
Thai Journal of Mathematics
Volume 7 (2009) Number 1 : 77–104

www.math.science.cmu.ac.th/thaijournal

Online ISSN 1686-0209

An extragradient approximation method for
system of equilibrium problems and

variational inequality problems0

C. Jaiboon and P. Kumam

Abstract : The purpose of this paper is to investigate the problem of finding
the common element of the set of common fixed points of an infinite family of
nonexpansive mappings, the set of solutions of a system of equilibrium problems
and the set of solutions of the variational inequality problem for a monotone and
ζ-Lipschitz continuous mapping in Hilbert spaces. Then, we prove that the strong
convergence of the proposed iterative algorithm to the unique solutions of varia-
tional inequality, which is the optimality condition for a minimization problem.
Our results extend and improve the corresponding results of Colao, Marino and
Xu [V. Colao, G. Marino and H.K. Xu b, An iterative method for finding common
solutions of equilibrium and fixed point problems, J. Math. Anal. Appl. 344
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1 Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of
H. In addition, Let B : C → H be a nonlinear mapping. The classical variational
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inequality problem is to find x ∈ C such that

〈Bx, y − x〉 ≥ 0, ∀y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by V I(C,B), that is,

V I(C,B) =
{

x ∈ C : 〈Bx, y − x〉 ≥ 0, ∀y ∈ C
}
. (1.2)

Let F be an bifunction of C × C into R, where R is the set of real numbers.
The equilibrium problem for F : C × C → R is to find x ∈ C such that

F (x, y) ≥ 0, ∀y ∈ C. (1.3)

The set of solutions of (1.3) is denoted by EP (F ), that is,

EP (F ) =
{

x ∈ C : F (x, y) ≥ 0, ∀y ∈ C
}
. (1.4)

Given a mapping T : C → H, let F (x, y) = 〈Tx, y − x〉 for all x, y ∈ C. Then
z ∈ EP (F ) if and only if 〈Tz, y − z〉 ≥ 0 for all y ∈ C, i.e., z is a solution of
the variational inequality problems. Numerous problems in physics, optimization,
saddle point problems, complementarity problems, mechanics and economics re-
duce to find a solution of (1.3). In 1997, Combettes and Hirstoaga [3] introduced
an iterative scheme of finding the best approximation to initial data when EP (F )
is nonempty and proved a strong convergence theorem.

Let = = {Fk}k∈Λ be a family of bifunctions from C × C into R, where R is
the set of real numbers. The system of equilibrium problems for = = {Fk}k∈Λ is
to determine common equilibrium points for = = {Fk}k∈Λ such that

Fk(x, y) ≥ 0, ∀k ∈ Λ ∀y ∈ C. (1.5)

where Λ is an arbitrary index set. The set of solutions of (1.5) is denoted by
SEP (=), that is,

SEP (=) =
{

x ∈ C : Fk(x, y) ≥ 0, ∀k ∈ Λ ∀y ∈ C
}
. (1.6)

If Λ is a singleton, then the problem (1.5) is reduced to the problem (1.3). The
problem (1.5) is very general in the sense that it includes, as special case, some
optimization , variational inequalities, minimax problems, the Nash equilibrium
problem in noncooperative games, economics and others (see, for instance, [1, 3,
4]).

Recall that the (nearest point) projection PC from H onto C assigns to each
x ∈ H the unique point in PCx ∈ C satisfying the property

‖x− PCx‖ = min
y∈C

‖x− y‖.

The following characterizes the projection PC .
In order to prove our main results, we need the following lemmas.
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Lemma 1.1. For a given z ∈ H, u ∈ C,

u = PCz ⇔ 〈u− z, v − u〉 ≥ 0, ∀v ∈ C.

It is well known that PC is a firmly nonexpansive mapping of H onto C and
satisfies

‖PCx− PCy‖2 ≤ 〈PCx− PCy, x− y〉, ∀x, y ∈ H. (1.7)

Moreover, PCx is characterized by the following properties: PCx ∈ C and for all
x ∈ H, y ∈ C,

〈x− PCx, y − PCx〉 ≤ 0. (1.8)

It is easy to see that (1.8) is equivalent to the following inequality:

‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2. (1.9)

Using Lemma 1.1, one can see that the variational inequality (1.1) is equivalent
to a fixed point problem.

It is easy to see that the following is true:

u ∈ V I(C,B) ⇔ u = PC(u− λBu), λ > 0. (1.10)

The variational inequality has been extensively studied in the literature; see, for
instance [5, 6, 8, 10, 22]. This alternative equivalent formulation has played a sig-
nificant role in the studies of the variational inequalities and related optimization
problems.

Recall the following definitions:

(1) A mapping B of C into H is called monotone if

〈Bx−By, x− y〉 ≥ 0, ∀x, y ∈ C.

(2) B is called β-strongly monotone (see [2, 14]) if there exists a constant β > 0
such that

〈Bx−By, x− y〉 ≥ β‖x− y‖2, ∀x, y ∈ C.

(3) B is called ζ-Lipschitz continuous if there exists a positive real number ζ
such that

‖Bx−By‖ ≤ ζ‖x− y‖, ∀x, y ∈ C.

(4) B is called β-inverse-strongly monotone (see [2, 14]) if there exists a constant
β > 0 such that

〈Bx−By, x− y〉 ≥ β‖Bx−By‖2, ∀x, y ∈ C.

Remark 1.2. It is obvious that any β-inverse-strongly monotone mapping
B is monotone and 1

β -Lipschitz continuous.
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(5) A mapping T of C into itself is called nonexpansive (see [23]) if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.

We denote F (T ) = {x ∈ C : Tx = x} be the set of fixed points of T .

(6) Let f : C → C is said to be a α-contraction if there exists a coefficient α
(0 < α < 1) such that

‖f(x)− f(y)‖ ≤ α‖x− y‖, ∀x, y ∈ C.

(7) An operator A is strongly positive on H if there exists a constant γ̄ > 0 with
the property

〈Ax, x〉 ≥ γ̄‖x‖2, ∀x ∈ H.

(8) A set-valued mapping T : H → 2H is called monotone if for all x, y ∈ H,
f ∈ Tx and g ∈ Ty imply 〈x− y, f − g〉 ≥ 0.

(9) A monotone mapping T : H → 2H is maximal if the graph of G(T ) of T is
not properly contained in the graph of any other monotone mapping.
It is known that a monotone mapping T is maximal if and only if for (x, f) ∈
H ×H, 〈x− y, f − g〉 ≥ 0 for every (y, g) ∈ G(T ) implies f ∈ Tx.
Let B be a monotone map of C into H and let NCv be the normal cone to
C at v ∈ C, that is,

NCv = {w ∈ H : 〈u− v, w〉 ≥ 0, ∀u ∈ C}
and define

Tv =
{

Bv + NCv, v ∈ C;
∅, v /∈ C.

Then T is the maximal monotone and 0 ∈ Tv if and only if v ∈ V I(C,B);
see [20].

In 1976, Korpelevich [13] introduced the following so-called extragradient method:




x0 = x ∈ C,

yn = PC(xn − λBxn),
xn+1 = PC(xn − λByn),

(1.11)

for all n ≥ 0, where λ ∈ (0, 1
ζ ), C is a closed convex subset of Rn and B is a

monotone and ζ-Lipschitz continuous mapping of C into Rn. He proved that if
V I(C, B) is nonempty, then the sequences {xn} and {yn}, generated by (1.11),
converge to the same point z ∈ V I(C, B). For finding a common element of the
set of fixed points of a nonexpansive mapping and the set of solution of varia-
tional inequalities for an β-inverse-strongly monotone, Takahashi and Toyoda [24]
introduced the following iterative scheme:

{
x0 ∈ C chosen arbitrary,

xn+1 = αnxn + (1− αn)SPC(xn − λnBxn), ∀n ≥ 0,
(1.12)
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where B is β-inverse-strongly monotone, {αn} is a sequence in (0,1) and {λn} is a
sequence in (0, 2β). They showed that if F (S) ∩ V I(C, B) is nonempty, then the
sequence {xn} generated by (1.12) converges weakly to some z ∈ F (S)∩V I(C, B).
Recently, Iiduka and Takahashi [12] proposed a new iterative scheme as following

{
x0 = x ∈ C chosen arbitrary,

xn+1 = αnx + (1− αn)SPC(xn − λnBxn), ∀n ≥ 0,
(1.13)

where B is β-inverse-strongly monotone, {αn} is a sequence in (0, 1), and {λn} is
a sequence in (0, 2β). They showed that if F (S)∩V I(C,B) is nonempty, then the
sequence {xn} generated by (1.13) converges strongly to some z ∈ F (S)∩V I(C, B).

Iterative methods for nonexpansive mappings have recently been applied to
solve convex minimization problems; see e.g., [11, 29, 30, 31] and the references
therein. Convex minimization problems have a great impact and influence in the
development of almost all branches of pure and applied sciences. A typical problem
is to minimize a quadratic function over the set of the fixed points a nonexpansive
mapping on a real Hilbert space H:

min
x∈C

1
2
〈Ax, x〉 − 〈x, b〉, (1.14)

where A is a linear bounded operator, C is the fixed point set of a nonexpansive
mapping S on H and b is a given point in H. Moreover, it is shown in [15] that
the sequence {xn} defined by the scheme

xn+1 = εnγf(xn) + (1− εnA)Sxn (1.15)

converges strongly to z = PF (S)(I−A+γf)(z). Recently, Plubtieng and Punpaeng
[17] proposed the following iterative algorithm:

{
F (un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ H,

xn+1 = εnγf(xn) + (I − εnA)Sun.
(1.16)

They proved that if the sequence {εn} and {rn} of parameters satisfy appropriate
condition, then the sequences {xn} and {un} both converge to the unique solution
z of the variational inequality

〈
(A− γf)z, x− z

〉
≥ 0, ∀x ∈ F (S) ∩ EP (F ), (1.17)

which is the optimality condition for the minimization problem

min
x∈F (S)∩EP (F )

1
2
〈Ax, x〉 − h(x), (1.18)

where h is a potential function for γf (i.e., h′(x) = γf(x) for x ∈ H).
In 2009, Peng and Yao [16] introduced an iterative scheme for finding a com-

mon element of the set of solutions of the system equilibrium problems (1.5), the set
of solutions to the variational inequality for a monotone and Lipschitz continuous
mapping and the set of common fixed points of a countable family of nonexpansive
mappings in a Hilbert spaces and proved a strong convergence theorem.
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Definition 1.1. [27]. Let {Tn}∞n=1 be a sequence of nonexpansive mappings of C
into itself and let {µn}∞n=1 be a sequence of nonnegative numbers in [0,1]. For any
n ≥ 1, define a mapping Wn of C into itself as follows:

Un,n+1 = I,

Un,n = µnTnUn,n+1 + (1− µn)I,

Un,n−1 = µn−1Tn−1Un,n + (1− µn−1)I,

... (1.19)
Un,k = µkTkUn,k+1 + (1− µk)I,

Un,k−1 = µk−1Tk−1Un,k + (1− µk−1)I,

...
Un,2 = µ2T2Un,3 + (1− µ2)I,

Wn = Un,1 = µ1T1Un,2 + (1− µ1)I.

Such a mappings Wn is nonexpansive from C to C and it is called the W -mapping
generated by T1, T2, ..., Tn and µ1, µ2, ..., µn.

On the other hand, Colao et al. [7] introduced and considered an iterative
scheme for finding a common element of the set of solutions of the equilibrium
problem (1.3) and the set of common fixed points of a finite family of nonexpansive
mappings on C. Starting with an arbitrary initial x0 ∈ C and defining a sequence
{xn} recursively by

{
F (un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ H,

xn+1 = εnγf(xn) + βxn +
(
(1− β)I − εnA

)
Wnun,

(1.20)

where {εn} be a sequences in (0, 1). It is proved [7] that under certain appro-
priate conditions imposed on {εn} and {rn}, the sequence {xn} generated by
(1.20) converges strongly to z ∈ ∩∞n=1F (Tn) ∩ EP (F ), where z is an equilib-
rium point for F and the unique solution of the variational inequality (1.17), i.e.,
z = P∩∞n=1F (Tn)∩EP (F )(I − (A− γf))z.

In 2009, Colao et al. [9] introduced and considered an implicit iterative scheme
for finding a common element of the set of solutions of the system equilibrium prob-
lems (1.5) and the set of common fixed points of an infinite family of nonexpansive
mappings on C. Starting with an arbitrary initial x0 ∈ C and defining a sequence
{zn} recursively by

zn = εnγf(zn) + (1− εnA)WnJFM
rM,n

JFM−1
rM−1,n

JFM−2
rM−2,n

. . . JF2
r2,n

JF1
r1,n

zn, (1.21)

where {εn} be a sequences in (0, 1). It is proved [9] that under certain appropriate
conditions imposed on {εn} and {rn}, the sequence {xn} generated by (1.21)
converges strongly to z ∈ ∩∞n=1F (Tn) ∩ (∩M

k=1SEP (Fk)
)
, where z is the unique

solution of the variational inequality (1.17) and which is the optimality condition
for the minimization problem (1.18).
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In this paper, motivated by Colao et al. [7], Colao et al. [9] and Peng and
Yao [16], we introduce a new iterative scheme in a Hilbert space H which is mixed
the iterative schemes of (1.20) and (1.21). We prove that the sequence converges
strongly to a common element of the set of solutions of the system equilibrium
problems (1.5), the set of common fixed points of an infinite family of nonexpansive
mappings and the set of solutions of variational inequality (1.1) for be a monotone
and ζ-Lipschitz continuous mapping in Hilbert spaces by using the extragradient
approximation method. The results obtained in this paper improve and extend
the recent ones announced by Colao, Marino and Xu [7], Colao, Acedo and Marino
[9] and Peng and Yao [16] and many others.

2 Preliminaries

Let H be a real Hilbert space with norm ‖ ·‖ and inner product 〈·, ·〉 and let C
be a closed convex subset of H. When {xn} is a sequence in H, we denote strong
convergence of {xn} to x ∈ H by xn → x and weak convergence by xn ⇀ x. In a
real Hilbert space H, it is well known that

‖λx + (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2,

for all x, y ∈ H and λ ∈ [0, 1].

Lemma 2.1. [19] Let (C, 〈., .〉) be an inner product space. Then for all x, y, z ∈ C
and α, β, γ ∈ [0, 1] with α + β + γ = 1, we have

‖αx+βy+γz‖2 = α‖x‖2 +β‖y‖2 +γ‖z‖2−αβ‖x−y‖2−αγ‖x−z‖2−βγ‖y−z‖2.

Lemma 2.2. [18]. Each Hilbert space H satisfies Opial’s condition, i.e., for any
sequence {xn} ⊂ H with xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖,

hold for each y ∈ H with y 6= x.

Lemma 2.3. [15]. Let C be a nonempty closed convex subset of H and let f be
a contraction of H into itself with α ∈ (0, 1), and A be a strongly positive linear
bounded operator on H with coefficient γ̄ > 0. Then , for 0 < γ < γ̄

α ,

〈
x− y, (A− γf)x− (A− γf)y

〉
≥ (γ̄ − αγ)‖x− y‖2, x, y ∈ H.

That is, A− γf is strongly monotone with coefficient γ̄ − γα.

Lemma 2.4. [15]. Assume A be a strongly positive linear bounded operator on H
with coefficient γ̄ > 0 and 0 < ρ ≤ ‖A‖−1. Then ‖I − ρA‖ ≤ 1− ργ̄.
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For solving the equilibrium problem for a bifunction F : C × C → R, let us
assume that F satisfies the following conditions:

(A1) F (x, x) = 0 for all x ∈ C;

(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C, limt↓0 F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for each x ∈ C, y 7→ F (x, y) is convex and lower semicontinuous.

The following lemma appears implicitly in [1].

Lemma 2.5. [1]. Let C be a nonempty closed convex subset of H and let F be
a bifunction of C × C into R satisfying (A1)-(A4). Let r > 0 and x ∈ H. Then,
there exists z ∈ C such that

F (z, y) +
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

The following lemma was also given in [4].

Lemma 2.6. [4]. Assume that F : C × C → R satisfies (A1)-(A4). For r > 0
and x ∈ H, define a mapping JF

r : H → C as follows:

JF
r (x) =

{
z ∈ C : F (z, y) +

1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C

}

for all z ∈ H. Then, the following hold:

(1) JF
r is single- valued;

(2) JF
r is firmly nonexpansive, i.e., for any x, y ∈ H,

∥∥JF
r x− JF

r y
∥∥2 ≤

〈
JF

r x− JF
r y, x− y

〉
;

(3) F (JF
r ) = EP (F ); and

(4) EP (F ) is closed and convex.

For each n, k ∈ N, let the mapping Un,k be defined by (1.19). Then we have
the following crucial conclusions concerning Wn. You can find them in [28]. Now
we only need the following similar version in Hilbert spaces.

Lemma 2.7. [28]. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let T1, T2, ... be nonexpansive mappings of C into itself such that ∩∞n=1F (Tn)
is nonempty, let µ1, µ2, ... be real numbers such that 0 ≤ µn ≤ b < 1 for every
n ≥ 1. Then, for every x ∈ C and k ∈ N, the limit limn→∞ Un,kx exists.
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Using Lemma 2.7, one can define a mapping W of C into itself as follows:

Wx = lim
n→∞

Wnx = lim
n→∞

Un,1x, (2.1)

for every x ∈ C. Such a W is called the W -mapping generated by T1, T2, ... and
µ1, µ2, .... Throughout this paper, we will assume that 0 ≤ µn ≤ b < 1 for every
n ≥ 1. Then, we have the following results.

Lemma 2.8. [28]. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let T1, T2, ... be nonexpansive mappings of C into itself such that ∩∞n=1F (Tn)
is nonempty, let µ1, µ2, ... be real numbers such that 0 ≤ µn ≤ b < 1 for every
n ≥ 1. Then, F (W ) = ∩∞n=1F (Tn).

Lemma 2.9. [26]. If {xn} is a bounded sequence in C, then limn→∞ ‖Wxn −
Wnxn‖ = 0.

Lemma 2.10. [21] . Let {xn} and {zn} be bounded sequences in a Banach space X
and let {βn} be a sequence in [0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
Suppose xn+1 = (1−βn)zn +βnxn for all integers n ≥ 0 and lim supn→∞(‖zn+1−
zn‖ − ‖xn+1 − xn‖) ≤ 0. Then, limn→∞ ‖zn − xn‖ = 0.

Lemma 2.11. [25]. Assume {an} is a sequence of nonnegative real numbers such
that

an+1 ≤ (1− ln)an + σn, n ≥ 0,

where {ln} is a sequence in (0, 1) and {σn} is a sequence in R such that

(1)
∑∞

n=1 ln = ∞,

(2) lim supn→∞
σn

ln
≤ 0 or

∑∞
n=1 |σn| < ∞.

Then limn→∞ an = 0.

Lemma 2.12. . Let H be a real Hilbert space. Then for all x, y ∈ H,

(1) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉,
(2) ‖x + y‖2 ≥ ‖x‖2 + 2〈y, x〉.

3 Main Results

In this section, we deal with the strong convergence of extragradient approx-
imation method (3.1) for finding a common element of the set of solutions of the
system equilibrium problems (1.5), the set of common fixed points of infinite family
of nonexpansive mappings and the set of solutions of variational inequality (1.1)
for be a monotone and ζ-Lipschitz continuous mapping in Hilbert spaces.
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Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space
H, let Fk, k ∈ {1, 2, 3, . . . ,M} be a bifunction from C × C to R satisfying (A1)-
(A4), let {Tn} be an infinite family of nonexpansive mappings of C into itself and
let B be a monotone and ζ-Lipschitz continuous mapping of C into H such that

Θ := ∩∞n=1F (Tn) ∩ (∩M
k=1SEP (Fk)

) ∩ V I(C, B) 6= ∅.

Let f be a contraction of H into itself with α ∈ (0, 1) and let A be a strongly
positive linear bounded operator on H with coefficient γ̄ > 0 and 0 < γ < γ̄

α . Let
{xn}, {yn} and {un} be sequences generated by




x1 = x ∈ C chosen arbitrary,
un = JFM

rM,n
J

FM−1
rM−1,nJ

FM−2
rM−2,n . . . JF2

r2,n
JF1

r1,n
xn,

yn = PC(un − λnBun),
xn+1 = εnγf(Wnxn) + βnxn +

(
(1− βn)I − εnA

)
WnPC(un − λnByn), ∀n ≥ 1,

(3.1)
where {Wn} is the sequence generated by (1.19) and {εn}, {βn} are two sequences
in (0, 1), {λn} ⊂ [a, b] ⊂ (0, 1

ζ ) and {rk,n}, k ∈ {1, 2, 3, . . . , M} are a real sequence
in (0,∞) satisfy the following conditions:

(C1) limn→∞ εn = 0 and
∑∞

n=1 εn = ∞,

(C2) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,

(C3) lim infn→∞ rk,n > 0 and limn→∞ |rk,n+1−rk,n| = 0 for each k ∈ {1, 2, 3, . . . ,M},
(C4) limn→∞ λn = 0.

Then, {xn} and {un} converge strongly to a point z ∈ Θ which is the unique
solution of the variational inequality

〈
(A− γf)z, x− z

〉
≥ 0, ∀x ∈ Θ. (3.2)

Equivalently, we have z = PΘ(I −A + γf)(z).

Proof. Note that from the condition (C1), we may assume, without loss of gener-
ality, that εn ≤ (1 − βn)‖A‖−1 for all n ∈ N. From Lemma 2.4, we know that if
0 ≤ ρ ≤ ‖A‖−1, then ‖I − ρA‖ ≤ 1 − ργ̄. We will assume that ‖I − A‖ ≤ 1 − γ̄.
Since A is a strongly positive bounded linear operator on H, we have

‖A‖ = sup
{∣∣〈Ax, x〉

∣∣ : x ∈ H, ‖x‖ = 1
}

.

Observe that
〈(

(1− βn)I − εnA
)
x, x

〉
= 1− βn − εn〈Ax, x〉
≥ 1− βn − εn‖A‖
≥ 0,
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this show that (1− βn)I − εnA is positive. It follows that

‖(1− βn)I − εnA‖ = sup

{∣∣∣∣
〈(

(1− βn)I − εnA
)
x, x

〉∣∣∣∣ : x ∈ H, ‖x‖ = 1

}

= sup
{

1− βn − εn〈Ax, x〉 : x ∈ H, ‖x‖ = 1
}

≤ 1− βn − εnγ̄.

Let Q = PΘ, where Θ := ∩∞n=1F (Tn) ∩ (∩∞n=1SEP (Fk)
) ∩ V I(C,B) 6= ∅. Note

that f is a contraction of H into itself with α ∈ (0, 1). Then, we have

‖Q(I −A + γf)(x)−Q(I −A + γf)(y)‖ = ‖PΘ(I −A + γf)(x)− PΘ(I −A + γf)(y)‖
≤ ‖(I −A + γf)(x)− (I −A + γf)(y)‖
≤ ‖I −A‖‖x− y‖+ γ‖f(x)− f(y)‖
≤ (1− γ̄)‖x− y‖+ γα‖x− y‖
= (1− γ̄ + γα)‖x− y‖
=

(
1− (γ̄ − γα)

)‖x− y‖, ∀x, y ∈ H.

Since 0 < 1− (γ̄−γα) < 1, it follows that Q(I−A+γf) is a contraction of H into
itself. Therefore by the Banach Contraction Mapping Principle, which implies
that there exists a unique element z ∈ H such that z = Q(I − A + γf)(z) =
PΘ(I −A + γf)(z).

We will divide the proof of Theorem 3.1 into seven steps.
Step 1. We claim that {xn} is bounded.

Indeed, pick any p ∈ Θ. Moreover, by taking =k
n = JFk

rk,n
J

Fk−1
rk−1,nJ

Fk−2
rk−2,n . . . JF2

r2,n
JF1

r1,n
xn

for k ∈ {1, 2, 3, . . . , M} and =0
n = I for all n. From the definition of JFk

rk,n
is non-

expansive for each k = 1, 2, 3, . . . , M, then =k
n also and p = =k

np, we note that
un = =M

n xn. If follows that

‖un − p‖ = ‖=M
n xn −=M

n p‖ ≤ ‖xn − p‖.
Put vn = PC(un − λnByn). Then, from (1.9) and the monotonicity of B, we have

‖vn − p‖2 ≤ ‖un − λnByn − p‖2 − ‖un − λnByn − vn‖2
= ‖un − p‖2 − ‖un − vn‖2 + 2λn〈Byn, p− vn〉
= ‖un − p‖2 − ‖un − vn‖2

+2λn

(〈Byn −Bp, p− yn〉+ 〈Bp, p− yn〉+ 〈Byn, yn − vn〉
)

≤ ‖un − p‖2 − ‖un − vn‖2 + 2λn〈Byn, yn − vn〉
= ‖un − p‖2 − ‖un − yn‖2 − 2〈un − yn, yn − vn〉 − ‖yn − vn‖2

+2λn〈Byn, yn − vn〉
= ‖un − p‖2 − ‖un − yn‖2 − ‖yn − vn‖2

+2〈un − λnByn − yn, vn − yn〉.
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Moreover, since yn = PC(un − λnBun) and (1.8), we have

〈un − λnBun − yn, vn − yn〉 ≤ 0. (3.3)

Since A is ζ-Lipschitz continuous, from (3.3) we obtain that

〈un − λnByn − yn, vn − yn〉
= 〈un − λnBun − yn, vn − yn〉+ 〈λnBun − λnByn, vn − yn〉
≤ 〈λnBun − λnByn, vn − yn〉
≤ λn‖Bun −Byn‖‖vn − yn‖
≤ λnζ‖un − yn‖‖vn − yn‖.

Thus, we have

‖vn − p‖2 ≤ ‖un − p‖2 − ‖un − yn‖2 − ‖yn − vn‖2 + 2λnζ‖un − yn‖‖vn − yn‖
≤ ‖un − p‖2 − ‖un − yn‖2 − ‖yn − vn‖2 + λ2

nζ2‖un − yn‖2 + ‖vn − yn‖2
= ‖un − p‖2 + (λ2

nζ2 − 1)‖un − yn‖2 (3.4)
≤ ‖un − p‖2,

and hence
‖vn − p‖ ≤ ‖un − p‖ ≤ ‖xn − p‖. (3.5)

Thus, we can calculate

‖xn+1 − p‖ =
∥∥∥εn

(
γf(Wnxn)−Ap

)
+ βn(xn − p) +

(
(1− βn)I − εnA

)
(Wnvn − p)

∥∥∥
≤ (1− βn − εnγ̄)‖vn − p‖+ βn‖xn − p‖+ εn‖γf(Wnxn)−Ap‖
≤ (1− βn − εnγ̄)‖xn − p‖+ βn‖xn − p‖+ εn‖γf(Wnxn)−Ap‖
= (1− εnγ̄)‖xn − p‖+ εnγ‖f(Wnxn)− f(p)‖+ εn‖γf(p)−Ap‖
≤ (1− εnγ̄)‖xn − p‖+ εnγα‖xn − p‖+ εn‖γf(p)−Ap‖
= (1− (γ̄ − γα)εn)‖xn − p‖+ (γ̄ − γα)εn

‖γf(p)−Ap‖
γ̄ − γα

. (3.6)

By induction that

‖xn − p‖ ≤ max
{
‖x1 − p‖, ‖γf(p)−Ap‖

γ̄ − γα

}
, n ∈ N. (3.7)

Hence, {xn} is bounded, so are {un}, {vn}, {Bun}, {Bvn}, {Wnvn} and
{
f(Wnxn)

}
.

Step 2. We claim that, if ωn be a bounded sequence in C. Then

lim
n→∞

‖=k
nωn −=k

n+1ωn‖ = 0, (3.8)

for every k ∈ {1, 2, 3, . . . , M}. From Step 2 of the proof Theorem 3.1 in [7], we
have that for k ∈ {1, 2, 3, . . . , M},

lim
n→∞

‖JFk
rk,n+1

ωn − JFk
rk,n

ωn‖ = 0. (3.9)
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Note that for every k ∈ {1, 2, 3, . . . , M}, we obtain

=k
n = JFk

rk,n
JFk−1

rk−1,n
JFk−2

rk−2,n
. . . JF2

r2,n
JF1

r1,n
= JFk

rk,n
=k−1

n .

So, we have

‖=k
nωn −=k

n+1ωn‖ (3.10)

= ‖JFk
rk,n

=k−1
n ωn − JFk

rk,n+1
=k−1

n+1ωn‖
≤ ‖JFk

rk,n
=k−1

n ωn − JFk
rk,n+1

=k−1
n ωn‖+ ‖JFk

rk,n+1
=k−1

n ωn − JFk
rk,n+1

=k−1
n+1ωn‖

≤ ‖JFk
rk,n

=k−1
n ωn − JFk

rk,n+1
=k−1

n ωn‖+ ‖=k−1
n ωn −=k−1

n+1ωn‖
≤ ‖JFk

rk,n
=k−1

n ωn − JFk
rk,n+1

=k−1
n ωn‖+ ‖JFk−1

rk−1,n
=k−2

n ωn − JFk−1
rk−1,n+1

=k−2
n ωn‖

+‖=k−2
n ωn −=k−2

n+1ωn‖
≤ ‖JFk

rk,n
=k−1

n ωn − JFk
rk,n+1

=k−1
n ωn‖+ ‖JFk−1

rk−1,n
=k−2

n ωn − JFk−1
rk−1,n+1

=k−2
n ωn‖

+ . . . + ‖JF2
r2,n

=1
nωn − JF2

r2,n+1
=1

nωn‖+ ‖JF1
r1,n

ωn − JF1
r1,n+1

ωn‖.
Now, apply (3.9) to conclude (3.8).

Step 3. We claim that limn→∞ ‖xn+1 − xn‖ = 0.
On the other hand, from un = =M

n xn and un+1 = =M
n+1xn+1, by the triangular

inequality, we also have

‖un+1 − un‖ = ‖=M
n+1xn+1 −=M

n xn‖
= ‖=M

n+1xn+1 −=M
n+1xn‖+ ‖=M

n+1xn −=M
n xn‖

≤ ‖xn+1 − xn‖+ ‖=M
n+1xn −=M

n xn‖. (3.11)

Indeed, we observe that for any x, y ∈ C,

‖(I − λnB)x− (I − λnB)y‖2 = ‖(x− y)− λn(Bx−By)‖2
= ‖x− y‖2 − 2λn〈x− y,Bx−By〉+ λ2

n‖Bx−By‖2
≤ ‖x− y‖2 + λ2

nζ2‖x− y‖2
= (1 + λ2

nζ2)‖x− y‖2, (3.12)

which implies that

‖(I − λnA)x− (I − λnA)y‖ ≤ (1 + λnζ)‖x− y‖. (3.13)

Note that

‖vn+1 − vn‖ = ‖PC(un+1 − λn+1Byn+1)− PC(un − λnByn)‖
≤ ‖un+1 − λn+1Byn+1 − (un − λnByn)‖
= ‖(un+1 − λn+1Bun+1)− (un − λn+1Bun)

+λn+1(Bun+1 −Byn+1 −Bun) + λnByn‖
≤ ‖(un+1 − λn+1Bun+1)− (un − λn+1Bun)‖

+λn+1(‖Bun+1‖+ ‖Byn+1‖+ ‖Bun‖) + λn‖Byn‖
≤ (1 + λn+1ζ)‖un+1 − un‖+ λn+1

(‖Bun+1‖+ ‖Byn+1‖+ ‖Bun‖
)

+λn‖Byn‖. (3.14)
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Substituting (3.11) into (3.14), we have

‖vn+1 − vn‖ ≤ (1 + λn+1ζ)‖un+1 − un‖+ λn+1

(‖Bun+1‖+ ‖Byn+1‖+ ‖Bun‖
)

+ λn‖Byn‖
≤ (1 + λn+1ζ)‖xn+1 − xn‖+ (1 + λn+1ζ)‖=M

n+1xn −=M
n xn‖

+ λn+1

(‖Bun+1‖+ ‖Byn+1‖+ ‖Bun‖
)

+ λn‖Byn‖. (3.15)

Setting

zn =
xn+1 − βnxn

1− βn
=

εnγf(Wnxn) +
(
(1− βn)I − εnA

)
Wnvn

1− βn
,

we have xn+1 = (1− βn)zn + βnxn, n ≥ 1. It follows that

zn+1 − zn =
εn+1γf(Wn+1xn+1) +

(
(1− βn+1)I − εn+1A

)
Wn+1vn+1

1− βn+1

− εnγf(Wnxn) +
(
(1− βn)I − εnA

)
Wnvn

1− βn

=
εn+1

1− βn+1
γf(Wn+1xn+1)− εn

1− βn
γf(Wnxn) + Wn+1vn+1 −Wnvn

+
εn

1− βn
AWnvn − εn+1

1− βn+1
AWn+1vn+1

=
εn+1

1− βn+1

(
γf(Wn+1xn+1)−AWn+1vn+1

)
+

εn

1− βn

(
AWnvn − γf(Wnxn)

)

+ Wn+1vn+1 −Wn+1vn + Wn+1vn −Wnvn. (3.16)

It follows from (3.15) and (3.16) that

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤ εn+1

1− βn+1

(‖γf(Wn+1xn+1)‖+ ‖AWn+1vn+1‖
)

+
εn

1− βn

(‖AWnvn‖+ ‖γf(Wnxn)‖)

+ ‖Wn+1vn+1 −Wn+1vn‖
+ ‖Wn+1vn −Wnvn‖ − ‖xn+1 − xn‖

≤ εn+1

1− βn+1

(‖γf(Wn+1xn+1)‖+ ‖AWn+1vn+1‖
)

+
εn

1− βn

(‖AWnvn‖+ ‖γf(Wnxn)‖) + ‖vn+1 − vn‖
+ ‖Wn+1vn −Wnvn‖ − ‖xn+1 − xn‖

≤ εn+1

1− βn+1

(‖γf(Wn+1xn+1)‖+ ‖AWn+1vn+1‖
)

+
εn

1− βn

(‖AWnvn‖+ ‖γf(Wnxn)‖) + λn+1ζ‖xn+1 − xn‖

+(1 + λn+1ζ)‖=M
n+1xn −=M

n xn‖
+λn+1

(‖Bun+1‖+ ‖Byn+1‖+ ‖Bun‖
)

+λn‖Byn‖+ ‖Wn+1vn −Wnvn‖. (3.17)
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Since Ti and Un,i are nonexpansive, we have

‖Wn+1vn −Wnvn‖ = ‖µ1T1Un+1,2vn − µ1T1Un,2vn‖
≤ µ1‖Un+1,2vn − Un,2vn‖
= µ1‖µ2T2Un+1,3vn − µ2T2Un,3vn‖
≤ µ1µ2‖Un+1,3vn − Un,3vn‖
...
≤ µ1µ2 · · ·µn‖Un+1,n+1vn − Un,n+1vn‖

≤ M1

n∏

i=1

µi, (3.18)

where M1 ≥ 0 is a constant such that ‖Un+1,n+1vn − Un,n+1vn‖ ≤ M1, ∀n ≥ 0.
Combining (3.17) and (3.18), we have

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤ εn+1

1− βn+1

(‖γf(Wn+1xn+1)‖+ ‖AWn+1vn+1‖
)

+
εn

1− βn

(‖AWnvn‖+ ‖γf(Wnxn)‖) + λn+1ζ‖xn+1 − xn‖

+(1 + λn+1ζ)‖=M
n+1xn −=M

n xn‖
+ λn+1

(‖Bun+1‖+ ‖Byn+1‖+ ‖Bun‖
)

+λn‖Byn‖+ M1

n∏

i=1

µi.

which implies that (noting that (C1), (C2), (C4) and 0 < µi ≤ b < 1, ∀i ≥ 1)

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖
) ≤ 0.

Hence, by Lemma 2.10, we obtain

lim
n→∞

‖zn − xn‖ = 0.

It follows that

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(1− βn)‖zn − xn‖ = 0. (3.19)

Applying (3.8), (3.19) and (C4) to (3.11) and (3.14), we obtain that

lim
n→∞

‖un+1 − un‖ = lim
n→∞

‖vn+1 − vn‖ = 0. (3.20)

Step 4. We claim that limn→∞ ‖xn −Wnvn‖ = 0.
Since xn+1 = εnγf(Wnxn) + βnxn + ((1− βn)I − εnA)Wnvn, we have
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‖xn −Wnvn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 −Wnvn‖
= ‖xn − xn+1‖+

∥∥∥εnγf(Wnxn) + βnxn +
(
(1− βn)I − εnA

)
Wnvn −Wnvn

∥∥∥

= ‖xn − xn+1‖+
∥∥∥εn

(
γf(Wnxn)−AWnvn

)
+ βn(xn −Wnvn)

∥∥∥
≤ ‖xn − xn+1‖+ εn

(‖γf(Wnxn)‖+ ‖AWnvn‖
)

+ βn‖xn −Wnvn‖,
that is

‖xn −Wnvn‖ ≤ 1
1− βn

‖xn − xn+1‖+
εn

1− βn

(‖γf(Wnxn)‖+ ‖AWnvn‖
)
.

By (C1), (C2) and (3.19) it follows that

lim
n→∞

‖Wnvn − xn‖ = 0. (3.21)

Step 5. We claim that the following statements hold:

1. limn→∞ ‖un − yn‖ = 0;

2. limn→∞ ‖un − vn‖ = 0;

3. limn→∞ ‖Wnyn − yn‖ = 0.

For any p ∈ Θ := ∩∞n=1F (Tn) ∩ (∩∞n=1SEP (Fk)
) ∩ V I(C, B) and (3.1), we have

‖xn+1 − p‖2 =
∥∥∥
(
(1− βn)I − εnA

)
(Wnvn − p) + βn(xn − p) + εn

(
γf(Wnxn)−Ap

)∥∥∥
2

= ‖((1− βn)I − εnA
)
(Wnvn − p) + βn(xn − p)‖2 + ε2n‖γf(Wnxn)−Ap‖2

+2βnεn

〈
xn − p, γf(Wnxn)−Ap

〉

+2εn

〈(
(1− βn)I − εnA

)
(Wnvn − p), γf(Wnxn)−Ap

〉

≤ [
(1− βn − εnγ̄)‖Wnvn − p‖+ βn‖xn − p‖]2 + ε2n‖γf(Wnxn)−Ap‖2
+2βnεn

〈
xn − p, γf(Wnxn)−Ap

〉

+2εn

〈(
(1− βn)I − εnA

)
(Wnvn − p), γf(Wnxn)−Ap

〉

≤ [
(1− βn − εnγ̄)‖vn − p‖+ βn‖xn − p‖]2 + cn

≤ (1− βn − εnγ̄)2‖vn − p‖2 + β2
n‖xn − p‖2

+2(1− βn − εnγ̄)βn‖vn − p‖‖xn − p‖+ cn

≤ (1− βn − εnγ̄)2‖vn − p‖2 + β2
n‖xn − p‖2

+(1− βn − εnγ̄)βn

(‖vn − p‖2 + ‖xn − p‖2) + cn

=
[
(1− εnγ̄)2 − 2(1− εnγ̄)βn + β2

n

]‖vn − p‖2 + β2
n‖xn − p‖2

+
(
(1− εnγ̄)βn − β2

n

)(‖vn − p‖2 + ‖xn − p‖2) + cn

= (1− εnγ̄)2‖vn − p‖2 − (1− εnγ̄)βn‖vn − p‖2 + (1− εnγ̄)βn‖xn − p‖2 + cn

= (1− εnγ̄)(1− βn − εnγ̄)‖vn − p‖2 + (1− εnγ̄)βn‖xn − p‖2 + cn, (3.22)
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where

cn = ε2n‖γf(Wnxn)−Ap‖2 + 2βnεn

〈
xn − p, γf(Wnxn)−Ap

〉

+2εn

〈(
(1− βn)I − εnA

)
(Wnvn − p), γf(Wnxn)−Ap

〉
.

It follows from condition (C1) that

lim
n→∞

cn = 0. (3.23)

Substituting (3.4) into (3.22), and using (C4), we have

‖xn+1 − p‖2 ≤ (1− εnγ̄)(1− βn − εnγ̄)‖vn − p‖2 + (1− εnγ̄)βn‖xn − p‖2 + cn

≤ (1− εnγ̄)(1− βn − εnγ̄)
{
‖un − p‖2 + (λ2

nζ2 − 1)‖un − yn‖2
}

+(1− εnγ̄)βn‖xn − p‖2 + cn

≤ (1− εnγ̄)(1− βn − εnγ̄)
{
‖xn − p‖2 + (λ2

nζ2 − 1)‖un − yn‖2
}

+(1− εnγ̄)βn‖xn − p‖2 + cn

= (1− εnγ̄)2‖xn − p‖2 + (1− εnγ̄)(1− βn − εnγ̄)(λ2
nζ2 − 1)‖un − yn‖2 + cn

≤ ‖xn − p‖2 + (λ2
nζ2 − 1)‖un − yn‖2 + cn.

It follows that

(1− λ2
nζ2)‖un − yn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + cn

= (‖xn − p‖ − ‖xn+1 − p‖)(‖xn − p‖+ ‖xn+1 − p‖) + cn

≤ ‖xn − xn+1‖(‖xn − p‖+ ‖xn+1 − p‖) + cn.

Since limn→∞ cn = 0 and from (3.19), we obtain

lim
n→∞

‖un − yn‖ = 0. (3.24)

By the same argument as in (3.4), we obtain

‖vn − p‖2 ≤ ‖un − p‖2 − ‖un − yn‖2 − ‖yn − vn‖2 + 2λnζ‖un − yn‖‖vn − yn‖
≤ ‖un − p‖2 − ‖un − yn‖2 − ‖yn − vn‖2 + ‖un − yn‖2 + λ2

nζ2‖vn − yn‖2
= ‖un − p‖2 + (λ2

nζ2 − 1)‖yn − vn‖2
≤ ‖xn − p‖2 + (λ2

nζ2 − 1)‖yn − vn‖2. (3.25)

Substituting (3.25) into (3.22), and using (C4), we have

‖xn+1 − p‖2 ≤ (1− εnγ̄)(1− βn − εnγ̄)
{
‖xn − p‖2 + (λ2

nζ2 − 1)‖yn − vn‖2
}

+(1− εnγ̄)βn‖xn − p‖2 + cn

= (1− εnγ̄)2‖xn − p‖2 + (1− εnγ̄)(1− βn − εnγ̄)(λ2
nζ2 − 1)‖yn − vn‖2 + cn

≤ ‖xn − p‖2 + (λ2
nζ2 − 1)‖yn − vn‖2 + cn.



94 Thai J. Math. 7(2009)/ C. Jaiboon and P. Kumam

It follows that

(1− λ2
nζ2)‖yn − vn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + cn

≤ ‖xn − xn+1‖(‖xn − p‖+ ‖xn+1 − p‖) + cn.

Since limn→∞ cn = 0 and from (3.19), we obtain

lim
n→∞

‖yn − vn‖ = 0. (3.26)

On the other hand, we observe that

‖un − vn‖ ≤ ‖un − yn‖+ ‖yn − vn‖.

Applying (3.24)and (3.26), we have

lim
n→∞

‖un − vn‖ = 0. (3.27)

For any p ∈ Θ, note that JFk
rk,n

is firmly nonexpansive (Lemma 2.6) for k ∈
{1, 2, 3, . . . , M}, then we have

‖=k
nxn − p‖2 = ‖JFk

rk,n
=k−1

n xn − JFk
rk,n

p‖2

≤
〈
JFk

rk,n
=k−1

n xn − JFk
rk,n

p,=k−1
n xn − p

〉

=
〈
=k

nxn − p,=k−1
n xn − p

〉

=
1
2

(
‖=k

nxn − p‖2 + ‖=k−1
n xn − p‖2 − ‖=k

nxn −=k−1
n xn‖2

)

and hence

‖=k
nxn − p‖2 ≤ ‖=k−1

n xn − p‖2 − ‖=k
nxn −=k−1

n xn‖2, k = 1, 2, 3, . . . ,M

which implies that for each k ∈ {1, 2, 3, . . . , M},

‖=k
nxn − p‖2 ≤ ‖=0

nxn − p‖2 − ‖=k
nxn −=k−1

n xn‖2
−‖=k−1

n xn −=k−2
n xn‖2 − . . .− ‖=2

nxn −=1
nxn‖2 − ‖=1

nxn −=0
nxn‖2

≤ ‖xn − p‖2 − ‖=k
nxn −=k−1

n xn‖2.
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Together with (3.22) gives

‖xn+1 − p‖2
≤ (1− εnγ̄)(1− βn − εnγ̄)‖vn − p‖2 + (1− εnγ̄)βn‖xn − p‖2 + cn

≤ (1− εnγ̄)(1− εnγ̄ − βn)
{
‖un − p‖2 + (λ2

nζ2 − 1)‖un − yn‖2
}

+(1− εnγ̄)βn‖xn − p‖2 + cn

= (1− εnγ̄)(1− εnγ̄ − βn)‖un − p‖2 + (1− εnγ̄)(1− εnγ̄ − βn)(λ2
nζ2 − 1)‖un − yn‖2

+(1− εnγ̄)βn‖xn − p‖2 + cn

= (1− εnγ̄)(1− εnγ̄ − βn)‖=k
nxn − p‖2 + (1− εnγ̄)(1− εnγ̄ − βn)(λ2

nζ2 − 1)‖un − yn‖2
+(1− εnγ̄)βn‖xn − p‖2 + cn

≤ (1− εnγ̄)(1− εnγ̄ − βn)
{
‖xn − p‖2 − ‖=k

nxn −=k−1
n xn‖2

}

+(1− εnγ̄)(1− εnγ̄ − βn)(λ2
nζ2 − 1)‖un − yn‖2 + (1− εnγ̄)βn‖xn − p‖2 + cn

= (1− εnγ̄)(1− εnγ̄ − βn)‖xn − p‖2 − (1− εnγ̄)(1− εnγ̄ − βn)‖=k
nxn −=k−1

n xn‖2
+(1− εnγ̄)(1− εnγ̄ − βn)(λ2

nζ2 − 1)‖un − yn‖2 + (1− εnγ̄)βn‖xn − p‖2 + cn

= (1− εnγ̄)2‖xn − p‖2 − (1− εnγ̄)(1− εnγ̄ − βn)‖=k
nxn −=k−1

n xn‖2
+(1− εnγ̄)(1− εnγ̄ − βn)(λ2

nζ2 − 1)‖un − yn‖2 + cn

=
[
1− 2εnγ̄ + (εnγ̄)2

]‖xn − p‖2 − (1− εnγ̄)(1− εnγ̄ − βn)‖=k
nxn −=k−1

n xn‖2
+(1− εnγ̄)(1− εnγ̄ − βn)(λ2

nζ2 − 1)‖un − yn‖2 + cn

≤ ‖xn − p‖2 + (εnγ̄)2‖xn − p‖2 − (1− εnγ̄)(1− εnγ̄ − βn)‖=k
nxn −=k−1

n xn‖2
+(1− εnγ̄)(1− εnγ̄ − βn)(λ2

nζ2 − 1)‖un − yn‖2 + cn.

So, we obtain

(1− εnγ̄)(1− εnγ̄ − βn)‖=k
nxn −=k−1

n xn‖2
≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + (εnγ̄)2‖xn − p‖2

+(1− εnγ̄)(1− εnγ̄ − βn)(λ2
nζ2 − 1)‖un − yn‖2 + cn

≤ ‖xn − xn+1‖(‖xn − p‖+ ‖xn+1 − p‖) + (εnγ̄)2‖xn − p‖2
+(1− εnγ̄)(1− εnγ̄ − βn)(λ2

nζ2 − 1)‖un − yn‖2 + cn.

Using εn → 0, cn → 0 as n →∞, (3.19) and (3.24), we obtain

lim
n→∞

‖=k
nxn −=k−1

n xn‖ = 0. (3.28)

Observe that

‖Wnyn − yn‖ ≤ ‖Wnyn −Wnvn‖+ ‖Wnvn − xn‖+ ‖xn − un‖+ ‖un − yn‖
≤ ‖yn − vn‖+ ‖Wnvn − xn‖+ ‖xn −=k

nxn‖+ ‖un − yn‖
≤ ‖yn − vn‖+ ‖Wnvn − xn‖+ ‖=0

nxn −=1
nxn‖+ ‖=1

nxn −=2
nxn‖

+ . . . + ‖=M−1
n xn −=M

n xn‖+ ‖un − yn‖
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Applying (3.21), (3.24), (3.26) and (3.28) to the last inequality, we obtain

lim
n→∞

‖Wnyn − yn‖ = 0. (3.29)

Let W be the mapping defined by (2.1). Since {yn} is bounded, Applying Lemma
2.9 and (3.29), we have

‖Wyn − yn‖ ≤ ‖Wyn −Wnyn‖+ ‖Wnyn − yn‖ → 0 as n →∞. (3.30)

Step 6. We claim that lim supn→∞
〈
(A − γf)z, z − xn

〉 ≤ 0, which z is the
unique solution of the variational inequality

〈
(A− γf)z, x− z

〉 ≥ 0, ∀x ∈ Θ.
Since z = PΘ(I −A + γf)(z) is a unique solution of the variational inequality

(3.2). To show this inequality, we choose a subsequence {xni} of {xn} such that

lim
i→∞

〈
(A− γf)z, z − xni

〉
= lim sup

n→∞

〈
(A− γf)z, z − xn

〉
.

Since {xni} is bounded, there exists a subsequence {xnij
} of {xni} which converges

weakly to w ∈ C. Without loss of generality, we can assume that {xni} ⇀ w. Since
limn→∞ ‖=k

nxn − =k−1
n xn‖ = 0 for k = 1, 2, 3, . . . , M , we have =k

ni
xni ⇀ w for

k = 1, 2, 3, . . . , M .
From ‖un − yn‖ → 0 and ‖un − vn‖ → 0, we obtain yni ⇀ w and vni ⇀ w.

Since {uni} ⊂ C and C is closed and convex, we obtain w ∈ C.
Next, we show that w ∈ Θ, where Θ := ∩∞n=1F (Tn) ∩ (∩M

k=1SEP (Fk)
) ∩

V I(C, B).
First, we show that w ∈ ∩M

k=1SEP (Fk). Since un = =k
nxn for k = 1, 2, 3, . . . ,M ,

we also have

Fk(=k
nxn, y) +

1
rn
〈y −=k

nxn,=k
nxn −=k−1

n xn〉 ≥ 0, ∀y ∈ C.

If follows from (A2) that,

1
rn
〈y −=k

nxn,=k
nxn −=k−1

n xn〉 ≥ −Fk(=k
nxn, y) ≥ Fk(y,=k

nxn)

and hence 〈
y −=k

ni
xni ,

=k
ni

xni −=k−1
ni

xni

rni

〉
≥ Fk(y,=k

ni
xni).

Since
=k

ni
xni

−=k−1
ni

xni

rni
→ 0 and =k

ni
xni ⇀ w, it follows by (A4) that

Fk(y, w) ≤ 0 ∀y ∈ C,

for each k = 1, 2, 3, . . . ,M .
For t with 0 < t ≤ 1 and y ∈ H, let yt = ty +(1− t)w. Since y ∈ C and w ∈ C,

we have yt ∈ C and hence Fk(yt, w) ≤ 0. So, from (A1) and (A4) we have

0 = Fk(yt, yt) ≤ tFk(yt, y) + (1− t)Fk(yt, w) ≤ tFk(yt, y)
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and hence Fk(yt, y) ≥ 0. From (A3), we have Fk(w, y) ≥ 0 for all y ∈ C and hence
w ∈ EP (Fk) for k = 1, 2, 3, . . . ,M , that is, w ∈ ∩M

k=1SEP (Fk).
Next, we show that w ∈ ∩∞n=1F (Tn). By Lemma 2.8, we have F (W ) =

∩∞n=1F (Tn). Assume w /∈ F (W ). Since uni
⇀ w and w 6= Ww, it follows by

the Opial’s condition (Lemma 2.2) that

lim inf
i→∞

‖yni
− w‖ < lim inf

i→∞
‖yni

−Ww‖
≤ lim inf

i→∞
{‖yni

−Wyni
‖+ ‖Wyni

−Ww‖}

≤ lim inf
i→∞

‖yni
− w‖

which derives a contradiction. Thus, we have w ∈ F (W ) = ∩∞n=1F (Tn).
Finally, we show that w ∈ V I(C,B). Define

Tv =
{

Bv + NCv, v ∈ C,
∅, v /∈ C.

Then, T is maximal monotone. Let (v, w1) ∈ G(T ). Since w1 − Bv ∈ NCv and
vn ∈ C, we have 〈v−vn, w1−Bv〉 ≥ 0. On the other hand, vn = PC(un−λnByn),
we have

〈v − vn, vn − (un − λnByn)〉 ≥ 0,

and hence 〈
v − vn,

vn − un

λn
+ Byn

〉
≥ 0.

Therefore, we have

〈v − vni , w〉 ≥ 〈v − vni , Bv〉
≥ 〈v − vni , Bv〉 −

〈
v − vni ,

vni − uni

λni

+ Byni

〉

=
〈

v − vni , Bv −Byni −
vni − uni

λni

〉

= 〈v − vni , Bv −Bvni〉+ 〈v − vni , Bvni −Byni〉
−

〈
v − vni ,

vni − uni

λni

〉

≥ 〈v − vni , Bvni −Byni〉 −
〈

v − vni ,
vni − uni

λni

〉
.

Since limn→∞ ‖vn − un‖ = limn→∞ ‖vn − yn‖ = 0, uni ⇀ w and B is Lip-
schitz continuous, we obtain that limn→∞ ‖Bvn − Byn‖ = 0 and vni ⇀ p. From
lim infn→∞ λn > 0 and limn→∞ ‖vn − un‖ = 0, we obtain

〈v − w,w1〉 ≥ 0.

Since T is maximal monotone, we have w ∈ T−10 and hence w ∈ V I(C, B).
Hence w ∈ Θ, where Θ := ∩∞n=1F (Tn) ∩ (∩M

k=1SEP (Fk)
) ∩ V I(C, B).
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Since z = PΘ(I −A + γf)(z), it follows that

lim sup
n→∞

〈
(A− γf)z, z − xn

〉
= lim sup

n→∞

〈
(A− γf)z, z − xn

〉

= lim
i→∞

〈
(A− γf)z, z − xni

〉

=
〈
(A− γf)z, z − w

〉 ≤ 0. (3.31)

It follows from the last inequality and (3.21) that

lim sup
n→∞

〈
γf(z)−Az, Wnvn − z

〉 ≤ 0. (3.32)

Step 7. Finally, we claim that {xn} converges strongly to
z = PΘ(I −A + γf)(z).
Indeed, from (3.1) , we have

‖xn+1 − z‖2 (3.33)

=
∥∥εnγf(Wnxn) + βnxn +

(
(1− βn)I − εnA

)
Wnvn − z

∥∥2

= ‖((1− βn)I − εnA
)
(Wnvn − z) + βn(xn − z) + εn

(
γf(Wnxn)−Az

)‖2
= ‖((1− βn)I − εnA

)
(Wnvn − z) + βn(xn − z)‖2 + ε2n‖γf(Wnxn)−Az‖2

+ 2βnεn

〈
xn − z, γf(Wnxn)−Az

〉

+ 2εn

〈(
(1− βn)I − εnA

)
(Wnvn − z), γf(Wnxn)−Az

〉

≤
[
(1− βn − εnγ̄)‖Wnvn − z‖+ βn‖xn − z‖

]2

+ ε2n‖γf(Wnxn)−Az‖2

+ 2βnεnγ
〈
xn − z, f(Wnxn)− f(z)

〉
+ 2βnεn

〈
xn − z, γf(z)−Az

〉

+ 2(1− βn)γεn

〈
Wnvn − z, f(Wnxn)− f(z)

〉
+ 2(1− βn)εn

〈
Wnvn − z, γf(z)−Az

〉

− 2ε2n
〈
A(Wnvn − z), γf(z)−Az

〉

≤
[
(1− βn − εnγ̄)‖Wnvn − z‖+ βn‖xn − z‖

]2

+ ε2n‖γf(Wnxn)−Az‖2

+ 2βnεnγ‖xn − z‖‖f(Wnxn)− f(z)‖+ 2βnεn

〈
xn − z, γf(z)−Az

〉

+ 2(1− βn)γεn‖Wnvn − z‖‖f(Wnxn)− f(z)‖+ 2(1− βn)εn

〈
Wnvn − z, γf(z)−Az

〉

− 2ε2n
〈
A(Wnvn − z), γf(z)−Az

〉

≤
[
(1− βn − εnγ̄)‖xn − z‖+ βn‖xn − z‖

]2

+ ε2n‖γf(Wnxn)−Az‖2

+ 2βnεnγα‖xn − z‖2 + 2βnεn

〈
xn − z, γf(z)−Az

〉

+ 2(1− βn)γεnα‖xn − z‖2 + 2(1− βn)εn

〈
Wnvn − z, γf(z)−Az

〉

− 2ε2n
〈
A(Wnvn − z), γf(z)−Az

〉

=
[
(1− εnγ̄)2 + 2βnεnγα + 2(1− βn)γεnα

]
‖xn − z‖2 + ε2n‖γf(Wnxn)−Az‖2

+ 2βnεn

〈
xn − z, γf(z)−Az

〉
+ 2(1− βn)εn

〈
Wnvn − z, γf(z)−Az

〉

− 2ε2n
〈
A(Wnvn − z), γf(z)−Az

〉

(3.34)



A extragradient approximation method for system of equilibrium problems 99

≤ [
1− 2(γ̄ − αγ)εn

]‖xn − z‖2 + γ̄2ε2n‖xn − z‖2 + ε2n‖γf(Wnxn)−Az‖2
+2βnεn

〈
xn − z, γf(z)−Az

〉
+ 2(1− βn)εn

〈
Wnvn − z, γf(z)−Az

〉

+2ε2n‖A(Wnvn − z)‖‖γf(z)−Az‖
=

[
1− 2(γ̄ − αγ)εn

]‖xn − z‖2 + εn

{
εn

[
γ̄2‖xn − z‖2 + ‖γf(Wnxn)−Az‖2

+2‖A(Wnvn − z)‖‖γf(z)−Az‖
]

+ 2βn

〈
xn − z, γf(z)−Az

〉

+2(1− βn)
〈
Wnvn − z, γf(z)−Az

〉}

Since {xn}, {f(Wnxn)} and {Wnvn} are bounded, we can take a constant K > 0
such that

γ̄2‖xn − z‖2 + ‖γf(Wnxn)−Az‖2 + 2‖A(Wnvn − z)‖‖γf(z)−Az‖ ≤ K,

for all n ≥ 0. It then follows that

‖xn+1 − z‖2 ≤ [
1− 2(γ̄ − αγ)εn

]‖xn − z‖2 + εnσn, (3.35)

where

σn = 2βn

〈
xn − z, γf(z)−Az

〉
+ 2(1− βn)

〈
Wnvn − z, γf(z)−Az

〉
+ εnK.

Using (C1), (3.31) and (3.32), we get lim supn→∞ σn ≤ 0. Applying Lemma 2.11
to (3.35), we conclude that xn → z in norm. This completes the proof.

Corollary 3.1. Let C be a nonempty closed convex subset of a real Hilbert space
H, let Fk, k ∈ {1, 2, 3, . . . , M} be a bifunction from C × C to R satisfying (A1)-
(A4) and let B be a monotone and ζ-Lipschitz continuous mapping of C into H
such that

Θ :=
(∩M

k=1SEP (Fk)
) ∩ V I(C, B) 6= ∅.

Let f be a contraction of H into itself with α ∈ (0, 1) and let A be a strongly
positive linear bounded operator on H with coefficient γ̄ > 0 and 0 < γ < γ̄

α . Let
{xn}, {yn} and {un} be sequences generated by




x1 = x ∈ C chosen arbitrary,
un = JFM

rM,n
J

FM−1
rM−1,nJ

FM−2
rM−2,n . . . JF2

r2,n
JF1

r1,n
xn,

yn = PC(un − λnBun),
xn+1 = εnγf(xn) + βnxn +

(
(1− βn)I − εnA

)
PC(un − λnByn), ∀n ≥ 1,

where {εn}, {βn} are two sequences in (0, 1), {λn} ⊂ [a, b] ⊂ (0, 1
ζ ) and {rk,n}, k ∈

{1, 2, 3, . . . ,M} are real sequence in (0,∞) satisfy the following conditions:

(C1) limn→∞ εn = 0 and
∑∞

n=1 εn = ∞,

(C2) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,
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(C3) lim infn→∞ rk,n > 0 and limn→∞ |rk,n+1 − rk,n| = 0,

(C4) limn→∞ λn = 0.

Then, {xn} and {un} converge strongly to a point z ∈ Θ which is the unique
solution of the variational inequality

〈
(A− γf)z, x− z

〉
≥ 0, ∀x ∈ Θ.

Equivalently, we have z = PΘ(I −A + γf)(z).

Proof. Put Tn = I for all n ∈ N and for all x ∈ E. Then Wn = I for all x ∈ E.
The conclusion follows from Theorem 3.1. This completes the proof.

If A = I, γ ≡ 1 and γn = 1− εn − βn in Theorem 3.1, then we can obtain the
following result immediately.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space
H, let Fk, k ∈ {1, 2, 3, . . . ,M} be a bifunction from C × C to R satisfying (A1)-
(A4), let {Tn} be an infinite family of nonexpansive mappings of C into itself and
let B be a monotone and ζ-Lipschitz continuous mapping of C into H such that

Θ := ∩∞n=1F (Tn) ∩ (∩M
k=1SEP (Fk)

) ∩ V I(C, B) 6= ∅.
Let f be a contraction of H into itself with α ∈ (0, 1). Let {xn}, {yn} and {un}
be sequences generated by





x1 = x ∈ C chosen arbitrary,
un = JFM

rM,n
J

FM−1
rM−1,nJ

FM−2
rM−2,n . . . JF2

r2,n
JF1

r1,n
xn,

yn = PC(un − λnBun),
xn+1 = εnf(Wnxn) + βnxn + γnWnPC(un − λnByn), ∀n ≥ 1,

where {Wn} is the sequence generated by (1.19)and {εn}, {βn}, {γn} are sequences
in (0, 1), {λn} ⊂ [a, b] ⊂ (0, 1

ζ ) and {rk,n}, k ∈ {1, 2, 3, . . . , M} are a real sequence
in (0,∞) satisfy the following conditions:

(C1) εn + βn + γn = 1,

(C2) limn→∞ εn = 0 and
∑∞

n=1 εn = ∞,

(C3) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,

(C4) lim infn→∞ rk,n > 0 and limn→∞ |rk,n+1−rk,n| = 0 for each k ∈ {1, 2, 3, . . . ,M},
(C5) limn→∞ λn = 0.

Then, {xn} and {un} converge strongly to a point z ∈ Θ which is the unique
solution of the variational inequality

〈
z − f(z), x− z

〉
≥ 0, ∀x ∈ Θ.

Equivalently, we have z = PΘf(z).
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