Γ-Paired Dominating Graphs of Some Paths and Some Cycles

Pannawat Eakawinrujee and Nantapath Trakultraipruk*
Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand
e-mail : p.eakawinrujee@gmail.com (P. Eakawinrujee); n.trakultraipruk@yahoo.com (N. Trakultraipruk)

Abstract

A set D of vertices in a graph G is a paired dominating set of G if every vertex of G is adjacent to some vertex in D and the subgraph of G induced by D contains a perfect matching. The maximum cardinality of a minimal paired dominating set of G is called the upper paired domination number, denoted by $\Gamma_{p r}(G)$. A minimal paired dominating set with cardinality $\Gamma_{p r}(G)$ is a $\Gamma_{p r}(G)$-set. The Γ-paired dominating graph $P D_{\Gamma}(G)$ of G is the graph whose vertices are $\Gamma_{p r}(G)$-sets and any two $\Gamma_{p r}(G)$-sets are adjacent in $P D_{\Gamma}(G)$ if they differ by exactly one vertex. In this paper, we first correct some results on the Γ-paired dominating graphs of some paths that appeared in [P. Eakawinrujee, N. Trakultraipruk, Γ-paired dominating graphs of some paths, MATEC Web Conf. 189 (2018) 03029] and then we determine the Γ-paired dominating graphs of some cycles.

MSC: 05C69
Keywords: paired dominating graph; upper paired dominating set; upper paired domination number; gamma graph

Submission date: 31.05.2022 / Acceptance date: 15.12.2022

1. Introduction

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. A set $D \subseteq V(G)$ is a dominating set of G if every vertex in $V(G) \backslash D$ is adjacent to at least one vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set of G. A $\gamma(G)$-set is a dominating set of G with cardinality $\gamma(G)$. For detailed surveys on domination parameters, see [11, 12].

The gamma graph $\gamma \cdot G$ of G is the graph with $V(\gamma \cdot G)$ as the set of all $\gamma(G)$-sets, and two vertices D_{1} and D_{2} of $\gamma \cdot G$ are adjacent if they satisfy the condition as follows:

$$
\begin{equation*}
D_{2}=\left(D_{1} \backslash\{u\}\right) \cup\{v\} \text { for some } u \in D_{1} \text { and } v \notin D_{1} . \tag{1.1}
\end{equation*}
$$

The gamma graph $\gamma \cdot G$ was introduced by Subramanian and Sridharan [18]. For additional results on $\gamma \cdot G$, see $[2,13,16,17]$

[^0]The gamma graph $G(\gamma)$ of G is the graph with $V(G(\gamma))=V(\gamma \cdot G)$, and two vertices of $G(\gamma)$ are adjacent if they satisfy the condition (1.1) and $u v \in E(G)$. The gamma graph $G(\gamma)$ was defined by Fricke et al. [9], and was further studied in [3].

The concept of a gamma graph $\gamma \cdot G$ using other types of domination has been studied by several authors. For example, the γ-total dominating graph, the γ-independent dominating graph, the γ-induced-paired dominating graph, and the γ-paired dominating graph were defined by Wongsriya and Trakultraipruk [19], Samanmoo et al. [14], Sanguanpong and Trakultraipruk [15], and Eakawinrujee and Trakultraipruk [6, 7], respectively.

A paired dominating set of G, introduced by Haynes and Slater [10], is a dominating set whose induced subgraph has a perfect matching. A paired dominating set D of G is minimal if no proper subset of D is a paired dominating set of G. The upper paired domination number $\Gamma_{p r}(G)$ of G is the maximum cardinality of a minimal paired dominating set of G. A minimal paired dominating set D is called a $\Gamma_{p r}(G)$-set if $|D|=\Gamma_{p r}(G)$. The upper paired domination was introduced by Dorbec et al. [5], and was further studied in $[1,4,20]$.

In [8], we defined the Γ-paired dominating graph $P D_{\Gamma}(G)$ of G to be the graph with $V\left(P D_{\Gamma}(G)\right)$ as the set of all $\Gamma_{p r}(G)$-sets, and two vertices D_{1} and D_{2} of $P D_{\Gamma}(G)$ are adjacent if they satisfy the condition (1.1). We presented the Γ-paired dominating graph of a path P_{n}, where $n \in\{2,3, \ldots, 13\}$. Unfortunately, there are some mistakes in these results when $n \in\{8,10,11,12,13\}$. In this paper, we correct these mistakes and then determine the Γ-paired dominating graphs of some cycles.

2. Preliminary Results

In this section, we provide some definitions and known results. We denote a path, a cycle, and a complete graph with n vertices by P_{n}, C_{n}, and K_{n}, respectively.

The paired domination number $\gamma_{p r}(G)$ of G is the minimum cardinality of a paired dominating set of G. Haynes and Slater [10] provided the paired domination numbers of paths and cycles.
Lemma 2.1 ([10]). For any integer $n \geq 3, \gamma_{p r}\left(P_{n}\right)=\gamma_{p r}\left(C_{n}\right)=2\left\lceil\frac{n}{4}\right\rceil$.
Dorbec et al. [5] established the upper paired domination numbers of paths.
Lemma 2.2 ([5]). For any integer $n \geq 2, \Gamma_{p r}\left(P_{n}\right)=8\left\lfloor\frac{n+1}{11}\right\rfloor+2\left\lfloor\frac{(n+1)(\bmod 11)}{3}\right\rfloor$.
Ulatowski [20] gave the upper paired domination numbers of cycles together with two additional results.
Lemma 2.3 ([20]). For any integer $n \geq 3, \Gamma_{p r}\left(C_{n}\right)=8\left\lfloor\frac{n}{11}\right\rfloor+2\left\lfloor\frac{n(\bmod 11)}{3}\right\rfloor$.
Proposition 2.4 ([20]). If $n \in\{2,3,4,5,6,7,9\}$, then $\Gamma_{p r}\left(P_{n}\right)=\gamma_{p r}\left(P_{n}\right)$.
Proposition 2.5 ([20]). If $n \in\{3,4,5,6,7,8,9,10,13\}$, then $\Gamma_{p r}\left(C_{n}\right)=\gamma_{p r}\left(C_{n}\right)$.
The Cartesian product $G \square H$ of graphs G and H is the graph with $V(G \square H)=V(G) \times$ $V(H)$ and two vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent if either $u_{1}=u_{2}$ and $v_{1} v_{2} \in$ $E(H)$, or $v_{1}=v_{2}$ and $u_{1} u_{2} \in E(G)$.

Let $P_{p}: 1,2,3, \ldots, p$ and $P_{q}: 1,2,3, \ldots, q$ be two paths, where p and q are positive integers. A stepgrid $S G_{p, q}$, defined by Fricke et al. [9], is the subgraph of $P_{p} \square P_{q}$ induced by $\{(x, y): 1 \leq x \leq p, 1 \leq y \leq q, x-y \leq 1\}$. For example, the stepgrids $S G_{1,1}, S G_{2,2}$, and $S G_{3,3}$ are shown in Figure 1.

Figure 1. The stepgrids $S G_{1,1}$ (left), $S G_{2,2}$ (center), and $S G_{3,3}$ (right)
Let $P_{p}: 1,2,3, \ldots, p, P_{q}: 1,2,3, \ldots, q$, and $P_{r}: 1,2,3, \ldots, r$ be three paths, where p, q, and r are positive integers. In [7], we defined a stepgrid $S G_{p, q, r}$ to be the graph with

$$
V\left(S G_{p, q, r}\right)=\left\{(x, y, z) \in V\left(P_{p} \square P_{q} \square P_{r}\right): x-y \leq 0, x-z \leq 1, y-z \geq 0\right\}
$$

and

$$
E\left(S G_{p, q, r}\right)=E\left(P_{p} \square P_{q} \square P_{r}\right) \cup\{(x, x, x)(x+1, x+1, x): 1 \leq x \leq p-1\} .
$$

For example, the stepgrids $S G_{2,2,1}$ and $S G_{3,3,2}$ are shown in Figure 2.

Figure 2. The stepgrids $S G_{2,2,1}$ (left) and $S G_{3,3,2}$ (right)
The γ-paired dominating graph $P D_{\gamma}(G)$ of G, defined in [7], is the graph whose vertices are minimum paired dominating sets, and two vertices D_{1} and D_{2} of $P D_{\gamma}(G)$ are adjacent if they satisfy the condition (1.1).

We determined the γ-paired dominating graphs of paths. These results are revealed in the following theorem.

Theorem 2.6 ([7]). For any integer $n \geq 2$,

$$
P D_{\gamma}\left(P_{n}\right) \cong \begin{cases}K_{1} & \text { if } n \equiv 0(\bmod 4) ; \\ P_{\frac{n+5}{4}} & \text { if } n \equiv 3(\bmod 4) ; \\ S G_{\frac{n+2}{4}, \frac{n+2}{4}} & \text { if } n \equiv 2(\bmod 4) ; \\ S G_{\frac{n+3}{4}, \frac{n+3}{4}, \frac{n-1}{4}} & \text { if } n \equiv 1(\bmod 4) .\end{cases}
$$

Let $G_{1}: 1,2,3, \ldots, 2 k-1$ and $G_{2}: 1,2,3, \ldots, 3 k-1$ be two paths, where k is a positive integer. In [6], we defined a loopgrid $L G_{k}$ of size k to be the graph with

$$
V\left(L G_{k}\right)=\left\{(x, y) \in V\left(G_{1} \square G_{2}\right): 0 \leq y-x \leq k\right\}
$$

and

$$
E\left(L G_{k}\right)=E\left(G_{1} \square G_{2}\right) \cup\{(1, y)(2 k-1, y+2 k-1): 1 \leq y \leq k\}
$$

Figure 3 illustrates the loopgrid of size 3 .

Figure 3. The loopgrid of size 3
Let $G_{1}: 1,2,3, \ldots, 2 k, G_{2}: 1,2,3, \ldots, 2 k$, and $G_{3}: 1,2,3, \ldots, 2 k+1$ be the paths, where k is a positive integer. We defined a loopbox $L B_{k}$ of size k in [6] to be the graph with
$V\left(L B_{k}\right)=\left\{(x, y, z) \in V\left(G_{1} \square G_{2} \square G_{3}\right): 0 \leq y-x \leq k,-1 \leq y-z \leq k-1,0 \leq z-x \leq k\right\}$ and

$$
\begin{aligned}
E\left(L B_{k}\right)= & E\left(G_{1} \square G_{2} \square G_{3}\right) \cup\{(x, x+k-1, x)(x, x+k, x+1): 1 \leq x \leq k\} \\
& \cup\{(x, x, x+1)(x+1, x+1, x+1): 1 \leq x \leq 2 k-1\} \\
& \cup\{(x, x+k, x+k)(x+1, x+k, x+k+1): 1 \leq x \leq k\} \\
& \cup\{(1, y, z)(z+k, 2 k, y+k+1): 1 \leq y, z \leq k,-1 \leq y-z \leq k-1\} \\
& \cup\{(1,1,1)(k+1,2 k, k+1)\} \cup\{(1, k, k+1)(2 k, 2 k, 2 k+1)\} .
\end{aligned}
$$

The loopboxes of size 1, 2, and 3 are shown in Figure 4.
We determined the γ-paired dominating graphs of cycles, which are shown in the following theorem.
Theorem 2.7 ([6]). For any integer $n \geq 3$,

$$
P D_{\gamma}\left(C_{n}\right) \cong \begin{cases}C_{3} \square C_{3} & \text { if } n=6 ; \\ 4 K_{1} & \text { if } n \equiv 0(\bmod 4) \text { and } n \neq 4 \\ C_{n} & \text { if } n \equiv 3(\bmod 4) \text { or } n=4 \\ L G_{\frac{n+2}{4}} & \text { if } n \equiv 2(\bmod 4) \text { and } n \neq 6 \\ L B_{\frac{n-1}{4}} & \text { if } n \equiv 1(\bmod 4) .\end{cases}
$$

Figure 4. The loopboxes of size 1 (top), of size 2 (middle), and of size 3 (bottom)

3. Г-Paired Dominating Graphs of Some Paths

In this section, we recall the Γ-paired dominating graphs of some paths that appear in [8]. For $n \in\{2,3,4,5,6,7,9\}$, we get the Γ-paired dominating graph of P_{n} as follows.

Theorem 3.1 ([8]). The Γ-paired dominating graph of P_{n} is

$$
P D_{\Gamma}\left(P_{n}\right) \cong \begin{cases}K_{1} & \text { if } n=4 ; \\ P_{\frac{n+5}{4}} & \text { if } n \in\{3,7\} ; \\ S G_{\frac{n+2}{4}, \frac{n+2}{4}} & \text { if } n \in\{2,6\} ; \\ S G_{\frac{n+3}{4}, \frac{n+3}{4}, \frac{n-1}{4}} & \text { if } n \in\{5,9\} .\end{cases}
$$

Next, we correct the results on the Γ-paired dominating graph of P_{n} for $n \in\{8,10,11,12,13\}$, which are appeared in [8]. By Theorem 2.2, we get that $\Gamma_{p r}\left(P_{8}\right)=6, \Gamma_{p r}\left(P_{10}\right)=$ $\Gamma_{p r}\left(P_{11}\right)=\Gamma_{p r}\left(P_{12}\right)=8$, and $\Gamma_{p r}\left(P_{13}\right)=10$. Again, we let $P_{n}: 1,2,3, \ldots, n$ be the path with n vertices.
Theorem 3.2. The Γ-paired dominating graph of P_{8} is the graph shown in Figure 5, where
$D_{1}=\{1,2,3,4,6,7\}, D_{2}=\{1,2,3,4,7,8\}, D_{3}=\{1,2,4,5,6,7\}, D_{4}=\{1,2,4,5,7,8\}$, $D_{5}=\{1,2,5,6,7,8\}, D_{6}=\{2,3,4,5,7,8\}, D_{7}=\{2,3,5,6,7,8\}$.
Theorem 3.3. The Γ-paired dominating graph of P_{10} is the graph shown in Figure 5, where $D_{1}=\{1,2,3,4,6,7,8,9\}, D_{2}=\{1,2,3,4,6,7,9,10\}, D_{3}=\{1,2,3,4,7,8,9,10\}$, $D_{4}=\{1,2,4,5,6,7,9,10\}, D_{5}=\{1,2,4,5,7,8,9,10\}, D_{6}=\{2,3,4,5,7,8,9,10\}$.

Figure 5. The Γ-paired dominating graphs of P_{8} (left) and P_{10} (right)
Theorem 3.4. The Γ-paired dominating graph of P_{11} is the graph shown in Figure 6, where $D_{1}=\{1,2,3,4,6,7,9,10\}, D_{2}=\{1,2,3,4,6,7,10,11\}, D_{3}=\{1,2,3,4,7,8,9,10\}$, $D_{4}=\{1,2,3,4,7,8,10,11\}, D_{5}=\{1,2,4,5,6,7,9,10\}, D_{6}=\{1,2,4,5,6,7,10,11\}$,
$D_{7}=\{1,2,4,5,7,8,9,10\}, D_{8}=\{1,2,4,5,7,8,10,11\}, D_{9}=\{1,2,4,5,8,9,10,11\}$,
$D_{10}=\{1,2,5,6,7,8,10,11\}, D_{11}=\{1,2,5,6,8,9,10,11\}, D_{12}=\{2,3,4,5,7,8,9,10\}$,
$D_{13}=\{2,3,4,5,7,8,10,11\}, D_{14}=\{2,3,4,5,8,9,10,11\}, D_{15}=\{2,3,5,6,7,8,10,11\}$, $D_{16}=\{2,3,5,6,8,9,10,11\}$.

Theorem 3.5. The Γ-paired dominating graph of P_{12} is the graph shown in Figure 7, where $D_{1}=\{1,2,3,4,6,7,10,11\}, D_{2}=\{1,2,3,4,7,8,10,11\}, D_{3}=\{1,2,3,4,7,8,11,12\}$, $D_{4}=\{1,2,4,5,6,7,10,11\}, D_{5}=\{1,2,4,5,7,8,10,11\}, D_{6}=\{1,2,4,5,7,8,11,12\}$,
$D_{7}=\{1,2,4,5,8,9,10,11\}, D_{8}=\{1,2,4,5,8,9,11,12\}, D_{9}=\{1,2,5,6,7,8,10,11\}$,
$D_{10}=\{1,2,5,6,7,8,11,12\}, D_{11}=\{1,2,5,6,8,9,10,11\}, D_{12}=\{1,2,5,6,8,9,11,12\}$,
$D_{13}=\{1,2,5,6,9,10,11,12\}, D_{14}=\{2,3,4,5,7,8,10,11\}, D_{15}=\{2,3,4,5,7,8,11,12\}$,
$D_{16}=\{2,3,4,5,8,9,10,11\}, D_{17}=\{2,3,4,5,8,9,11,12\}, D_{18}=\{2,3,5,6,7,8,10,11\}$,
$D_{19}=\{2,3,5,6,7,8,11,12\}, D_{20}=\{2,3,5,6,8,9,10,11\}, D_{21}=\{2,3,5,6,8,9,11,12\}$,
$D_{22}=\{2,3,5,6,9,10,11,12\}, D_{23}=\{2,3,6,7,8,9,11,12\}, D_{24}=\{2,3,6,7,9,10,11,12\}$.

Figure 6. The Γ-paired dominating graph of P_{11}

Figure 7. The Γ-paired dominating graph of P_{12}
Theorem 3.6. The Γ-paired dominating graph of P_{13} is the graph shown in Figure 8, where $D_{1}=\{1,2,3,4,6,7,8,9,11,12\}, D_{2}=\{1,2,3,4,6,7,8,9,12,13\}$,
$D_{3}=\{1,2,3,4,6,7,9,10,11,12\}, D_{4}=\{1,2,3,4,6,7,9,10,12,13\}$,
$D_{5}=\{1,2,3,4,6,7,10,11,12,13\}, D_{6}=\{1,2,3,4,7,8,9,10,12,13\}$,
$D_{7}=\{1,2,3,4,7,8,10,11,12,13\}, D_{8}=\{1,2,4,5,6,7,9,10,11,12\}$,
$D_{9}=\{1,2,4,5,6,7,9,10,12,13\}, D_{10}=\{1,2,4,5,6,7,10,11,12,13\}$,
$D_{11}=\{1,2,4,5,7,8,9,10,12,13\}, D_{12}=\{1,2,4,5,7,8,10,11,12,13\}$,
$D_{13}=\{1,2,5,6,7,8,10,11,12,13\}, D_{14}=\{2,3,4,5,7,8,9,10,12,13\}$,
$D_{15}=\{2,3,4,5,7,8,10,11,12,13\}, D_{16}=\{2,3,5,6,7,8,10,11,12,13\}$.

4. --Paired Dominating Graphs of Some Cycles

This secction shows the Γ-paired dominating graph of C_{n} for $n \in\{3,4, \ldots, 13\}$. We let $C_{n}: 1,2, \ldots, n, 1$ be the cycle with n vertices.

Note that if G is a graph with $\Gamma_{p r}(G)=\gamma_{p r}(G)$, then $P D_{\Gamma}(G) \cong P D_{\gamma}(G)$. By Proposition 2.5 and Theorem 2.7, we get the Γ-paired dominating graph of C_{n} for $n \in$ $\{3,4,5,6,7,8,9,10,13\}$ as follows.

Figure 8. The Γ-paired dominating graph of P_{13}
Theorem 4.1. The Γ-paired dominating graph of C_{n} is

$$
P D_{\Gamma}\left(C_{n}\right) \cong \begin{cases}C_{3} \square C_{3} & \text { if } n=6 ; \\ 4 K_{1} & \text { if } n=8 ; \\ C_{n} & \text { if } n \in\{3,4,7\} ; \\ L G_{\frac{n+2}{4}} & \text { if } n=10 ; \\ L B_{\frac{n-1}{4}} & \text { if } n \in\{5,9,13\} .\end{cases}
$$

By Theorem 2.3, we have $\Gamma_{p r}\left(C_{11}\right)=\Gamma_{p r}\left(C_{12}\right)=8$. Then we get the Γ-paired dominating graphs of C_{11} and C_{12} as follows.
Theorem 4.2. The Γ-paired dominating graph of C_{11} is the graph shown in Figure 9, where $D_{1}=\{1,2,3,4,6,7,8,9\}, D_{2}=\{1,2,3,4,6,7,9,10\}, D_{3}=\{1,2,3,4,7,8,9,10\}$, $D_{4}=\{1,2,4,5,6,7,9,10\}, D_{5}=\{1,2,4,5,6,7,10,11\}, D_{6}=\{1,2,4,5,7,8,9,10\}$,
$D_{7}=\{1,2,4,5,7,8,10,11\}, D_{8}=\{1,2,5,6,7,8,10,11\}, D_{9}=\{2,3,4,5,7,8,9,10\}$, $D_{10}=\{2,3,4,5,7,8,10,11\}, D_{11}=\{2,3,4,5,8,9,10,11\}, D_{12}=\{2,3,5,6,7,8,10,11\}$, $D_{13}=\{2,3,5,6,7,8,11,1\}, D_{14}=\{2,3,5,6,8,9,10,11\}, D_{15}=\{2,3,5,6,8,9,11,1\}$, $D_{16}=\{2,3,6,7,8,9,11,1\}, D_{17}=\{3,4,5,6,8,9,10,11\}, D_{18}=\{3,4,5,6,8,9,11,1\}$, $D_{19}=\{3,4,5,6,9,10,11,1\}, D_{20}=\{3,4,6,7,8,9,11,1\}, D_{21}=\{3,4,6,7,9,10,11,1\}$, $D_{22}=\{4,5,6,7,9,10,11,1\}$.

Theorem 4.3. The Γ-paired dominating graph of C_{12} is the graph shown in Figure 10, where $D_{1}=\{1,2,3,4,6,7,9,10\}, D_{2}=\{1,2,3,4,6,7,10,11\}, D_{3}=\{1,2,3,4,7,8,9,10\}$, $D_{4}=\{1,2,3,4,7,8,10,11\}, D_{5}=\{1,2,4,5,6,7,9,10\}, D_{6}=\{1,2,4,5,6,7,10,11\}$, $D_{7}=\{1,2,4,5,7,8,9,10\}, D_{8}=\{1,2,4,5,7,8,10,11\}, D_{9}=\{1,2,4,5,7,8,11,12\}$, $D_{10}=\{1,2,4,5,8,9,10,11\}, D_{11}=\{1,2,4,5,8,9,11,12\}, D_{12}=\{1,2,5,6,7,8,10,11\}$, $D_{13}=\{1,2,5,6,7,8,11,12\}, D_{14}=\{1,2,5,6,8,9,10,11\}, D_{15}=\{1,2,5,6,8,9,11,12\}$, $D_{16}=\{2,3,4,5,7,8,10,11\}, D_{17}=\{2,3,4,5,7,8,11,12\}, D_{18}=\{2,3,4,5,8,9,10,11\}$, $D_{19}=\{2,3,4,5,8,9,11,12\}, D_{20}=\{2,3,5,6,7,8,10,11\}, D_{21}=\{2,3,5,6,7,8,11,12\}$, $D_{22}=\{2,3,5,6,8,9,10,11\}, D_{23}=\{2,3,5,6,8,9,11,12\}, D_{24}=\{2,3,5,6,8,9,12,1\}$, $D_{25}=\{2,3,5,6,9,10,11,12\}, D_{26}=\{2,3,5,6,9,10,12,1\}, D_{27}=\{2,3,6,7,8,9,11,12\}$, $D_{28}=\{2,3,6,7,8,9,12,1\}, D_{29}=\{2,3,6,7,9,10,11,12\}, D_{30}=\{2,3,6,7,9,10,12,1\}$, $D_{31}=\{3,4,5,6,8,9,11,12\}, D_{32}=\{3,4,5,6,8,9,12,1\}, D_{33}=\{3,4,5,6,9,10,11,12\}$,
$D_{34}=\{3,4,5,6,9,10,12,1\}, D_{35}=\{3,4,6,7,8,9,11,12\}, D_{36}=\{3,4,6,7,8,9,12,1\}$, $D_{37}=\{3,4,6,7,9,10,11,12\}, D_{38}=\{3,4,6,7,9,10,12,1\}, D_{39}=\{3,4,6,7,10,11,12,1\}$, $D_{40}=\{3,4,7,8,9,10,12,1\}, D_{41}=\{3,4,7,8,10,11,12,1\}, D_{42}=\{4,5,6,7,9,10,12,1\}$, $D_{43}=\{4,5,6,7,10,11,12,1\}, D_{44}=\{4,5,7,8,9,10,12,1\}, D_{45}=\{4,5,7,8,10,11,12,1\}$.

Figure 9. The Γ-paired dominating graph of C_{11}

5. Open Problem

In this paper, we have obtained the Γ-paired dominating graphs of P_{n} and C_{n} for $n \leq 13$. It seems that finding the Γ-paired dominating graphs of P_{n} and C_{n} is much more complicated when $n \geq 14$; this leads an open problem.

Acknowledgements

We would like to express our sincere thanks to the referees for their useful comments and suggestions. This research was supported by a Ph.D. scholarship from Thammasat University, 1/2018.

References

[1] H. Alizadeh, D. Gözüpek, Upper paired domination versus upper domination, Discrete Math. Theor. Comput. Sci. 23(3) (2021) 1-16.
[2] A. Bień, Gamma graphs of some special classes of trees, Ann. Math. Sil. 29(1) (2015) 25-34.
[3] E. Connelly, K. R. Hutson, S. T. Hedetniemi, A note on γ-Graphs, AKCE Int. J. Graphs Comb. 8(1) (2011) 23-31.
[4] P. Dorbec, M. A. Henning, Upper paired-domination in claw-free graphs, J. Comb. Optim. 22(2) (2011) 235-251.
[5] P. Dorbec, M. A. Henning, J. McCoy, Upper total domination versus upper paireddomination, Quaest. Math. 30(1) (2007) 1-12.

Figure 10. The Γ-paired dominating graph of C_{12}
[6] P. Eakawinrujee, N. Trakultraipruk, γ-paired dominating graphs of cycles, Opuscula Math. 42(1) (2022) 31-54.
[7] P. Eakawinrujee, N. Trakultraipruk, γ-paired dominating graphs of paths, Int. J. Math. Comput. Sci. 17(2) (2022) 739-752.
[8] P. Eakawinrujee, N. Trakultraipruk, Г-paired dominating graphs of some paths, MATEC Web Conf. 189 (2018) 03029.
[9] G.H. Fricke, S.M. Hedetniemi, S.T. Hedetniemi, K.R. Hutson, γ-graphs of graphs, Discuss. Math. Graph Theory 31(3) (2011) 517-531.
[10] T.W. Haynes, P.J. Slater, Paired-domination in graphs, Networks 32(3) (1998) 199206.
[11] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[12] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (eds), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
[13] S.A. Lakshmanan, A. Vijayakumar, The gamma graph of a graph, Graphs Combin. 7(1) (2010) 53-59.
[14] R. Samanmoo, N. Trakultraipruk, N. Ananchuen, γ-independent dominating graphs of paths and cycles, Maejo Int. J. Sci. Technol. 13(3) (2019) 245-256.
[15] S. Sanguanpong, N. Trakultraipruk, γ-induced-paired dominating graphs of paths and cycles, Discrete Math. Algorithms Appl., to appear.
[16] N. Sridharan, S. Amutha, S. Rao, Induced subgraphs of gamma graphs, Discrete Math. Algorithms Appl. 5(3) (2013) 1350012, 5pp.
[17] N. Sridharan, K. Subramanian, Trees and unicyclic graphs are γ-graphs, J. Combin. Math. Combin. Comput. 69 (2009) 231-236.
[18] K. Subramanian, N. Sridharan, γ-graph of a graph, Bull. Kerala Math. Assoc. 5(1) (2008) 17-34.
[19] A. Wongsriya, N. Trakultraipruk, γ-total dominating graphs of paths and cycles, ScienceAsia 43(5) (2017) 326-333.
[20] W. Ulatowski, The paired-domination and the upper paired-domination numbers of graphs, Opuscula Math. 35(1) (2015) 127-135.

[^0]: *Corresponding author.

