Thai Journal of **Math**ematics Special Issue (2023): Annual Meeting in Mathematics 2022 Pages 1 - 11

http://thaijmath.in.cmu.ac.th

$\Gamma\text{-Paired}$ Dominating Graphs of Some Paths and Some Cycles

Pannawat Eakawinrujee and Nantapath Trakultraipruk*

Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand e-mail : p.eakawinrujee@gmail.com (P. Eakawinrujee); n.trakultraipruk@yahoo.com (N. Trakultraipruk)

Abstract A set D of vertices in a graph G is a paired dominating set of G if every vertex of G is adjacent to some vertex in D and the subgraph of G induced by D contains a perfect matching. The maximum cardinality of a minimal paired dominating set of G is called the upper paired domination number, denoted by $\Gamma_{pr}(G)$. A minimal paired dominating set with cardinality $\Gamma_{pr}(G)$ is a $\Gamma_{pr}(G)$ -set. The Γ -paired dominating graph $PD_{\Gamma}(G)$ of G is the graph whose vertices are $\Gamma_{pr}(G)$ -sets and any two $\Gamma_{pr}(G)$ -sets are adjacent in $PD_{\Gamma}(G)$ if they differ by exactly one vertex. In this paper, we first correct some results on the Γ -paired dominating graphs of some paths that appeared in [P. Eakawinrujee, N. Trakultraipruk, Γ -paired dominating graphs of some paths, MATEC Web Conf. 189 (2018) 03029] and then we determine the Γ -paired dominating graphs of some cycles.

MSC: 05C69

Keywords: paired dominating graph; upper paired dominating set; upper paired domination number; gamma graph

Submission date: 31.05.2022 / Acceptance date: 15.12.2022

1. INTRODUCTION

Let G be a graph with vertex set V(G) and edge set E(G). A set $D \subseteq V(G)$ is a dominating set of G if every vertex in $V(G) \setminus D$ is adjacent to at least one vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set of G. A $\gamma(G)$ -set is a dominating set of G with cardinality $\gamma(G)$. For detailed surveys on domination parameters, see [11, 12].

The gamma graph $\gamma \cdot G$ of G is the graph with $V(\gamma \cdot G)$ as the set of all $\gamma(G)$ -sets, and two vertices D_1 and D_2 of $\gamma \cdot G$ are adjacent if they satisfy the condition as follows:

$$D_2 = (D_1 \setminus \{u\}) \cup \{v\} \text{ for some } u \in D_1 \text{ and } v \notin D_1.$$

$$(1.1)$$

The gamma graph $\gamma \cdot G$ was introduced by Subramanian and Sridharan [18]. For additional results on $\gamma \cdot G$, see [2, 13, 16, 17]

^{*}Corresponding author.

Published by The Mathematical Association of Thailand. Copyright © 2023 by TJM. All rights reserved.

The gamma graph $G(\gamma)$ of G is the graph with $V(G(\gamma)) = V(\gamma \cdot G)$, and two vertices of $G(\gamma)$ are adjacent if they satisfy the condition (1.1) and $uv \in E(G)$. The gamma graph $G(\gamma)$ was defined by Fricke *et al.* [9], and was further studied in [3].

The concept of a gamma graph $\gamma \cdot G$ using other types of domination has been studied by several authors. For example, the γ -total dominating graph, the γ -independent dominating graph, the γ -induced-paired dominating graph, and the γ -paired dominating graph were defined by Wongsriya and Trakultraipruk [19], Samanmoo *et al.* [14], Sanguanpong and Trakultraipruk [15], and Eakawinrujee and Trakultraipruk [6, 7], respectively.

A paired dominating set of G, introduced by Haynes and Slater [10], is a dominating set whose induced subgraph has a perfect matching. A paired dominating set D of G is minimal if no proper subset of D is a paired dominating set of G. The upper paired domination number $\Gamma_{pr}(G)$ of G is the maximum cardinality of a minimal paired dominating set of G. A minimal paired dominating set D is called a $\Gamma_{pr}(G)$ -set if $|D| = \Gamma_{pr}(G)$. The upper paired domination was introduced by Dorbec *et al.* [5], and was further studied in [1, 4, 20].

In [8], we defined the Γ -paired dominating graph $PD_{\Gamma}(G)$ of G to be the graph with $V(PD_{\Gamma}(G))$ as the set of all $\Gamma_{pr}(G)$ -sets, and two vertices D_1 and D_2 of $PD_{\Gamma}(G)$ are adjacent if they satisfy the condition (1.1). We presented the Γ -paired dominating graph of a path P_n , where $n \in \{2, 3, ..., 13\}$. Unfortunately, there are some mistakes in these results when $n \in \{8, 10, 11, 12, 13\}$. In this paper, we correct these mistakes and then determine the Γ -paired dominating graphs of some cycles.

2. Preliminary Results

In this section, we provide some definitions and known results. We denote a *path*, a *cycle*, and a *complete graph* with n vertices by P_n , C_n , and K_n , respectively.

The paired domination number $\gamma_{pr}(G)$ of G is the minimum cardinality of a paired dominating set of G. Haynes and Slater [10] provided the paired domination numbers of paths and cycles.

Lemma 2.1 ([10]). For any integer $n \ge 3$, $\gamma_{pr}(P_n) = \gamma_{pr}(C_n) = 2\lceil \frac{n}{4} \rceil$.

Dorbec et al. [5] established the upper paired domination numbers of paths.

Lemma 2.2 ([5]). For any integer $n \ge 2$, $\Gamma_{pr}(P_n) = 8\lfloor \frac{n+1}{11} \rfloor + 2\lfloor \frac{(n+1) \pmod{11}}{3} \rfloor$.

Ulatowski [20] gave the upper paired domination numbers of cycles together with two additional results.

Lemma 2.3 ([20]). For any integer $n \geq 3$, $\Gamma_{pr}(C_n) = 8\lfloor \frac{n}{11} \rfloor + 2\lfloor \frac{n \pmod{11}}{3} \rfloor$.

Proposition 2.4 ([20]). If $n \in \{2, 3, 4, 5, 6, 7, 9\}$, then $\Gamma_{pr}(P_n) = \gamma_{pr}(P_n)$.

Proposition 2.5 ([20]). If $n \in \{3, 4, 5, 6, 7, 8, 9, 10, 13\}$, then $\Gamma_{pr}(C_n) = \gamma_{pr}(C_n)$.

The Cartesian product $G \Box H$ of graphs G and H is the graph with $V(G \Box H) = V(G) \times V(H)$ and two vertices (u_1, v_1) and (u_2, v_2) are adjacent if either $u_1 = u_2$ and $v_1 v_2 \in E(H)$, or $v_1 = v_2$ and $u_1 u_2 \in E(G)$.

Let $P_p: 1, 2, 3, \ldots, p$ and $P_q: 1, 2, 3, \ldots, q$ be two paths, where p and q are positive integers. A stepgrid $SG_{p,q}$, defined by Fricke *et al.* [9], is the subgraph of $P_p \Box P_q$ induced by $\{(x, y): 1 \le x \le p, 1 \le y \le q, x - y \le 1\}$. For example, the stepgrids $SG_{1,1}, SG_{2,2}$, and $SG_{3,3}$ are shown in Figure 1.

FIGURE 1. The stepgrids $SG_{1,1}$ (left), $SG_{2,2}$ (center), and $SG_{3,3}$ (right)

Let $P_p: 1, 2, 3, \ldots, p, P_q: 1, 2, 3, \ldots, q$, and $P_r: 1, 2, 3, \ldots, r$ be three paths, where p, q, and r are positive integers. In [7], we defined a *stepgrid* $SG_{p,q,r}$ to be the graph with

$$V(SG_{p,q,r}) = \{(x,y,z) \in V(P_p \Box P_q \Box P_r) : x - y \le 0, x - z \le 1, y - z \ge 0\}$$

and

$$E(SG_{p,q,r}) = E(P_p \Box P_q \Box P_r) \cup \{(x, x, x)(x+1, x+1, x) : 1 \le x \le p-1\}.$$

For example, the stepgrids $SG_{2,2,1}$ and $SG_{3,3,2}$ are shown in Figure 2.

FIGURE 2. The stepgrids $SG_{2,2,1}(\text{left})$ and $SG_{3,3,2}(\text{right})$

The γ -paired dominating graph $PD_{\gamma}(G)$ of G, defined in [7], is the graph whose vertices are minimum paired dominating sets, and two vertices D_1 and D_2 of $PD_{\gamma}(G)$ are adjacent if they satisfy the condition (1.1).

We determined the γ -paired dominating graphs of paths. These results are revealed in the following theorem.

Theorem 2.6 ([7]). For any integer $n \ge 2$,

$$PD_{\gamma}(P_n) \cong \begin{cases} K_1 & \text{if } n \equiv 0 \pmod{4}; \\ P_{\frac{n+5}{4}} & \text{if } n \equiv 3 \pmod{4}; \\ SG_{\frac{n+2}{4},\frac{n+2}{4}} & \text{if } n \equiv 2 \pmod{4}; \\ SG_{\frac{n+3}{4},\frac{n+3}{4},\frac{n-1}{4}} & \text{if } n \equiv 1 \pmod{4}. \end{cases}$$

Let $G_1 : 1, 2, 3, \ldots, 2k - 1$ and $G_2 : 1, 2, 3, \ldots, 3k - 1$ be two paths, where k is a positive integer. In [6], we defined a *loopgrid* LG_k of size k to be the graph with

$$V(LG_k) = \{(x, y) \in V(G_1 \Box G_2) : 0 \le y - x \le k\}$$

and

 $E(LG_k) = E(G_1 \square G_2) \cup \{(1, y)(2k - 1, y + 2k - 1) : 1 \le y \le k\}.$

Figure 3 illustrates the loopgrid of size 3.

FIGURE 3. The loopgrid of size 3

Let $G_1 : 1, 2, 3, \ldots, 2k, G_2 : 1, 2, 3, \ldots, 2k$, and $G_3 : 1, 2, 3, \ldots, 2k + 1$ be the paths, where k is a positive integer. We defined a *loopbox* LB_k of size k in [6] to be the graph with

 $V(LB_k) = \{(x, y, z) \in V(G_1 \Box G_2 \Box G_3) : 0 \le y - x \le k, -1 \le y - z \le k - 1, 0 \le z - x \le k\}$ and

$$\begin{split} E(LB_k) &= E(G_1 \square G_2 \square G_3) \cup \{(x, x+k-1, x)(x, x+k, x+1) : 1 \le x \le k\} \\ &\cup \{(x, x, x+1)(x+1, x+1, x+1) : 1 \le x \le 2k-1\} \\ &\cup \{(x, x+k, x+k)(x+1, x+k, x+k+1) : 1 \le x \le k\} \\ &\cup \{(1, y, z)(z+k, 2k, y+k+1) : 1 \le y, z \le k, -1 \le y-z \le k-1\} \\ &\cup \{(1, 1, 1)(k+1, 2k, k+1)\} \cup \{(1, k, k+1)(2k, 2k, 2k+1)\}. \end{split}$$

The loopboxes of size 1, 2, and 3 are shown in Figure 4.

We determined the γ -paired dominating graphs of cycles, which are shown in the following theorem.

Theorem 2.7 ([6]). For any integer $n \ge 3$,

$$PD_{\gamma}(C_n) \cong \begin{cases} C_3 \Box C_3 & \text{if } n = 6; \\ 4K_1 & \text{if } n \equiv 0 \pmod{4} \text{ and } n \neq 4; \\ C_n & \text{if } n \equiv 3 \pmod{4} \text{ or } n = 4; \\ LG_{\frac{n+2}{4}} & \text{if } n \equiv 2 \pmod{4} \text{ and } n \neq 6; \\ LB_{\frac{n-1}{4}}^{\frac{n-1}{4}} & \text{if } n \equiv 1 \pmod{4}. \end{cases}$$

FIGURE 4. The loopboxes of size 1 (top), of size 2 (middle), and of size 3 (bottom)

3. Γ -Paired Dominating Graphs of Some Paths

In this section, we recall the Γ -paired dominating graphs of some paths that appear in [8]. For $n \in \{2, 3, 4, 5, 6, 7, 9\}$, we get the Γ -paired dominating graph of P_n as follows.

Theorem 3.1 ([8]). The Γ -paired dominating graph of P_n is

$$PD_{\Gamma}(P_n) \cong \begin{cases} K_1 & \text{if } n = 4; \\ P_{\frac{n+5}{4}} & \text{if } n \in \{3,7\}; \\ SG_{\frac{n+2}{4},\frac{n+2}{4}} & \text{if } n \in \{2,6\}; \\ SG_{\frac{n+3}{4},\frac{n+3}{4},\frac{n-1}{4}} & \text{if } n \in \{5,9\}. \end{cases}$$

Next, we correct the results on the Γ -paired dominating graph of P_n for $n \in \{8, 10, 11, 12, 13\}$, which are appeared in [8]. By Theorem 2.2, we get that $\Gamma_{pr}(P_8) = 6$, $\Gamma_{pr}(P_{10}) = \Gamma_{pr}(P_{11}) = \Gamma_{pr}(P_{12}) = 8$, and $\Gamma_{pr}(P_{13}) = 10$. Again, we let $P_n : 1, 2, 3, \ldots, n$ be the path with n vertices.

Theorem 3.2. The Γ -paired dominating graph of P_8 is the graph shown in Figure 5, where $D_1 = \{1, 2, 3, 4, 6, 7\}, D_2 = \{1, 2, 3, 4, 7, 8\}, D_3 = \{1, 2, 4, 5, 6, 7\}, D_4 = \{1, 2, 4, 5, 7, 8\}, D_5 = \{1, 2, 5, 6, 7, 8\}, D_6 = \{2, 3, 4, 5, 7, 8\}, D_7 = \{2, 3, 5, 6, 7, 8\}.$

Theorem 3.3. The Γ -paired dominating graph of P_{10} is the graph shown in Figure 5, where $D_1 = \{1, 2, 3, 4, 6, 7, 8, 9\}, D_2 = \{1, 2, 3, 4, 6, 7, 9, 10\}, D_3 = \{1, 2, 3, 4, 7, 8, 9, 10\}, D_4 = \{1, 2, 4, 5, 6, 7, 9, 10\}, D_5 = \{1, 2, 4, 5, 7, 8, 9, 10\}, D_6 = \{2, 3, 4, 5, 7, 8, 9, 10\}.$

FIGURE 5. The Γ -paired dominating graphs of P_8 (left) and P_{10} (right)

Theorem 3.4. The Γ -paired dominating graph of P_{11} is the graph shown in Figure 6, where $D_1 = \{1, 2, 3, 4, 6, 7, 9, 10\}, D_2 = \{1, 2, 3, 4, 6, 7, 10, 11\}, D_3 = \{1, 2, 3, 4, 7, 8, 9, 10\}, D_4 = \{1, 2, 3, 4, 7, 8, 10, 11\}, D_5 = \{1, 2, 4, 5, 6, 7, 9, 10\}, D_6 = \{1, 2, 4, 5, 6, 7, 10, 11\}, D_7 = \{1, 2, 4, 5, 7, 8, 9, 10\}, D_8 = \{1, 2, 4, 5, 7, 8, 10, 11\}, D_9 = \{1, 2, 4, 5, 8, 9, 10, 11\}, D_{10} = \{1, 2, 5, 6, 7, 8, 10, 11\}, D_{11} = \{1, 2, 5, 6, 8, 9, 10, 11\}, D_{12} = \{2, 3, 4, 5, 7, 8, 9, 10\}, D_{13} = \{2, 3, 4, 5, 7, 8, 10, 11\}, D_{14} = \{2, 3, 4, 5, 8, 9, 10, 11\}, D_{15} = \{2, 3, 5, 6, 8, 9, 10, 11\}.$

Theorem 3.5. The Γ -paired dominating graph of P_{12} is the graph shown in Figure 7, where $D_1 = \{1, 2, 3, 4, 6, 7, 10, 11\}, D_2 = \{1, 2, 3, 4, 7, 8, 10, 11\}, D_3 = \{1, 2, 3, 4, 7, 8, 11, 12\}, D_4 = \{1, 2, 4, 5, 6, 7, 10, 11\}, D_5 = \{1, 2, 4, 5, 7, 8, 10, 11\}, D_6 = \{1, 2, 4, 5, 7, 8, 11, 12\}, D_7 = \{1, 2, 4, 5, 8, 9, 10, 11\}, D_8 = \{1, 2, 4, 5, 8, 9, 11, 12\}, D_9 = \{1, 2, 5, 6, 7, 8, 11, 12\}, D_{10} = \{1, 2, 5, 6, 7, 8, 11, 12\}, D_{11} = \{1, 2, 5, 6, 8, 9, 11, 12\}, D_{12} = \{1, 2, 5, 6, 8, 9, 11, 12\}, D_{13} = \{1, 2, 5, 6, 9, 10, 11, 12\}, D_{14} = \{2, 3, 4, 5, 7, 8, 10, 11\}, D_{15} = \{2, 3, 4, 5, 7, 8, 11, 12\}, D_{16} = \{2, 3, 4, 5, 8, 9, 10, 11\}, D_{17} = \{2, 3, 4, 5, 8, 9, 11, 12\}, D_{18} = \{2, 3, 5, 6, 7, 8, 11, 12\}, D_{20} = \{2, 3, 5, 6, 8, 9, 11, 12\}, D_{21} = \{2, 3, 5, 6, 7, 9, 10, 11, 12\}, D_{23} = \{2, 3, 6, 7, 8, 9, 11, 12\}, D_{24} = \{2, 3, 6, 7, 9, 10, 11, 12\}.$

FIGURE 6. The Γ -paired dominating graph of P_{11}

FIGURE 7. The Γ -paired dominating graph of P_{12}

Theorem 3.6. The Γ -paired dominating graph of P_{13} is the graph shown in Figure 8, where $D_1 = \{1, 2, 3, 4, 6, 7, 8, 9, 11, 12\}, D_2 = \{1, 2, 3, 4, 6, 7, 8, 9, 12, 13\}, D_3 = \{1, 2, 3, 4, 6, 7, 9, 10, 11, 12\}, D_4 = \{1, 2, 3, 4, 6, 7, 9, 10, 12, 13\}, D_5 = \{1, 2, 3, 4, 6, 7, 10, 11, 12, 13\}, D_6 = \{1, 2, 3, 4, 7, 8, 9, 10, 12, 13\}, D_7 = \{1, 2, 3, 4, 7, 8, 10, 11, 12, 13\}, D_8 = \{1, 2, 4, 5, 6, 7, 9, 10, 11, 12\}, D_9 = \{1, 2, 4, 5, 6, 7, 9, 10, 12, 13\}, D_{10} = \{1, 2, 4, 5, 6, 7, 9, 10, 12, 13\}, D_{11} = \{1, 2, 4, 5, 7, 8, 9, 10, 12, 13\}, D_{12} = \{1, 2, 4, 5, 7, 8, 9, 10, 12, 13\}, D_{13} = \{1, 2, 5, 6, 7, 8, 10, 11, 12, 13\}, D_{14} = \{2, 3, 4, 5, 7, 8, 9, 10, 12, 13\}, D_{15} = \{2, 3, 4, 5, 7, 8, 10, 11, 12, 13\}, D_{16} = \{2, 3, 5, 6, 7, 8, 10, 11, 12, 13\}.$

4. Γ-PAIRED DOMINATING GRAPHS OF SOME CYCLES

This section shows the Γ -paired dominating graph of C_n for $n \in \{3, 4, \ldots, 13\}$. We let $C_n : 1, 2, \ldots, n, 1$ be the cycle with n vertices.

Note that if G is a graph with $\Gamma_{pr}(G) = \gamma_{pr}(G)$, then $PD_{\Gamma}(G) \cong PD_{\gamma}(G)$. By Proposition 2.5 and Theorem 2.7, we get the Γ -paired dominating graph of C_n for $n \in \{3, 4, 5, 6, 7, 8, 9, 10, 13\}$ as follows.

FIGURE 8. The Γ -paired dominating graph of P_{13}

Theorem 4.1. The Γ -paired dominating graph of C_n is

$$PD_{\Gamma}(C_n) \cong \begin{cases} C_3 \square C_3 & \text{if } n = 6; \\ 4K_1 & \text{if } n = 8; \\ C_n & \text{if } n \in \{3, 4, 7\}; \\ LG_{\frac{n+2}{4}} & \text{if } n = 10; \\ LB_{\frac{n-1}{4}} & \text{if } n \in \{5, 9, 13\}. \end{cases}$$

By Theorem 2.3, we have $\Gamma_{pr}(C_{11}) = \Gamma_{pr}(C_{12}) = 8$. Then we get the Γ -paired dominating graphs of C_{11} and C_{12} as follows.

Theorem 4.2. The Γ -paired dominating graph of C_{11} is the graph shown in Figure 9, where $D_1 = \{1, 2, 3, 4, 6, 7, 8, 9\}, D_2 = \{1, 2, 3, 4, 6, 7, 9, 10\}, D_3 = \{1, 2, 3, 4, 7, 8, 9, 10\}, D_4 = \{1, 2, 4, 5, 6, 7, 9, 10\}, D_5 = \{1, 2, 4, 5, 6, 7, 10, 11\}, D_6 = \{1, 2, 4, 5, 7, 8, 9, 10\}, D_7 = \{1, 2, 4, 5, 7, 8, 10, 11\}, D_8 = \{1, 2, 5, 6, 7, 8, 10, 11\}, D_9 = \{2, 3, 4, 5, 7, 8, 9, 10\}, D_{10} = \{2, 3, 4, 5, 7, 8, 10, 11\}, D_{11} = \{2, 3, 4, 5, 8, 9, 10, 11\}, D_{12} = \{2, 3, 5, 6, 7, 8, 10, 11\}, D_{13} = \{2, 3, 5, 6, 7, 8, 11, 1\}, D_{14} = \{2, 3, 5, 6, 8, 9, 10, 11\}, D_{15} = \{2, 3, 5, 6, 8, 9, 11, 1\}, D_{16} = \{2, 3, 6, 7, 8, 9, 11, 1\}, D_{17} = \{3, 4, 5, 6, 8, 9, 10, 11\}, D_{18} = \{3, 4, 5, 6, 8, 9, 11, 1\}, D_{19} = \{3, 4, 5, 6, 9, 10, 11, 1\}, D_{20} = \{3, 4, 6, 7, 8, 9, 11, 1\}, D_{21} = \{3, 4, 6, 7, 9, 10, 11, 1\}, D_{22} = \{4, 5, 6, 7, 9, 10, 11, 1\}.$

Theorem 4.3. The Γ -paired dominating graph of C_{12} is the graph shown in Figure 10, where $D_1 = \{1, 2, 3, 4, 6, 7, 9, 10\}, D_2 = \{1, 2, 3, 4, 6, 7, 10, 11\}, D_3 = \{1, 2, 3, 4, 7, 8, 9, 10\}, D_1 = \{1, 2, 3, 4, 6, 7, 9, 10\}, D_2 = \{1, 2, 3, 4, 6, 7, 10, 11\}, D_3 = \{1, 2, 3, 4, 7, 8, 9, 10\}, D_1 = \{1, 2, 3, 4, 6, 7, 9, 10\}, D_2 = \{1, 2, 3, 4, 6, 7, 10, 11\}, D_3 = \{1, 2, 3, 4, 7, 8, 9, 10\}, D_1 = \{1, 2, 3, 4, 6, 7, 10, 11\}, D_2 = \{1, 2, 3, 4, 6, 7, 10, 11\}, D_3 = \{1, 2, 3, 4, 7, 8, 9, 10\}, D_1 = \{1, 2, 3, 4, 6, 7, 10, 11\}, D_2 = \{1, 2, 3, 4, 7, 8, 9, 10\}, D_3 = \{1, 2, 3, 4, 7, 8, 9, 10\}, D_1 = \{1, 2, 3, 4, 7, 8, 9, 10\}, D_2 = \{1, 2, 3, 4, 6, 7, 10, 11\}, D_3 = \{1, 2, 3, 4, 7, 8, 9, 10\}, D_2 = \{1, 2, 3, 4, 6, 7, 10, 11\}, D_3 = \{1, 2, 3, 4, 7, 8, 9, 10\}, D_3 = \{1, 2, 3, 4, 7, 8, 9, 10\}, D_1 = \{1, 2, 3, 4, 7, 8, 9, 10\}, D_2 = \{1, 2, 3, 4, 7, 8, 9, 10\}, D_3 = \{1, 2, 3, 4, 7, 8, 9, 10\}, D_2 = \{1, 2, 3, 4, 7, 8, 9, 10\}, D_3 = \{1, 2, 3, 7, 8, 10\}, D_3 = \{1, 2, 3, 7, 8, 10\}, D_3 = \{1, 2, 3, 7, 8, 10\}, D_$ $D_4 = \{1, 2, 3, 4, 7, 8, 10, 11\}, D_5 = \{1, 2, 4, 5, 6, 7, 9, 10\}, D_6 = \{1, 2, 4, 5, 6, 7, 10, 11\},$ $D_7 = \{1, 2, 4, 5, 7, 8, 9, 10\}, D_8 = \{1, 2, 4, 5, 7, 8, 10, 11\}, D_9 = \{1, 2, 4, 5, 7, 8, 11, 12\},$ $D_{10} = \{1, 2, 4, 5, 8, 9, 10, 11\}, D_{11} = \{1, 2, 4, 5, 8, 9, 11, 12\}, D_{12} = \{1, 2, 5, 6, 7, 8, 10, 11\},$ $D_{13} = \{1, 2, 5, 6, 7, 8, 11, 12\}, D_{14} = \{1, 2, 5, 6, 8, 9, 10, 11\}, D_{15} = \{1, 2, 5, 6, 8, 9, 11, 12\}, D_{13} = \{1, 2, 5, 6, 8, 9, 11, 12\}, D_{14} = \{1, 2, 5, 6, 8, 9, 10, 11\}, D_{15} = \{1, 2, 5, 6, 8, 9, 11, 12\}, D_{14} = \{1, 2, 5, 6, 8, 9, 10, 11\}, D_{15} = \{1, 2, 5, 6, 8, 9, 11, 12\}, D_{14} = \{1, 2, 5, 6, 8, 9, 10, 11\}, D_{15} = \{1, 2, 5, 6, 8, 9, 11, 12\}, D_{15} = \{1, 2, 5, 6, 8, 9, 12\}, D_{15} = \{1,$ $D_{16} = \{2, 3, 4, 5, 7, 8, 10, 11\}, D_{17} = \{2, 3, 4, 5, 7, 8, 11, 12\}, D_{18} = \{2, 3, 4, 5, 8, 9, 10, 11\},$ $D_{19} = \{2, 3, 4, 5, 8, 9, 11, 12\}, D_{20} = \{2, 3, 5, 6, 7, 8, 10, 11\}, D_{21} = \{2, 3, 5, 6, 7, 8, 11, 12\}, D_{20} = \{2, 3, 5, 6, 7, 8, 11, 12\}, D_{21} = \{2, 3, 5, 6, 7, 8, 11, 12\}, D_{21} = \{2, 3, 5, 6, 7, 8, 11, 12\}, D_{21} = \{2, 3, 5, 6, 7, 8, 11, 12\}, D_{21} = \{2, 3, 5, 6, 7, 8, 11, 12\}, D_{21} = \{2, 3, 5, 6, 7, 8, 11, 12\}, D_{21} = \{2, 3, 5, 6, 7, 8, 11, 12\}, D_{21} = \{2, 3, 5, 6, 7, 8, 11, 12\}, D_{21} = \{2, 3, 5, 6, 7, 8, 11, 12\}, D_{21} = \{2, 3, 5, 6, 7, 8, 11, 12\}, D_{21} = \{2, 3, 5, 6, 7, 8, 11, 12\}, D_{21} = \{2, 3, 5, 6, 7, 8, 11, 12\}, D_{21} = \{2, 3, 5, 6, 7, 8, 11, 12\}, D_{22} = \{2, 3, 5, 6, 7, 8, 11, 12\}, D_{21} = \{2, 3, 5, 6, 7, 8, 11, 12\}, D_{22} = \{2, 3, 5, 6, 7, 8, 11, 12\}, D_{22} = \{2, 3, 5, 6, 7, 8, 11, 12\}, D_{22} = \{2, 3, 5, 6, 7, 8, 11, 12\}, D_{23} = \{2, 3, 5, 6, 7, 8, 11, 12\}, D_{23} = \{2, 3, 5, 6, 7, 8, 11, 12\}, D_{23} = \{2, 3, 5, 6, 7, 8, 11, 12\}, D_{24} =$ $D_{22} = \{2, 3, 5, 6, 8, 9, 10, 11\}, D_{23} = \{2, 3, 5, 6, 8, 9, 11, 12\}, D_{24} = \{2, 3, 5, 6, 8, 9, 12, 1\},\$ $D_{25} = \{2, 3, 5, 6, 9, 10, 11, 12\}, D_{26} = \{2, 3, 5, 6, 9, 10, 12, 1\}, D_{27} = \{2, 3, 6, 7, 8, 9, 11, 12\}, D_{26} = \{2, 3, 5, 6, 9, 10, 12, 1\}, D_{27} = \{2, 3, 6, 7, 8, 9, 11, 12\}, D_{26} = \{2, 3, 5, 6, 9, 10, 12, 1\}, D_{27} = \{2, 3, 6, 7, 8, 9, 11, 12\}, D_{26} = \{2, 3, 5, 6, 9, 10, 12, 1\}, D_{27} = \{2, 3, 6, 7, 8, 9, 11, 12\}, D_{26} = \{2, 3, 5, 6, 9, 10, 12, 1\}, D_{27} = \{2, 3, 6, 7, 8, 9, 11, 12\}, D_{26} = \{2, 3, 5, 6, 9, 10, 12, 1\}, D_{27} = \{2, 3, 6, 7, 8, 9, 11, 12\}, D_{26} = \{2, 3, 5, 6, 9, 10, 12, 1\}, D_{27} = \{2, 3, 6, 7, 8, 9, 11, 12\}, D_{26} = \{2, 3, 5, 6, 9, 10, 12, 1\}, D_{27} = \{2, 3, 6, 7, 8, 9, 11, 12\}, D_{26} = \{2, 3, 5, 6, 9, 10, 12, 1\}, D_{27} = \{2, 3, 6, 7, 8, 9, 11, 12\}, D_{26} = \{2, 3, 5, 6, 9, 10, 12, 1\}, D_{27} = \{2, 3, 6, 7, 8, 9, 11, 12\}, D_{26} = \{2, 3, 5, 6, 9, 10, 12, 1\}, D_{27} = \{2, 3, 6, 7, 8, 9, 11, 12\}, D_{26} = \{2, 3, 5, 6, 9, 10, 12, 1\}, D_{27} = \{2, 3, 6, 7, 8, 9, 11, 12\}, D_{26} = \{2, 3, 5, 6, 9, 10, 12, 1\}, D_{27} = \{2, 3, 6, 7, 8, 9, 11, 12\}, D_{26} = \{2, 3, 5, 6, 9, 10, 12, 1\}, D_{27} = \{2, 3, 6, 7, 8, 9, 11, 12\}, D_{27} = \{2, 3, 7, 8, 9, 12\}, D_{27} = \{2, 3, 7, 8, 9, 12\}, D_{27} = \{2, 3, 7, 8,$ $D_{28} = \{2, 3, 6, 7, 8, 9, 12, 1\}, D_{29} = \{2, 3, 6, 7, 9, 10, 11, 12\}, D_{30} = \{2, 3, 6, 7, 9, 10, 12, 1\},$ $D_{31} = \{3, 4, 5, 6, 8, 9, 11, 12\}, D_{32} = \{3, 4, 5, 6, 8, 9, 12, 1\}, D_{33} = \{3, 4, 5, 6, 9, 10, 11, 12\},$ $D_{34} = \{3, 4, 5, 6, 9, 10, 12, 1\}, D_{35} = \{3, 4, 6, 7, 8, 9, 11, 12\}, D_{36} = \{3, 4, 6, 7, 8, 9, 12, 1\},$ $D_{40} = \{3, 4, 7, 8, 9, 10, 12, 1\}, D_{41} = \{3, 4, 7, 8, 10, 11, 12, 1\}, D_{42} = \{4, 5, 6, 7, 9, 10, 12, 1\},$ $D_{43} = \{4, 5, 6, 7, 10, 11, 12, 1\}, D_{44} = \{4, 5, 7, 8, 9, 10, 12, 1\}, D_{45} = \{4, 5, 7, 8, 10, 11, 12, 1\}.$

FIGURE 9. The Γ -paired dominating graph of C_{11}

5. Open Problem

In this paper, we have obtained the Γ -paired dominating graphs of P_n and C_n for $n \leq 13$. It seems that finding the Γ -paired dominating graphs of P_n and C_n is much more complicated when $n \geq 14$; this leads an open problem.

Acknowledgements

We would like to express our sincere thanks to the referees for their useful comments and suggestions. This research was supported by a Ph.D. scholarship from Thammasat University, 1/2018.

References

- H. Alizadeh, D. Gözüpek, Upper paired domination versus upper domination, Discrete Math. Theor. Comput. Sci. 23(3) (2021) 1–16.
- [2] A. Bień, Gamma graphs of some special classes of trees, Ann. Math. Sil. 29(1) (2015) 25-34.
- [3] E. Connelly, K. R. Hutson, S. T. Hedetniemi, A note on γ-Graphs, AKCE Int. J. Graphs Comb. 8(1) (2011) 23–31.
- [4] P. Dorbec, M. A. Henning, Upper paired-domination in claw-free graphs, J. Comb. Optim. 22(2) (2011) 235–251.
- [5] P. Dorbec, M. A. Henning, J. McCoy, Upper total domination versus upper paireddomination, Quaest. Math. 30(1) (2007) 1–12.

FIGURE 10. The Γ -paired dominating graph of C_{12}

- [6] P. Eakawinrujee, N. Trakultraipruk, γ-paired dominating graphs of cycles, Opuscula Math. 42(1) (2022) 31–54.
- [7] P. Eakawinrujee, N. Trakultraipruk, γ -paired dominating graphs of paths, Int. J. Math. Comput. Sci. 17(2) (2022) 739–752.
- [8] P. Eakawinrujee, N. Trakultraipruk, Γ-paired dominating graphs of some paths, MATEC Web Conf. 189 (2018) 03029.
- [9] G.H. Fricke, S.M. Hedetniemi, S.T. Hedetniemi, K.R. Hutson, γ -graphs of graphs, Discuss. Math. Graph Theory 31(3) (2011) 517–531.
- [10] T.W. Haynes, P.J. Slater, Paired-domination in graphs, Networks 32(3) (1998) 199– 206.
- [11] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
- [12] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (eds), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
- [13] S.A. Lakshmanan, A. Vijayakumar, The gamma graph of a graph, Graphs Combin. 7(1) (2010) 53–59.

- [14] R. Samanmoo, N. Trakultraipruk, N. Ananchuen, γ-independent dominating graphs of paths and cycles, Maejo Int. J. Sci. Technol. 13(3) (2019) 245–256.
- [15] S. Sanguanpong, N. Trakultraipruk, γ -induced-paired dominating graphs of paths and cycles, Discrete Math. Algorithms Appl., to appear.
- [16] N. Sridharan, S. Amutha, S. Rao, Induced subgraphs of gamma graphs, Discrete Math. Algorithms Appl. 5(3) (2013) 1350012, 5pp.
- [17] N. Sridharan, K. Subramanian, Trees and unicyclic graphs are γ -graphs, J. Combin. Math. Combin. Comput. 69 (2009) 231–236.
- [18] K. Subramanian, N. Sridharan, γ -graph of a graph, Bull. Kerala Math. Assoc. 5(1) (2008) 17–34.
- [19] A. Wongsriya, N. Trakultraipruk, γ -total dominating graphs of paths and cycles, ScienceAsia 43(5) (2017) 326–333.
- [20] W. Ulatowski, The paired-domination and the upper paired-domination numbers of graphs, Opuscula Math. 35(1) (2015) 127–135.