\left\{\left\|x_{n}-p\right\|^{2}+\left(\lambda_{n}^{2} \zeta^{2}-1\right)\left\|y_{n}-v_{n}\right\|^{2}\right\} \\
& +\left(1-\epsilon_{n} \bar{\gamma}\right) \beta_{n}\left\|x_{n}-p\right\|^{2}+c_{n} \\
= & \left(1-\epsilon_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-p\right\|^{2}+\left(1-\epsilon_{n} \bar{\gamma}\right)\left(1-\beta_{n}-\epsilon_{n} \bar{\gamma}\right)\left(\lambda_{n}^{2} \zeta^{2}-1\right)\left\|y_{n}-v_{n}\right\|^{2}+c_{n} \\
\leq & \left\|x_{n}-p\right\|^{2}+\left(\lambda_{n}^{2} \zeta^{2}-1\right)\left\|y_{n}-v_{n}\right\|^{2}+c_{n} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left(1-\lambda_{n}^{2} \zeta^{2}\right)\left\|y_{n}-v_{n}\right\|^{2} & \leq\left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}+c_{n} \\
& \leq\left\|x_{n}-x_{n+1}\right\|\left(\left\|x_{n}-p\right\|+\left\|x_{n+1}-p\right\|\right)+c_{n}
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} c_{n}=0$ and from (3.19), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-v_{n}\right\|=0 \tag{3.26}
\end{equation*}
$$

On the other hand, we observe that

$$
\left\|u_{n}-v_{n}\right\| \leq\left\|u_{n}-y_{n}\right\|+\left\|y_{n}-v_{n}\right\| .
$$

Applying (3.24) and (3.26), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}-v_{n}\right\|=0 \tag{3.27}
\end{equation*}
$$

For any $p \in \Theta$, note that $J_{r_{k, n}}^{F_{k}}$ is firmly nonexpansive (Lemma 2.6) for $k \in$ $\{1,2,3, \ldots, M\}$, then we have

$$
\begin{aligned}
\left\|\Im_{n}^{k} x_{n}-p\right\|^{2} & =\left\|J_{r_{k, n}}^{F_{k}} \Im_{n}^{k-1} x_{n}-J_{r_{k, n}}^{F_{k}} p\right\|^{2} \\
& \leq\left\langle J_{r_{k, n}}^{F_{k}} \Im_{n}^{k-1} x_{n}-J_{r_{k, n}}^{F_{k}} p, \Im_{n}^{k-1} x_{n}-p\right\rangle \\
& =\left\langle\Im_{n}^{k} x_{n}-p, \Im_{n}^{k-1} x_{n}-p\right\rangle \\
& =\frac{1}{2}\left(\left\|\Im_{n}^{k} x_{n}-p\right\|^{2}+\left\|\Im_{n}^{k-1} x_{n}-p\right\|^{2}-\left\|\Im_{n}^{k} x_{n}-\Im_{n}^{k-1} x_{n}\right\|^{2}\right)
\end{aligned}
$$

and hence

$$
\left\|\Im_{n}^{k} x_{n}-p\right\|^{2} \leq\left\|\Im_{n}^{k-1} x_{n}-p\right\|^{2}-\left\|\Im_{n}^{k} x_{n}-\Im_{n}^{k-1} x_{n}\right\|^{2}, \quad k=1,2,3, \ldots, M
$$

which implies that for each $k \in\{1,2,3, \ldots, M\}$,

$$
\begin{aligned}
\left\|\Im_{n}^{k} x_{n}-p\right\|^{2} \leq & \left\|\Im_{n}^{0} x_{n}-p\right\|^{2}-\left\|\Im_{n}^{k} x_{n}-\Im_{n}^{k-1} x_{n}\right\|^{2} \\
& -\left\|\Im_{n}^{k-1} x_{n}-\Im_{n}^{k-2} x_{n}\right\|^{2}-\ldots-\left\|\Im_{n}^{2} x_{n}-\Im_{n}^{1} x_{n}\right\|^{2}-\left\|\Im_{n}^{1} x_{n}-\Im_{n}^{0} x_{n}\right\|^{2} \\
\leq & \left\|x_{n}-p\right\|^{2}-\left\|\Im_{n}^{k} x_{n}-\Im_{n}^{k-1} x_{n}\right\|^{2} .
\end{aligned}
$$

Together with (3.22) gives

$$
\begin{aligned}
& \left\|x_{n+1}-p\right\|^{2} \\
\leq & \left(1-\epsilon_{n} \bar{\gamma}\right)\left(1-\beta_{n}-\epsilon_{n} \bar{\gamma}\right)\left\|v_{n}-p\right\|^{2}+\left(1-\epsilon_{n} \bar{\gamma}\right) \beta_{n}\left\|x_{n}-p\right\|^{2}+c_{n} \\
\leq & \left(1-\epsilon_{n} \bar{\gamma}\right)\left(1-\epsilon_{n} \bar{\gamma}-\beta_{n}\right)\left\{\left\|u_{n}-p\right\|^{2}+\left(\lambda_{n}^{2} \zeta^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2}\right\} \\
& +\left(1-\epsilon_{n} \bar{\gamma}\right) \beta_{n}\left\|x_{n}-p\right\|^{2}+c_{n} \\
= & \left(1-\epsilon_{n} \bar{\gamma}\right)\left(1-\epsilon_{n} \bar{\gamma}-\beta_{n}\right)\left\|u_{n}-p\right\|^{2}+\left(1-\epsilon_{n} \bar{\gamma}\right)\left(1-\epsilon_{n} \bar{\gamma}-\beta_{n}\right)\left(\lambda_{n}^{2} \zeta^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2} \\
& +\left(1-\epsilon_{n} \bar{\gamma}\right) \beta_{n}\left\|x_{n}-p\right\|^{2}+c_{n} \\
= & \left(1-\epsilon_{n} \bar{\gamma}\right)\left(1-\epsilon_{n} \bar{\gamma}-\beta_{n}\right)\left\|\Im_{n}^{k} x_{n}-p\right\|^{2}+\left(1-\epsilon_{n} \bar{\gamma}\right)\left(1-\epsilon_{n} \bar{\gamma}-\beta_{n}\right)\left(\lambda_{n}^{2} \zeta^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2} \\
& +\left(1-\epsilon_{n} \bar{\gamma}\right) \beta_{n}\left\|x_{n}-p\right\|^{2}+c_{n} \\
\leq & \left(1-\epsilon_{n} \bar{\gamma}\right)\left(1-\epsilon_{n} \bar{\gamma}-\beta_{n}\right)\left\{\left\|x_{n}-p\right\|^{2}-\left\|\Im_{n}^{k} x_{n}-\Im_{n}^{k-1} x_{n}\right\|^{2}\right\} \\
& +\left(1-\epsilon_{n} \bar{\gamma}\right)\left(1-\epsilon_{n} \bar{\gamma}-\beta_{n}\right)\left(\lambda_{n}^{2} \zeta^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2}+\left(1-\epsilon_{n} \bar{\gamma}\right) \beta_{n}\left\|x_{n}-p\right\|^{2}+c_{n} \\
= & \left(1-\epsilon_{n} \bar{\gamma}\right)\left(1-\epsilon_{n} \bar{\gamma}-\beta_{n}\right)\left\|x_{n}-p\right\|^{2}-\left(1-\epsilon_{n} \bar{\gamma}\right)\left(1-\epsilon_{n} \bar{\gamma}-\beta_{n}\right)\left\|\Im_{n}^{k} x_{n}-\Im_{n}^{k-1} x_{n}\right\|^{2} \\
& +\left(1-\epsilon_{n} \bar{\gamma}\right)\left(1-\epsilon_{n} \bar{\gamma}-\beta_{n}\right)\left(\lambda_{n}^{2} \zeta^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2}+\left(1-\epsilon_{n} \bar{\gamma}\right) \beta_{n}\left\|x_{n}-p\right\|^{2}+c_{n} \\
= & \left(1-\epsilon_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-p\right\|^{2}-\left(1-\epsilon_{n} \bar{\gamma}\right)\left(1-\epsilon_{n} \bar{\gamma}-\beta_{n}\right)\left\|\Im_{n}^{k} x_{n}-\Im_{n}^{k-1} x_{n}\right\|^{2} \\
& +\left(1-\epsilon_{n} \bar{\gamma}\right)\left(1-\epsilon_{n} \bar{\gamma}-\beta_{n}\right)\left(\lambda_{n}^{2} \zeta^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2}+c_{n} \\
= & {\left[1-2 \epsilon_{n} \bar{\gamma}+\left(\epsilon_{n} \bar{\gamma}\right)^{2}\right]\left\|x_{n}-p\right\|^{2}-\left(1-\epsilon_{n} \bar{\gamma}\right)\left(1-\epsilon_{n} \bar{\gamma}-\beta_{n}\right)\left\|\Im_{n}^{k} x_{n}-\Im_{n}^{k-1} x_{n}\right\|^{2} } \\
& +\left(1-\epsilon_{n} \bar{\gamma}\right)\left(1-\epsilon_{n} \bar{\gamma}-\beta_{n}\right)\left(\lambda_{n}^{2} \zeta^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2}+c_{n} \\
\leq & \left\|x_{n}-p\right\|^{2}+\left(\epsilon_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-p\right\|^{2}-\left(1-\epsilon_{n} \bar{\gamma}\right)\left(1-\epsilon_{n} \bar{\gamma}-\beta_{n}\right)\left\|\Im_{n}^{k} x_{n}-\Im_{n}^{k-1} x_{n}\right\|^{2} \\
& +\left(1-\epsilon_{n} \bar{\gamma}\right)\left(1-\epsilon_{n} \bar{\gamma}-\beta_{n}\right)\left(\lambda_{n}^{2} \zeta^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2}+c_{n} .
\end{aligned}
$$

So, we obtain

$$
\begin{aligned}
& \left(1-\epsilon_{n} \bar{\gamma}\right)\left(1-\epsilon_{n} \bar{\gamma}-\beta_{n}\right)\left\|\Im_{n}^{k} x_{n}-\Im_{n}^{k-1} x_{n}\right\|^{2} \\
\leq & \left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}+\left(\epsilon_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-p\right\|^{2} \\
& +\left(1-\epsilon_{n} \bar{\gamma}\right)\left(1-\epsilon_{n} \bar{\gamma}-\beta_{n}\right)\left(\lambda_{n}^{2} \zeta^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2}+c_{n} \\
\leq & \left\|x_{n}-x_{n+1}\right\|\left(\left\|x_{n}-p\right\|+\left\|x_{n+1}-p\right\|\right)+\left(\epsilon_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-p\right\|^{2} \\
& +\left(1-\epsilon_{n} \bar{\gamma}\right)\left(1-\epsilon_{n} \bar{\gamma}-\beta_{n}\right)\left(\lambda_{n}^{2} \zeta^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2}+c_{n} .
\end{aligned}
$$

Using $\epsilon_{n} \rightarrow 0, c_{n} \rightarrow 0$ as $n \rightarrow \infty$, (3.19) and (3.24), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\Im_{n}^{k} x_{n}-\Im_{n}^{k-1} x_{n}\right\|=0 \tag{3.28}
\end{equation*}
$$

Observe that

$$
\begin{aligned}
\left\|W_{n} y_{n}-y_{n}\right\| \leq & \left\|W_{n} y_{n}-W_{n} v_{n}\right\|+\left\|W_{n} v_{n}-x_{n}\right\|+\left\|x_{n}-u_{n}\right\|+\left\|u_{n}-y_{n}\right\| \\
\leq & \left\|y_{n}-v_{n}\right\|+\left\|W_{n} v_{n}-x_{n}\right\|+\left\|x_{n}-\Im_{n}^{k} x_{n}\right\|+\left\|u_{n}-y_{n}\right\| \\
\leq & \left\|y_{n}-v_{n}\right\|+\left\|W_{n} v_{n}-x_{n}\right\|+\left\|\Im_{n}^{0} x_{n}-\Im_{n}^{1} x_{n}\right\|+\left\|\Im_{n}^{1} x_{n}-\Im_{n}^{2} x_{n}\right\| \\
& +\ldots+\left\|\Im_{n}^{M-1} x_{n}-\Im_{n}^{M} x_{n}\right\|+\left\|u_{n}-y_{n}\right\|
\end{aligned}
$$

Applying (3.21), (3.24), (3.26) and (3.28) to the last inequality, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|W_{n} y_{n}-y_{n}\right\|=0 \tag{3.29}
\end{equation*}
$$

Let W be the mapping defined by (2.1). Since $\left\{y_{n}\right\}$ is bounded, Applying Lemma 2.9 and (3.29), we have

$$
\begin{equation*}
\left\|W y_{n}-y_{n}\right\| \leq\left\|W y_{n}-W_{n} y_{n}\right\|+\left\|W_{n} y_{n}-y_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty \tag{3.30}
\end{equation*}
$$

Step 6. We claim that $\lim \sup _{n \rightarrow \infty}\left\langle(A-\gamma f) z, z-x_{n}\right\rangle \leq 0$, which z is the unique solution of the variational inequality $\langle(A-\gamma f) z, x-z\rangle \geq 0, \forall x \in \Theta$.

Since $z=P_{\Theta}(I-A+\gamma f)(z)$ is a unique solution of the variational inequality (3.2). To show this inequality, we choose a subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
\lim _{i \rightarrow \infty}\left\langle(A-\gamma f) z, z-x_{n_{i}}\right\rangle=\limsup _{n \rightarrow \infty}\left\langle(A-\gamma f) z, z-x_{n}\right\rangle
$$

Since $\left\{x_{n_{i}}\right\}$ is bounded, there exists a subsequence $\left\{x_{n_{i_{j}}}\right\}$ of $\left\{x_{n_{i}}\right\}$ which converges weakly to $w \in C$. Without loss of generality, we can assume that $\left\{x_{n_{i}}\right\} \rightharpoonup w$. Since $\lim _{n \rightarrow \infty}\left\|\Im_{n}^{k} x_{n}-\Im_{n}^{k-1} x_{n}\right\|=0$ for $k=1,2,3, \ldots, M$, we have $\Im_{n_{i}}^{k} x_{n_{i}} \rightharpoonup w$ for $k=1,2,3, \ldots, M$.

From $\left\|u_{n}-y_{n}\right\| \rightarrow 0$ and $\left\|u_{n}-v_{n}\right\| \rightarrow 0$, we obtain $y_{n_{i}} \rightharpoonup w$ and $v_{n_{i}} \rightharpoonup w$. Since $\left\{u_{n_{i}}\right\} \subset C$ and C is closed and convex, we obtain $w \in C$.

Next, we show that $w \in \Theta$, where $\Theta:=\cap_{n=1}^{\infty} F\left(T_{n}\right) \cap\left(\cap_{k=1}^{M} S E P\left(F_{k}\right)\right) \cap$ $V I(C, B)$.

First, we show that $w \in \cap_{k=1}^{M} S E P\left(F_{k}\right)$. Since $u_{n}=\Im_{n}^{k} x_{n}$ for $k=1,2,3, \ldots, M$, we also have

$$
F_{k}\left(\Im_{n}^{k} x_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-\Im_{n}^{k} x_{n}, \Im_{n}^{k} x_{n}-\Im_{n}^{k-1} x_{n}\right\rangle \geq 0, \quad \forall y \in C
$$

If follows from (A2) that,

$$
\frac{1}{r_{n}}\left\langle y-\Im_{n}^{k} x_{n}, \Im_{n}^{k} x_{n}-\Im_{n}^{k-1} x_{n}\right\rangle \geq-F_{k}\left(\Im_{n}^{k} x_{n}, y\right) \geq F_{k}\left(y, \Im_{n}^{k} x_{n}\right)
$$

and hence

$$
\left\langle y-\Im_{n_{i}}^{k} x_{n_{i}}, \frac{\Im_{n_{i}}^{k} x_{n_{i}}-\Im_{n_{i}}^{k-1} x_{n_{i}}}{r_{n_{i}}}\right\rangle \geq F_{k}\left(y, \Im_{n_{i}}^{k} x_{n_{i}}\right)
$$

Since $\frac{\Im_{n_{i}}^{k} x_{n_{i}}-\Im_{n_{i}}^{k-1} x_{n_{i}}}{r_{n_{i}}} \rightarrow 0$ and $\Im_{n_{i}}^{k} x_{n_{i}} \rightharpoonup w$, it follows by (A4) that

$$
F_{k}(y, w) \leq 0 \quad \forall y \in C
$$

for each $k=1,2,3, \ldots, M$.
For t with $0<t \leq 1$ and $y \in H$, let $y_{t}=t y+(1-t) w$. Since $y \in C$ and $w \in C$, we have $y_{t} \in C$ and hence $F_{k}\left(y_{t}, w\right) \leq 0$. So, from (A1) and (A4) we have

$$
0=F_{k}\left(y_{t}, y_{t}\right) \leq t F_{k}\left(y_{t}, y\right)+(1-t) F_{k}\left(y_{t}, w\right) \leq t F_{k}\left(y_{t}, y\right)
$$

and hence $F_{k}\left(y_{t}, y\right) \geq 0$. From (A3), we have $F_{k}(w, y) \geq 0$ for all $y \in C$ and hence $w \in E P\left(F_{k}\right)$ for $k=1,2,3, \ldots, M$, that is, $w \in \cap_{k=1}^{M} S E P\left(F_{k}\right)$.

Next, we show that $w \in \cap_{n=1}^{\infty} F\left(T_{n}\right)$. By Lemma 2.8, we have $F(W)=$ $\cap_{n=1}^{\infty} F\left(T_{n}\right)$. Assume $w \notin F(W)$. Since $u_{n_{i}} \rightharpoonup w$ and $w \neq W w$, it follows by the Opial's condition (Lemma 2.2) that

$$
\begin{aligned}
\liminf _{i \rightarrow \infty}\left\|y_{n_{i}}-w\right\| & <\liminf _{i \rightarrow \infty}\left\|y_{n_{i}}-W w\right\| \\
& \leq \liminf _{i \rightarrow \infty}\left\{\left\|y_{n_{i}}-W y_{n_{i}}\right\|+\left\|W y_{n_{i}}-W w\right\|\right\} \\
& \leq \liminf _{i \rightarrow \infty}\left\|y_{n_{i}}-w\right\|
\end{aligned}
$$

which derives a contradiction. Thus, we have $w \in F(W)=\cap_{n=1}^{\infty} F\left(T_{n}\right)$.
Finally, we show that $w \in V I(C, B)$. Define

$$
T v= \begin{cases}B v+N_{C} v, & v \in C, \\ \emptyset, & v \notin C\end{cases}
$$

Then, T is maximal monotone. Let $\left(v, w_{1}\right) \in G(T)$. Since $w_{1}-B v \in N_{C} v$ and $v_{n} \in C$, we have $\left\langle v-v_{n}, w_{1}-B v\right\rangle \geq 0$. On the other hand, $v_{n}=P_{C}\left(u_{n}-\lambda_{n} B y_{n}\right)$, we have

$$
\left\langle v-v_{n}, v_{n}-\left(u_{n}-\lambda_{n} B y_{n}\right)\right\rangle \geq 0
$$

and hence

$$
\left\langle v-v_{n}, \frac{v_{n}-u_{n}}{\lambda_{n}}+B y_{n}\right\rangle \geq 0
$$

Therefore, we have

$$
\begin{aligned}
\left\langle v-v_{n_{i}}, w\right\rangle \geq & \left\langle v-v_{n_{i}}, B v\right\rangle \\
\geq & \left\langle v-v_{n_{i}}, B v\right\rangle-\left\langle v-v_{n_{i}}, \frac{v_{n_{i}}-u_{n_{i}}}{\lambda_{n_{i}}}+B y_{n_{i}}\right\rangle \\
= & \left\langle v-v_{n_{i}}, B v-B y_{n_{i}}-\frac{v_{n_{i}}-u_{n_{i}}}{\lambda_{n_{i}}}\right\rangle \\
= & \left\langle v-v_{n_{i}}, B v-B v_{n_{i}}\right\rangle+\left\langle v-v_{n_{i}}, B v_{n_{i}}-B y_{n_{i}}\right\rangle \\
& \quad-\left\langle v-v_{n_{i}}, \frac{v_{n_{i}}-u_{n_{i}}}{\lambda_{n_{i}}}\right\rangle \\
\geq & \left\langle v-v_{n_{i}}, B v_{n_{i}}-B y_{n_{i}}\right\rangle-\left\langle v-v_{n_{i}}, \frac{v_{n_{i}}-u_{n_{i}}}{\lambda_{n_{i}}}\right\rangle .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty}\left\|v_{n}-u_{n}\right\|=\lim _{n \rightarrow \infty}\left\|v_{n}-y_{n}\right\|=0, u_{n_{i}} \rightharpoonup w$ and B is Lipschitz continuous, we obtain that $\lim _{n \rightarrow \infty}\left\|B v_{n}-B y_{n}\right\|=0$ and $v_{n_{i}} \rightharpoonup p$. From $\liminf _{n \rightarrow \infty} \lambda_{n}>0$ and $\lim _{n \rightarrow \infty}\left\|v_{n}-u_{n}\right\|=0$, we obtain

$$
\left\langle v-w, w_{1}\right\rangle \geq 0
$$

Since T is maximal monotone, we have $w \in T^{-1} 0$ and hence $w \in V I(C, B)$. Hence $w \in \Theta$, where $\Theta:=\cap_{n=1}^{\infty} F\left(T_{n}\right) \cap\left(\cap_{k=1}^{M} S E P\left(F_{k}\right)\right) \cap V I(C, B)$.

Since $z=P_{\Theta}(I-A+\gamma f)(z)$, it follows that

$$
\begin{align*}
\limsup _{n \rightarrow \infty}\left\langle(A-\gamma f) z, z-x_{n}\right\rangle & =\limsup _{n \rightarrow \infty}\left\langle(A-\gamma f) z, z-x_{n}\right\rangle \\
& =\lim _{i \rightarrow \infty}\left\langle(A-\gamma f) z, z-x_{n_{i}}\right\rangle \\
& =\langle(A-\gamma f) z, z-w\rangle \leq 0 . \tag{3.31}
\end{align*}
$$

It follows from the last inequality and (3.21) that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle\gamma f(z)-A z, W_{n} v_{n}-z\right\rangle \leq 0 \tag{3.32}
\end{equation*}
$$

Step 7. Finally, we claim that $\left\{x_{n}\right\}$ converges strongly to $z=P_{\Theta}(I-A+\gamma f)(z)$.
Indeed, from (3.1), we have

$$
\begin{align*}
& \left\|x_{n+1}-z\right\|^{2} \tag{3.33}\\
= & \left\|\epsilon_{n} \gamma f\left(W_{n} x_{n}\right)+\beta_{n} x_{n}+\left(\left(1-\beta_{n}\right) I-\epsilon_{n} A\right) W_{n} v_{n}-z\right\|^{2} \\
= & \left\|\left(\left(1-\beta_{n}\right) I-\epsilon_{n} A\right)\left(W_{n} v_{n}-z\right)+\beta_{n}\left(x_{n}-z\right)+\epsilon_{n}\left(\gamma f\left(W_{n} x_{n}\right)-A z\right)\right\|^{2} \\
= & \left\|\left(\left(1-\beta_{n}\right) I-\epsilon_{n} A\right)\left(W_{n} v_{n}-z\right)+\beta_{n}\left(x_{n}-z\right)\right\|^{2}+\epsilon_{n}^{2}\left\|\gamma f\left(W_{n} x_{n}\right)-A z\right\|^{2} \\
& +2 \beta_{n} \epsilon_{n}\left\langle x_{n}-z, \gamma f\left(W_{n} x_{n}\right)-A z\right\rangle \\
& +2 \epsilon_{n}\left\langle\left(\left(1-\beta_{n}\right) I-\epsilon_{n} A\right)\left(W_{n} v_{n}-z\right), \gamma f\left(W_{n} x_{n}\right)-A z\right\rangle \\
\leq & {\left[\left(1-\beta_{n}-\epsilon_{n} \bar{\gamma}\right)\left\|W_{n} v_{n}-z\right\|+\beta_{n}\left\|x_{n}-z\right\|\right]^{2}+\epsilon_{n}^{2}\left\|\gamma f\left(W_{n} x_{n}\right)-A z\right\|^{2} } \\
& +2 \beta_{n} \epsilon_{n} \gamma\left\langle x_{n}-z, f\left(W_{n} x_{n}\right)-f(z)\right\rangle+2 \beta_{n} \epsilon_{n}\left\langle x_{n}-z, \gamma f(z)-A z\right\rangle \\
& +2\left(1-\beta_{n}\right) \gamma \epsilon_{n}\left\langle W_{n} v_{n}-z, f\left(W_{n} x_{n}\right)-f(z)\right\rangle+2\left(1-\beta_{n}\right) \epsilon_{n}\left\langle W_{n} v_{n}-z, \gamma f(z)-A z\right\rangle \\
& -2 \epsilon_{n}^{2}\left\langle A\left(W_{n} v_{n}-z\right), \gamma f(z)-A z\right\rangle \\
\leq & {\left[\left(1-\beta_{n}-\epsilon_{n} \bar{\gamma}\right)\left\|W_{n} v_{n}-z\right\|+\beta_{n}\left\|x_{n}-z\right\|\right]^{2}+\epsilon_{n}^{2}\left\|\gamma f\left(W_{n} x_{n}\right)-A z\right\|^{2} } \\
& +2 \beta_{n} \epsilon_{n} \gamma\left\|x_{n}-z\right\|\left\|f\left(W_{n} x_{n}\right)-f(z)\right\|+2 \beta_{n} \epsilon_{n}\left\langle x_{n}-z, \gamma f(z)-A z\right\rangle \\
& +2\left(1-\beta_{n}\right) \gamma \epsilon_{n}\left\|W_{n} v_{n}-z\right\|\left\|f\left(W_{n} x_{n}\right)-f(z)\right\|+2\left(1-\beta_{n}\right) \epsilon_{n}\left\langle W_{n} v_{n}-z, \gamma f(z)-A z\right\rangle \\
& -2 \epsilon_{n}^{2}\left\langle A\left(W_{n} v_{n}-z\right), \gamma f(z)-A z\right\rangle \\
\leq & {\left[\left(1-\beta_{n}-\epsilon_{n} \bar{\gamma}\right)\left\|x_{n}-z\right\|+\beta_{n}\left\|x_{n}-z\right\|\right]^{2}+\epsilon_{n}^{2}\left\|\gamma f\left(W_{n} x_{n}\right)-A z\right\|^{2} } \\
& +2 \beta_{n} \epsilon_{n} \gamma \alpha\left\|x_{n}-z\right\|^{2}+2 \beta_{n} \epsilon_{n}\left\langle x_{n}-z, \gamma f(z)-A z\right\rangle \\
& +2\left(1-\beta_{n}\right) \gamma \epsilon_{n} \alpha\left\|x_{n}-z\right\|^{2}+2\left(1-\beta_{n}\right) \epsilon_{n}\left\langle W_{n} v_{n}-z, \gamma f(z)-A z\right\rangle \\
& -2 \epsilon_{n}^{2}\left\langle A\left(W_{n} v_{n}-z\right), \gamma f(z)-A z\right\rangle \\
= & {\left[\left(1-\epsilon_{n} \bar{\gamma}\right)^{2}+2 \beta_{n} \epsilon_{n} \gamma \alpha+2\left(1-\beta_{n}\right) \gamma \epsilon_{n} \alpha\right]\left\|x_{n}-z\right\|^{2}+\epsilon_{n}^{2}\left\|\gamma f\left(W_{n} x_{n}\right)-A z\right\|^{2} } \\
& +2 \beta_{n} \epsilon_{n}\left\langle x_{n}-z, \gamma f(z)-A z\right\rangle+2\left(1-\beta_{n}\right) \epsilon_{n}\left\langle W_{n} v_{n}-z, \gamma f(z)-A z\right\rangle \\
& -2 \epsilon_{n}^{2}\left\langle A\left(W_{n} v_{n}-z\right), \gamma f(z)-A z\right\rangle \tag{3.34}
\end{align*}
$$

$$
\begin{aligned}
\leq & {\left[1-2(\bar{\gamma}-\alpha \gamma) \epsilon_{n}\right]\left\|x_{n}-z\right\|^{2}+\bar{\gamma}^{2} \epsilon_{n}^{2}\left\|x_{n}-z\right\|^{2}+\epsilon_{n}^{2}\left\|\gamma f\left(W_{n} x_{n}\right)-A z\right\|^{2} } \\
& +2 \beta_{n} \epsilon_{n}\left\langle x_{n}-z, \gamma f(z)-A z\right\rangle+2\left(1-\beta_{n}\right) \epsilon_{n}\left\langle W_{n} v_{n}-z, \gamma f(z)-A z\right\rangle \\
& +2 \epsilon_{n}^{2}\left\|A\left(W_{n} v_{n}-z\right)\right\|\|\gamma f(z)-A z\| \\
= & {\left[1-2(\bar{\gamma}-\alpha \gamma) \epsilon_{n}\right]\left\|x_{n}-z\right\|^{2}+\epsilon_{n}\left\{\epsilon _ { n } \left[\bar{\gamma}^{2}\left\|x_{n}-z\right\|^{2}+\left\|\gamma f\left(W_{n} x_{n}\right)-A z\right\|^{2}\right.\right.} \\
& \left.+2\left\|A\left(W_{n} v_{n}-z\right)\right\|\|\gamma f(z)-A z\|\right]+2 \beta_{n}\left\langle x_{n}-z, \gamma f(z)-A z\right\rangle \\
& \left.+2\left(1-\beta_{n}\right)\left\langle W_{n} v_{n}-z, \gamma f(z)-A z\right\rangle\right\}
\end{aligned}
$$

Since $\left\{x_{n}\right\},\left\{f\left(W_{n} x_{n}\right)\right\}$ and $\left\{W_{n} v_{n}\right\}$ are bounded, we can take a constant $K>0$ such that

$$
\bar{\gamma}^{2}\left\|x_{n}-z\right\|^{2}+\left\|\gamma f\left(W_{n} x_{n}\right)-A z\right\|^{2}+2\left\|A\left(W_{n} v_{n}-z\right)\right\|\|\gamma f(z)-A z\| \leq K
$$

for all $n \geq 0$. It then follows that

$$
\begin{equation*}
\left\|x_{n+1}-z\right\|^{2} \leq\left[1-2(\bar{\gamma}-\alpha \gamma) \epsilon_{n}\right]\left\|x_{n}-z\right\|^{2}+\epsilon_{n} \sigma_{n} \tag{3.35}
\end{equation*}
$$

where

$$
\sigma_{n}=2 \beta_{n}\left\langle x_{n}-z, \gamma f(z)-A z\right\rangle+2\left(1-\beta_{n}\right)\left\langle W_{n} v_{n}-z, \gamma f(z)-A z\right\rangle+\epsilon_{n} K
$$

Using (C1), (3.31) and (3.32), we get $\lim \sup _{n \rightarrow \infty} \sigma_{n} \leq 0$. Applying Lemma 2.11 to (3.35), we conclude that $x_{n} \rightarrow z$ in norm. This completes the proof.

Corollary 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H, let $F_{k}, k \in\{1,2,3, \ldots, M\}$ be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)(A4) and let B be a monotone and ζ-Lipschitz continuous mapping of C into H such that

$$
\Theta:=\left(\cap_{k=1}^{M} S E P\left(F_{k}\right)\right) \cap V I(C, B) \neq \emptyset
$$

Let f be a contraction of H into itself with $\alpha \in(0,1)$ and let A be a strongly positive linear bounded operator on H with coefficient $\bar{\gamma}>0$ and $0<\gamma<\frac{\bar{\gamma}}{\alpha}$. Let $\left\{x_{n}\right\},\left\{y_{n}\right\}$ and $\left\{u_{n}\right\}$ be sequences generated by

$$
\left\{\begin{array}{l}
x_{1}=x \in C \text { chosen arbitrary, } \\
u_{n}=J_{r_{M, n}}^{F_{M}} J_{r_{M-1, n}}^{F_{M-1}} J_{r_{M-2, n}}^{F_{M-2}} \ldots J_{r_{2, n}}^{F_{2}} J_{r_{1, n}}^{F_{1}} x_{n} \\
y_{n}=P_{C}\left(u_{n}-\lambda_{n} B u_{n}\right) \\
x_{n+1}=\epsilon_{n} \gamma f\left(x_{n}\right)+\beta_{n} x_{n}+\left(\left(1-\beta_{n}\right) I-\epsilon_{n} A\right) P_{C}\left(u_{n}-\lambda_{n} B y_{n}\right), \quad \forall n \geq 1
\end{array}\right.
$$

where $\left\{\epsilon_{n}\right\},\left\{\beta_{n}\right\}$ are two sequences in $(0,1),\left\{\lambda_{n}\right\} \subset[a, b] \subset\left(0, \frac{1}{\zeta}\right)$ and $\left\{r_{k, n}\right\}, k \in$ $\{1,2,3, \ldots, M\}$ are real sequence in $(0, \infty)$ satisfy the following conditions:
(C1) $\lim _{n \rightarrow \infty} \epsilon_{n}=0$ and $\sum_{n=1}^{\infty} \epsilon_{n}=\infty$,
(C2) $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup \sup _{n \rightarrow \infty} \beta_{n}<1$,
(C3) $\liminf \operatorname{inc\infty }_{n \rightarrow n} r_{k, n}>0$ and $\lim _{n \rightarrow \infty}\left|r_{k, n+1}-r_{k, n}\right|=0$,
(C4) $\lim _{n \rightarrow \infty} \lambda_{n}=0$.
Then, $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ converge strongly to a point $z \in \Theta$ which is the unique solution of the variational inequality

$$
\langle(A-\gamma f) z, x-z\rangle \geq 0, \quad \forall x \in \Theta
$$

Equivalently, we have $z=P_{\Theta}(I-A+\gamma f)(z)$.
Proof. Put $T_{n}=I$ for all $n \in \mathbb{N}$ and for all $x \in E$. Then $W_{n}=I$ for all $x \in E$. The conclusion follows from Theorem 3.1. This completes the proof.

If $A=I, \gamma \equiv 1$ and $\gamma_{n}=1-\epsilon_{n}-\beta_{n}$ in Theorem 3.1, then we can obtain the following result immediately.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H, let $F_{k}, k \in\{1,2,3, \ldots, M\}$ be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)(A4), let $\left\{T_{n}\right\}$ be an infinite family of nonexpansive mappings of C into itself and let B be a monotone and ζ-Lipschitz continuous mapping of C into H such that

$$
\Theta:=\cap_{n=1}^{\infty} F\left(T_{n}\right) \cap\left(\cap_{k=1}^{M} S E P\left(F_{k}\right)\right) \cap V I(C, B) \neq \emptyset
$$

Let f be a contraction of H into itself with $\alpha \in(0,1)$. Let $\left\{x_{n}\right\},\left\{y_{n}\right\}$ and $\left\{u_{n}\right\}$ be sequences generated by

$$
\left\{\begin{array}{l}
x_{1}=x \in C \text { chosen arbitrary } \\
u_{n}=J_{r_{M, n}}^{F_{M}} J_{r_{M-1, n}}^{F_{M-1}} J_{r_{M-2}, n}^{F_{M-2}} \ldots J_{r_{2, n}}^{F_{2}} J_{r_{1, n}}^{F_{1}} x_{n} \\
y_{n}=P_{C}\left(u_{n}-\lambda_{n} B u_{n}\right) \\
x_{n+1}=\epsilon_{n} f\left(W_{n} x_{n}\right)+\beta_{n} x_{n}+\gamma_{n} W_{n} P_{C}\left(u_{n}-\lambda_{n} B y_{n}\right), \quad \forall n \geq 1
\end{array}\right.
$$

where $\left\{W_{n}\right\}$ is the sequence generated by (1.19) and $\left\{\epsilon_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ are sequences in $(0,1),\left\{\lambda_{n}\right\} \subset[a, b] \subset\left(0, \frac{1}{\zeta}\right)$ and $\left\{r_{k, n}\right\}, k \in\{1,2,3, \ldots, M\}$ are a real sequence in $(0, \infty)$ satisfy the following conditions:
(C1) $\epsilon_{n}+\beta_{n}+\gamma_{n}=1$,
(C2) $\lim _{n \rightarrow \infty} \epsilon_{n}=0$ and $\sum_{n=1}^{\infty} \epsilon_{n}=\infty$,
(C3) $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n}<1$,
(C4) $\lim \inf _{n \rightarrow \infty} r_{k, n}>0$ and $\lim _{n \rightarrow \infty}\left|r_{k, n+1}-r_{k, n}\right|=0$ for each $k \in\{1,2,3, \ldots, M\}$,
(C5) $\lim _{n \rightarrow \infty} \lambda_{n}=0$.
Then, $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ converge strongly to a point $z \in \Theta$ which is the unique solution of the variational inequality

$$
\langle z-f(z), x-z\rangle \geq 0, \quad \forall x \in \Theta
$$

Equivalently, we have $z=P_{\Theta} f(z)$.

Acknowledgement(s) : The authors would like to thank the referees for their valuable comments and suggestions. The first author was supported by the Faculty of Applied Liberal Arts RMUTR Research Fund and King Mongkut's Diamond scholarship for fostering special academic skills by KMUTT. The second author was supported by the Thailand Research Fund and the Commission on Higher Education under grant No.MRG5180034. Moreover, the authors would like to thank Professor Somyot Plubiteng for providing valuable suggestions and they also would like to thank the referee for the comments.

References

[1] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, The Mathematics Student. vol. 63 no. 1-4, pp. 123-145, 1994.
[2] F.E. Browder and W.V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, Journal of Mathematical Analysis and Applications. vol. 20, pp. 197-228, 1967.
[3] P.L. Combettes, S.A. Hirstoaga, Equilibrium programming using proximallike algorithms, Mathematics Programming. vol.78, pp. 29-41, 1997.
[4] P.L. Combettes, S.A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. vol.6, pp. 29-41, 2005.
[5] L. C. Ceng and J. C. Yao, An Extragradient-Like Approximation Method for Variational Inequality Problems and Fixed Point Problems, Applied Mathematics and Computation. 190, pp. 205-215, 2007.
[6] L. C. Ceng and J. C. Yao, Relaxed Viscosity Approximation Methods for Fixed Point Problems and Variational Inequality Problems, Nonlinear Analysis Series A: Theory, Methods \& Applications, 69, pp. 3299-3309, 2008.
[7] V. Colao, G. Marino and H.K. Xu, An iterative method for finding common solutions of equilibrium and fixed point problems, Journal of Mathematical Analysis and Applications, vol.344, pp. 340-352, 2008.
[8] L. C. Ceng, A. Petruşel and J. C. Yao, Weak convergence theorem by a modified extragradient method for nonexpansive mappings and monotone mappings. Fixed Point Theory, 9, pp. 73-88, 2008.
[9] V. Colao, G.L. Acedo and G. Marino, An implicit method for finding common solutions of variational inequalities and systems of equilibrium problems and fixed points of infinite family of nonexpansive mappings, Nonlinear Analysis, vol.71, pp. 2708-2715, 2009.
[10] L. C. Ceng, P. Cubiotti and J. C. Yao, An Implicit Iterative Scheme for Monotone Variational Inequalities and Fixed Point Problems, Nonlinear Analysis Series A: Theory, Methods \& Applications, 69, pp. 2445-2457, 2008.
[11] F. Deutsch, I. Yamada, Minimizing certain convex functions over the intersection of the fixed point set of nonexpansive mappings, Numerical Functional Analysis and Optimization, vol.19, pp. 33-56, 1998
[12] H. Iiduka, W. Takahashi, Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings, Nonlinear Analysis:Theory, Methods and Applications, vol.61, pp. 341-350, 2005.
[13] G.M. Korpelevich, The extragradient method for finding saddle points and other problems, E‘konomika i Matematicheskie Metody, vol.12, no.4, pp. 747756, 1976.
[14] F. Liu and M.Z. Nashed, Regularization of nonlinear Ill-posed variational inequalities and convergence rates, Set-Valued Analysis, vol.6, pp. 313-344, 1998.
[15] G. Marino, H.K. Xu, A general iterative method for nonexpansive mapping in Hilbert spaces, Journal of Mathematical Analysis and Applications. vol.318, pp. 43-52, 2006.
[16] J.W. Peng and J.C. Yao, A viscosity approximation scheme for system of equilibrium problems, nonexpansive mappings and monotone mappings, Nonlinear Analysis. Doi.org/10.1016/j.na.2009.05.028
[17] S. Plubtieng and R. Punpaenga, A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces, Journal of Mathematical Analysis and Applications, vol.336, no.1, pp. 455-469, 2007.
[18] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings," Bulletin of the American Mathematical Society, vol.73, pp. 595-597, 1967.
[19] M.O. Osilike, D.I. Igbokwe, Weak and strong convergence theorems for fixed points of pseudocontractions and solutions of monotone type operator equations, Comp. Math. Appl. 40:559-567(2000).
[20] R.T. Rockafellar, "On the maximality of sums of nonlinear monotone operators, Transacrions of the American Mathematical Society, vol.149, pp. 75-88, 1970.
[21] T. Suzuki, Strong convergence of krasnoselskii and manns type sequences for one-parameter nonexpansive semigroups without bochner integrals, Journal of Mathematical Analysis and Applications, vol.305, pp. 227-239, 2005.
[22] M. Shang, Y. Su and X. Qin, A General Iterative Method for Equilibrium Problems and Fixed Point Problems in Hilbert Spaces, Fixed Point Theory and Applications, vol.2007, Article ID 95412, 9 pages doi:10.1155/2007/95412
[23] W. Takahashi, Nonlinear functional analysis, Yokohama Publishers, Yokohama, 2000.
[24] W. Takahashi, M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, Journal of Optimization Theory and Applications, vol. 118, pp. 417-428, 2003.
[25] H.K. Xu, Viscosity approximation methods for nonexpansive mappings, Journal of Mathematical Analysis and Applications, vol. 298, pp. 279-291, 2004.
[26] Y. Yao, Y.C. Liou, J.C. Yao, Convergence theorem for equilibrium problems and fixed point problems of infinite family of nonexpansive mappings, Fixed Point Theory and Applications, vol.2007, Article ID 64363, 12 pages doi:10.1155/2007/64363
[27] S.S Chang, H.W. Joseph Lee, C.K. Chan, A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization, Nonlinear Analysis Series A: Theory, Methods \& Applications, doi:10.1016/j.na.2008.04.035, 2008.
[28] K. Shimoji, W. Takahashi, Strong convergence to common fixed points of infinite nonexpansive mappings and applications, Taiwanese Journal of Mathematics, vol.5, pp. 387-404, 2001.
[29] H.K. Xu, Iterative algorithms for nonlinear operators, Journal of the London Mathematical Society, vol.66, pp. 240-256, 2002.
[30] H.K. Xu, An iterative approach to quadratic optimization, Journal of Optimization Theory and Applications, vol. 116 no. 2, pp. 659-678, 2003.
[31] I. Yamada, " The hybrid steepest descent method for the variational inequality problem of the intersection of fixed point sets of nonexpansive mappings," in: D. Butnariu, Y. Censor, S. Reich (Eds.), Inherently Parallel Algorithm for Feasibility and Optimization, Elsevier, pp. 473-504, 2001.
(Received 24 November 2008)

Chaichana Jaiboon
Department of Mathematics,
Faculty of Science,
King Mongkut's University of Technology Thonburi, Bangkok 10140 , THAILAND.
e-mail: s0501403@st.kmutt.ac.th(C. Jaiboon)
and
Department of Mathematics,
Faculty of Applied Liberal Arts,
Rajamangala University of Technology Rattanakosin,
Samphanthawang, Bangkok 10100, THAILAND
e-mail : chaichana111@hotmail.com(C. Jaiboon)

Poom Kumam
Department of Mathematics,
Faculty of Science,
King Mongkut's University of Technology Thonburi,
Bangkok 10140 , THAILAND.
e-mail : poom.kum@kmutt.ac.th(p. Kumam)(corresponding author)

[^0]: This work was completed with the support of the the Commission on Higher Education under the project: Fixed Point Theory in Banach Spaces and Metric Spaces.

