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Abstract The aim of this paper is to propose a novel Noor iteration technique for approximating a
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1. Introduction and Preliminaries

Several fixed point results and iterative algorithms for approximating the fixed points
of nonlinear mappings in Hilbert and Banach spaces have been obtained in literature,
for example, see [4–7, 15, 17, 19, 25, 26, 37, 38, 49–53]. Beside the nonlinear mappings
involved in the study of fixed point theory, the role played by the spaces involved is also
very important. It is easier working with Banach space due to its convex structures.
However, metric space do not naturally enjoy this structure. Therefore the need to
introduce convex structures to it arises. The concept of convex metric space was first
introduced by Takahashi [54] who studied the fixed points for nonexpansive mappings
in the setting of convex metric spaces. Since then, several attempts have been made to
introduce different convex structures on metric spaces. An example of a metric space
with a convex structure is the hyperbolic space. Different convex structures have been
introduced on hyperbolic spaces resulting to different definitions of hyperbolic spaces (see
[21, 30, 42]). Although the class of hyperbolic spaces defined by Kohlenbach [30] is slightly
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restrictive than the class of hyperbolic spaces introduced in [21], it is however, more
general than the class of hyperbolic spaces introduced in [42]. Moreover, it is well-known
that Banach spaces and CAT(0) spaces are examples of hyperbolic spaces introduced in
[30]. Some other examples of this class of hyperbolic spaces includes Hadamard manifords,
Hilbert ball with the hyperbolic metric, Catesian products of Hilbert balls and R-trees,
see [8, 16, 21, 22, 30, 42].

The class of hyperbolic spaces, nonlinear in nature, is a general abstract theoretic set-
ting with rich geometrical structure for metric fixed point theory. The study of hyperbolic
spaces has been largely motivated and dominated by questions about hyperbolic groups,
one of the main objects of study in geometric group theory. Fixed point theory and hence
approximation techniques have been extended to hyperbolic spaces (see [1–3, 9, 43–45]
and references therein).

Throughout this paper, we work in the setting of hyperbolic spaces introduced by
Kohlenbach [30]. Recall that a hyperbolic space (X , d,H) is a metric space (X , d) together
with a mapping H : X × X × [0, 1]→ X satisfying

(H1) : d(z,H(x, y, β)) ≤ (1− β) d(z, x) + βd(z, y),
(H2) : d(H(x, y, β)),H(x, y, γ) = |β − γ| d(x, y),
(H3) : H(x, y, β) = H(y, x, (1− β)),
(H4) : d(H(x, z, β),H(y, w, β)) ≤ (1− β) d(x, y) + βd(z, w)

for all x, y, w, z ∈ X and β, γ ∈ [0, 1] .
A subset K of a hyperbolic space X is convex if H(x, y, β) ∈ K for all x, y ∈ K and

β ∈ [0, 1] .
Recall that a hyperbolic space (X , d,H) is said to be

(i) strictly convex [54] if for any u, v ∈ X and ψ ∈ [0, 1] , there exists a unique element
z ∈ X such that d(z, x) = βd(x, y) and d(z, y) = (1− β)d(x, y);
(ii) uniformly convex [48] if for all x, y, w ∈ X , r > 0 and ε ∈ (0, 2], there exists δ ∈ (0, 1]
such that d(H(x, y, 12 ), x) ≤ (1− δ)r whenever d(x,w) ≤ r, d(y, w) ≤ r and d(x, y) ≥ εr.

Recall that a mapping η : (0,∞) × (0, 2] → (0, 1] providing such δ = η(r, ε) for given
r > 0 and ε ∈ (0, 2] is called modulus of uniform convexity. We call η-monotone if it
decreases with r (for a fixed ε). A uniformly convex hyperbolic space is strictly convex
(see [31]).

Let (X , d) be a metric space, and let K be a nonempty subset of X . We denote the
fixed point set of a mapping T by

F (T ) = {x ∈ K : T x = x}

and

d(x, F (T )) = inf{d(x, p) : p ∈ F (T )}.

A self-mapping T : K → K is said to be
(i) nonexpansive if d(T x, T y) ≤ d(x, y) for all x, y ∈ K.
(ii) asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞) with kn → 1
such that d(T nx, T ny) ≤ knd(x, y) for all x, y ∈ K and n ≥ 1.
(iii) uniformly L-Lipschitzian if there exists a constant L > 0 such that

d(T nx, T ny) ≤ Ld(x, y)

for all x, y ∈ K and n ≥ 1.
From the above definitions, one clearly sees that each nonexpansive mapping is an

asymptotically nonexpansive mapping with kn = 1, ∀n ≥ 1. Both nonexpansive mappings
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and asymptotically nonexpansive mappings are Lipschitzian continuous. To be more pre-
cise, each nonexpansive mapping is L-Lipschitzian and each asymptotically nonexpansive
mapping is uniformly L-Lipschitzian mapping with L = sup

n∈N
{kn}.

Recently, various fixed-point iteration processes for nonexpansive mappings have been
studied extensively by many authors [27, 33, 39, 47, 55].

In 1972, Goebel and Kirk [20] introduced the class of asymptotically nonexpansive self-
mappings. They proved that if K is nonempty closed convex subset of a real uniformly
convex Banach space and T is an asymptotically nonexpansive self-mapping on K, then
T has a fixed point.

In 1991, Schu [46] introduced the following modified Mann iteration process

xn+1 = (1− αn)xn + αnT nxn, n ≥ 1, (1.1)

to approximate fixed points of asymptotically nonexpansive self-mappings in a Hilbert
space. Since then, Schus iteration process (1.1) has been widely used to approximate
fixed points of asymptotically nonexpansive self-mappings in Hilbert spaces or Banach
spaces; see, e.g., [12, 14, 32] and the references therein.

Recall that a subset K of space X is said to be a retract if there exists a continuous
mapping P : X → K such that Px = x, ∀x ∈ K. P : X → K is said to be a retraction
if P2 = P. If P is a retraction, then x = Px for all x in the range of P. We refer to
[10, 22, 41] for more details.

For any nonempty subset K of a real metric space (X , d), let P : X → K be a non-
expansive retraction of X onto K. Then, T : K → X is said to be an asymptotically
nonexpansive nonself-mapping (see [13]) if there exists a sequence {kn} ⊂ [1,∞) with
kn → 1 as n→∞ such that

d(T (PT )
n−1

x, T (PT )
n−1

y) ≤ knd (x, y) (1.2)

for all x, y ∈ K and n ≥ 1. We denote by (PT )
0

the identity map from K onto itself. We
see that if T is a self-mapping.

For asymptotically nonexpansive nonself-mappings Chidume, Ofoedu, and Zegeye [13]
studied the following iterative sequence

xn+1 = P((1− αn)xn + αnT (PT )n−1xn) (1.3)

to approximate some fixed point of T . They obtained a convergence theorem under
suitable conditions in real uniformly convex Banach spaces. If T is a self-mapping, then
P becomes the identity mapping. Hence, (1.3) reduces to (1.1).

In 2006, Wang [58] considered the following iteration process which is a generalization
of (1.3) (see also [57]),

yn = P((1− βn)xn + βnT2(PT 2)n−1xn),

xn+1 = P((1− αn)xn + αnT1(PT 1)n−1yn), n ≥ 1, (1.4)

where T1, T2 : K → E are asymptotically nonexpansive nonself-mappings and {αn} and
{βn} are real sequences in [0,1). They obtain a strong convergence theorem under weak
restrictions imposed on the control parameters.

In 2012, Guo, Cho and Guo [23] further studied the following iteration scheme

xn = P((1− βn)Sn2 xn + βnT2(PT 2)n−1xn),

xn+1 = P((1− αn)Sn1 xn + αnT1(PT 1)n−1xn), n ≥ 1, (1.5)
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where S1,S2 : K → K are asymptotically nonexpansive self-mappings, T1, T2 : K → E
are asymptotically nonexpansive nonself-mappings and {αn}, {βn} are two sequences in
[0,1). Weak and strong convergence theorems of common fixed points of S1,S2, T1 and
T2 were obtained.

Another classical iteration precess was introduced by Noor [34] which is formulated as
follows: x1 = x ∈ K,

zn = (1− γn)xn + γnSxn,
yn = (1− βn)xn + βnSzn,

xn+1 = (1− αn)xn + αnSyn, n ≥ 1, (1.6)

where {αn}, {βn} and {γn} are real sequences in [0,1]. Such iterative method is called
Noor iteration. Because of its simplicity, the method (1.6) has been widely utilized to
solve the fixed point problem, and as a result, it has been enhanced by many works, as
seen in [28, 35, 36, 40].

Glowinski and Le Tallec [18] employed three-step iterative approaches to find solutions
for the problem of elastoviscoplasticity, eigenvalue computation and the theory of liquid
crystals. In [18], it was shown that the three-step iterative process yields better numerical
results than the estimated iterations in two and one steps. In 1998, Haubruge, Nguyen
and Strodiot [24] studied the convergence analysis of three-step methods of Glowinski
and Le Tallec [18] and applied these methods to obtain new splitting-type algorithms for
solving variation inequalities, separable convex programming and minimization of a sum
of convex functions. They also proved that three-step iterations lead to highly parallelized
algorithms under certain conditions. As a result, we conclude that the three-step approach
plays an important and substantial role in the solution of numerous problems in pure and
applied sciences.

Let K be a nonempty closed convex subset of a real uniformly convex hyperbolic space
(X , d,H) and P : X → K be a nonexpansive retraction of X onto K. Let S1,S2,S3 : K →
K be three asymptotically nonexpansive self-mappings and T1, T2, T3 : K → X be three
asymptotically nonexpansive nonself-mappings. For an arbitrary x1 ∈ K, we suggest
the following novel Noor iterative scheme for mixed type asypmtotically nonexpansive
mappings

zn = P(H(Sn1 xn, T1(PT 1)n−1xn, αn)),

yn = P(H(Sn2 xn, T2(PT 2)n−1zn, βn)),

xn+1 = P(H(Sn3 xn, T3(PT 3)n−1yn, γn)), (1.7)

where {αn}, {βn} and {γn} are real sequences in [0,1).
In this paper, we, motivated by the above recent results, study the strong convergence

of the novel Noor iteration scheme for three asymptotically nonexpansive self-mappings
S1,S2,S3, and three asymptotically nonexpansive nonself-mappings T1, T2, T3 in the set-
ting of uniformly convex hyperbolic spaces. The results presented in this paper extend and
improve some recent results announced in the literature. To show our main convergence
theorems, we shall need the following useful lemmas.

Lemma 1.1. [56] Let {an},{bn} and {cn} be sequences of non-negative real numbers such
that an+1 ≤ (1 + bn)an + cn, ∀n ≥ 1. If

∑∞
n=1 bn <∞ and

∑∞
n=1 cn <∞, then lim

n→∞
an

exists.
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Lemma 1.2. [29] Let xn and yn be two sequences of a uniformly convex hyperbolic
space (X , d,H) such that, for R ∈ [0,∞), lim

n→∞
sup d(xn, a) ≤ R, lim

n→∞
sup d(yn, a) ≤ R

and lim
n→∞

d(H(xn, yn, αn)) = R where αn ∈ [a, b] with 0 < a < b < 1, then we have,

lim
n→∞

d(xn, yn) = 0.

2. Main Results

In this section, we consider a uniformly convex hyperbolic space (X , d,H) and prove a
strong convergence theorem for X , using the iterative scheme given in (1.7).

Lemma 2.1. Let (X , d,H) be a uniformly convex hyperbolic space and K a nonempty
closed convex subset of X . Let S1,S2,S3 : K → K be three asymptotically nonexpan-

sive selfmappings with {k(1)n }, {k(2)n }, {k(3)n } ⊂ [1,∞) and T1, T2, T3 : K → X be three

asymptotically nonexpansive nonselfmappings with {l(1)n }, {l(2)n }, {l(3)n } ⊂ [1,∞) such that,∑∞
n=1(k

(i)
n − 1) < ∞ and

∑∞
n=1(l

(i)
n − 1) < ∞ for i = 1, 2, 3, respectively and Ω =

F (S1)
⋂
F (S2)

⋂
F (S3)

⋂
F (T1)

⋂
F (T2)

⋂
F (T3) 6= ∅. Let {xn} be a sequence defined by

(1.7) where {αn}, {βn} and {γn} are real sequences in [0, 1). Then limn→∞ d(xn, v) exists
for any v ∈ Ω.

Proof . Using (1.7) and setting hn = max{k(1)n , k
(2)
n , k

(3)
n , l

(1)
n , l

(2)
n , l

(3)
n }, we have

d(zn, v) = d(P(H(Sn1 xn, T1(PT 1)n−1xn, αn)), v)

≤ d(H(Sn1 xn, T1(PT 1)n−1xn, αn), v)

≤ (1− αn)d(Sn1 xn, v) + αnd(T1(PT 1)n−1xn, v)

≤ (1− αn)hnd(xn, v) + αnhnd(xn, v)

= hnd(xn, v) (2.1)

and

d(yn, v) = d(P(H(Sn2 xn, T2(PT 2)n−1zn, βn)), v)

= d(P(H(Sn2 xn, T2(PT 2)n−1(P(H(Sn1 xn, T1(PT 1)n−1xn, αn))), βn)), v)

≤ d(H(Sn2 xn, T2(PT 2)n−1(H(Sn1 xn, T1(PT 1)n−1xn, αn)), βn), v)

≤ (1− βn)d(Sn2 xn, v) + βnd(T1(PT 1)n−1(H(Sn1 xn, T1(PT 1)n−1xn, αn)), v)

≤ (1− βn)h2nd(xn, v) + βnh
2
nd(xn, v)

= h2nd(xn, v). (2.2)

Also,

d(xn+1, v) = d(P(H(Sn3 xn, T3(PT 3)n−1yn, γn)), v)

= d(P(H(Sn3 xn, T3(PT 3)n−1(P(H(Sn2 xn, T2(PT 2)n−1(P(H(Sn1 xn,
T1(PT 1)n−1xn, αn))), βn))), γn)), v)

≤ d(H(Sn3 xn, T3(PT 3)n−1(H(Sn2 xn, T2(PT 2)n−1(H(Sn1 xn,
T1(PT 1)n−1xn, αn)), βn)), γn), v)

≤ (1− γn)d(Sn3 xn, v) + γnd(T3(PT 3)n−1(H(Sn2 xn, T2(PT 2)n−1(H(Sn1 xn
T1(PT 1)n−1xn, αn)), βn)), v)
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≤ (1− γn)h3nd(xn, v) + γnh
3
nd(xn, v)

= (1 + (h3n − 1))d(xn, v). (2.3)

By the hypothesis,
∑∞

n=1(k
(i)
n −1) <∞ and

∑∞
n=1(l

(i)
n −1) <∞ for i = 1, 2, 3. Therefore,∑∞

n=1(h3n − 1) <∞ for i = 1, 2, 3. Using Lemma 1.1, lim
n→∞

d(xn, v) exists.

Lemma 2.2. Let (X , d,H) be a uniformly convex hyperbolic space and K a nonempty
closed convex subset of X . Let S1,S2,S3 : K → K be three asymptotically nonex-

pansive selfmappings with {k(1)n }, {k(2)n }, {k(3)n } ⊂ [1,∞) and T1, T2, T3 : K → X be

three asymptotically nonexpansive nonself-mappings with {l(1)n }, {l(2)n }, {l(3)n } ⊂ [1,∞)

such that
∑∞

n=1(k
(i)
n − 1) < ∞ and

∑∞
n=1(l

(i)
n − 1) < ∞ for i = 1, 2, 3, respectively

and Ω = F (S1)
⋂
F (S2)

⋂
F (S3)

⋂
F (T1)

⋂
F (T2)

⋂
F (T3) 6= ∅. Let {xn} be the sequence

defined by (1.7) and the following conditions hold:
(i) {αn}, {βn} and {γn} are three real sequences in [ε, 1− ε] forsome ε ∈ (0, 1),
(ii) d(x, Tiy) ≤ d(Six, Tiy) for all x, y ∈ K and i = 1, 2, 3.

Then lim
n→∞

d(xn, Sixn) = lim
n→∞

d(xn, Tixn) = 0 for i = 1, 2, 3.

Proof . For any given v ∈ Ω, lim
n→∞

d(xn, q) exists, by Lemma 2.1.

Taking hn = max{k(1)n , k
(2)
n , k

(3)
n , l

(1)
n , l

(2)
n , l

(3)
n }. Suppose that lim

n→∞
(xn, v) = c. By (2.3)

and
∑∞

n=1(h3n − 1) <∞, we have

lim
n→∞

d(P(H(Sn3 xn, T3(PT 3)n−1yn, γn)), v) = c (2.4)

and
lim
n→∞

sup d(Sn3 xn, v) ≤ lim
n→∞

suphnd(xn, v) = c. (2.5)

Taking lim sup on both sides of (2.2) we obtain,

lim
n→∞

sup d(yn, v) ≤ c,

and so we have,

lim
n→∞

sup d(T3(PT 3)n−1yn, v) ≤ lim
n→∞

sup d(yn, v) ≤ c. (2.6)

Using (2.4), (2.5) and (2.6), we have

lim
n→∞

d(Sn3 xn, T3(PT 3)n−1yn) = 0. (2.7)

By the condition (ii) , we have

d(xn, T3(PT 3)n−1yn) ≤ d(Sn3 xn, T3(PT 3)n−1yn). (2.8)

It follows from (2.7) and (2.8) that

lim
n→∞

d(xn, T3(PT 3)n−1yn) = 0. (2.9)

In additon,
d(xn, v) ≤ d(xn, T3(PT 3)n−1yn) + d(T3(PT 3)n−1yn, v)

≤ d(xn, T3(PT 3)n−1yn) + hnd(yn, v). (2.10)

In inequality (2.10), taking infimum on both sides and applying (2.9), we obtain,

lim
n→∞

inf d(yn, v) ≥ c.
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Since lim
n→∞

sup d(yn, v) ≤ c. Therefore, lim
n→∞

d(yn, v) = c. Using the arguments in (2.2)

and by
∑∞

n=1(h
(2)
n − 1) <∞, we have

lim
n→∞

d(H(Sn2 xn, T2(PT 2)n−1zn, βn), v) = c. (2.11)

In additon,

lim
n→∞

sup d(Sn2 xn, v) ≤ lim
n→∞

suphnd(xn, v) = c. (2.12)

Taking lim sup on both sides of (2.1), we have

lim
n→∞

sup d(zn, v) ≤ c. (2.13)

Using (2.13), we have

lim
n→∞

sup d(T2(PT 2)n−1zn, v) ≤ lim
n→∞

suphnd(zn, v) ≤ c. (2.14)

Applying by Lemma 1.2, using (2.11), (2.12) and (2.14), we have

lim
n→∞

d(Sn2 xn, T2(PT 2)n−1zn) = 0. (2.15)

From condition (ii), we get

d(xn, T2(PT 2)n−1zn) ≤ d(Sn2 xn, T2(PT 2)n−1zn). (2.16)

It follows from (2.15) and (2.16) that

lim
n→∞

d(xn, T2(PT 2)n−1zn) = 0. (2.17)

In addition,

d(xn, v) ≤ d(xn, T2(PT 2)n−1zn) + d(T2(PT 2)n−1zn, v)

≤ d(xn, T2(PT 2)n−1zn) + hnd(zn, v). (2.18)

In the inequality (2.18), taking infimum on both sides and applying (2.17), we obtain
lim
n→∞

inf d(zn, v) ≥ c. Since lim
n→∞

sup d(zn, v) ≤ c. Therefore, lim
n→∞

d(zn, v) = c. Using the

arguments in (2.1) and by
∑∞

n=1(hn − 1) <∞ we have,

lim
n→∞

d(H(Sn1 xn, T1(PT 1)n−1xn, αn), v) = c. (2.19)

In addition,

lim
n→∞

sup d(Sn1 xn, v) ≤ lim
n→∞

suphnd(xn, v) = c (2.20)

and

lim
n→∞

sup d(T1(PT 1)n−1xn, v) ≤ lim
n→∞

suphnd(xn, v) = c. (2.21)

Applying by Lemma 1.2, using (2.19), (2.20) and (2.21), again we have

lim
n→∞

d(Sn1 xn, T1(PT 1)n−1xn) = 0. (2.22)

From condition (ii), we get

d(xn, T1(PT 1)n−1xn) ≤ d(Sn1 xn, T1(PT 1)n−1xn). (2.23)

It follows from (2.22) and (2.23) that

lim
n→∞

d(xn, T1(PT 1)n−1xn) = 0. (2.24)
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Using (1.7), we have

d(zn,Sn1 xn) ≤ (1− αn)d(Sn1 xn,Sn1 xn) + αnd(Sn1 xn, T1(PT 1)n−1xn)

= αnd(Sn1 xn, T1(PT 1)n−1xn).

It follows from (2.22) that

lim
n→∞

d(zn,Sn1 xn) = 0. (2.25)

Since

d(zn, xn) ≤ d(zn,Sn1 xn) + d(Sn1 xn, T1(PT 1)n−1xn) + d(T1(PT 1)n−1xn, xn).

It follows from (2.22), (2.24) and (2.25) that

lim
n→∞

d(zn, xn) = 0. (2.26)

In addition,

d(xn,Sn1 xn) ≤ d(xn, zn) + d(zn,Sn1 xn).

Following from (2.25) and (2.26), we have

lim
n→∞

d(xn,Sn1 xn) = 0. (2.27)

From (1.7), we have

d(yn,Sn2 xn) ≤ βnd(Sn2 xn, T2(PT 2)n−1zn). (2.28)

Following from (2.15) and (2.28), we have

lim
n→∞

d(yn,Sn2 xn) = 0. (2.29)

Furthermore,

d(yn, xn) ≤ d(yn,Sn2 xn) + d(Sn2 xn, T2(PT 2)n−1zn) + d(T2(PT 2)n−1zn, xn),

by using (2.15), (2.17) and (2.29), we have

lim
n→∞

d(yn, xn) = 0. (2.30)

Since

d(xn,Sn2 xn) ≤ d(xn, yn) + d(yn,Sn2 xn).

Using (2.29) and (2.30), we have

lim
n→∞

d(xn,Sn2 xn) = 0. (2.31)

Since

d(xn+1,Sn3 xn) = d(P(H(Sn3 xn, T3(PT 3)n−1yn, γn)),Sn3 xn)

≤ (1− γn)d(Sn3 xn,Sn3 xn) + γnd(T3(PT 3)n−1yn,Sn3 xn)

≤ γnd(T3(PT 3)n−1yn,Sn3 xn).

Using (2.7), we have

lim
n→∞

d(xn+1,Sn3 xn) = 0. (2.32)

In addition,

d(Sn3 xn, T3(PT 3)n−1xn) ≤ d(Sn3 xn, T3(PT 3)n−1yn) + d(T3(PT 3)n−1yn, T3(PT 3)n−1xn)

≤ d(Sn3 xn, T3(PT 3)n−1yn) + hnd(yn, xn).
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It follows from (2.7) and (2.30) that

lim
n→∞

d(Sn3 xn, T3(PT 3)n−1xn) = 0. (2.33)

By condition (ii), we know that

d(xn, T3(PT 3)n−1xn) ≤ d(Sn3 xn, T3(PT 3)n−1xn).

Using (2.33), we have

lim
n→∞

d(xn, T3(PT 3)n−1xn) = 0. (2.34)

In addition,

d(Sn2 xn, T2(PT 2)n−1xn) ≤ d(Sn2 xn, T2(PT 2)n−1zn) + d(T2(PT 2)n−1zn, T2(PT 2)n−1xn)

≤ d(Sn2 xn, T2(PT 2)n−1zn) + hnd(zn, xn).

Using (2.15) and (2.26), we have

lim
n→∞

d(Sn2 xn, T2(PT 2)n−1xn) = 0. (2.35)

Again by condition (ii), using (2.35), we also have

d(xn, T2(PT 2)n−1xn) ≤ d(Sn2 xn, T2(PT 2)n−1xn)

→ 0 (as n→∞). (2.36)

Using (2.26), (2.32) and (2.33), we have

d(xn+1, T3(PT 3)n−1zn) ≤ d(xn+1,Sn3 xn) + d(Sn3 xn, T3(PT 3)n−1xn)

+d(T3(PT 3)n−1xn, T3(PT 3)n−1zn)

≤ d(xn+1,Sn3 xn) + d(Sn3 xn, T3(PT 3)n−1xn) + hnd(xn, zn)

→ 0 (as n→∞). (2.37)

Since

d(Sn3 xn, xn) ≤ d(Sn3 xn, T3(PT 3)n−1xn) + d(xn, T3(PT 3)n−1xn).

Using (2.33) and (2.44), we have

lim
n→∞

d(Sn3 xn, xn) = 0. (2.38)

Since

d(Sn3 xn, T2(PT 2)n−1xn) ≤ d(Sn3 xn, xn) + d(xn, T2(PT 2)n−1xn).

It follows from (2.36) and (2.38) that

lim
n→∞

d(Sn3 xn, T2(PT 2)n−1xn) = 0. (2.39)

In addition,

d(xn+1, T2(PT 2)n−1zn) ≤ d(xn+1,Sn3 xn) + d(Sn3 xn, T2(PT 2)n−1xn) + d(T2(PT 2)n−1xn,

T2(PT 2)n−1zn)

≤ d(xn+1,Sn3 xn) + d(Sn3 xn, T2(PT 2)n−1xn) + hnd(xn, zn).

Using (2.26), (2.32) and (2.39), we have

lim
n→∞

d(xn+1, T2(PT 2)n−1zn) = 0. (2.40)
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Since

d(Sn3 xn, T1(PT 1)n−1xn) ≤ d(Sn3 xn, xn) + d(xn, T1(PT 1)n−1xn).

Using (2.24) and (2.38), we have

lim
n→∞

d(Sn3 xn, T1(PT 1)n−1xn) = 0. (2.41)

Moreover, we have

d(xn+1, T1(PT 1)n−1zn) ≤ d(xn+1,Sn3 xn) + d(Sn3 xn, T1(PT 1)n−1xn) + d(T1(PT 1)n−1xn,

T1(PT 1)n−1zn)

≤ d(xn+1,Sn3 xn) + d(Sn3 xn, T1(PT 1)n−1xn) + hnd(xn, zn).

It follows from (2.26), (2.32) and (2.41) that

lim
n→∞

d(xn+1, T1(PT 1)n−1zn) = 0. (2.42)

Again, since (PT i)(PT i)
n−2zn−1, xn ∈ K for i = 1, 2, 3 and T1, T2, and T3 are three

asymptotically nonexpansive nonself-mappings, we have

d(Ti(PT i)
n−1zn−1, Tixn) = d(Ti(PT i)(PT i)

n−2zn−1, Ti(Pxn))

≤ max{l(1)1 , l
(2)
1 , l

(3)
1 }d((PT i)(PT i)

n−2zn−1,Pxn)

≤ max{l(1)1 , l
(2)
1 , l

(3)
1 }d(Ti(PT i)

n−2zn−1, xn). (2.43)

For i = 1, 2, 3, using (2.37), (2.40) and(2.42) in (2.43), we have

lim
n→∞

d(Ti(PT i)
n−1zn−1, Tixn) = 0. (2.44)

Since

d(xn+1, zn) ≤ d(xn+1, T2(PT 2)n−1zn) + d(T2(PT 2)n−1zn, xn) + d(xn, zn),

from (2.17), (2.26) and (2.40), we have

lim
n→∞

d(xn+1, zn) = 0. (2.45)

In addition, for i = 1, 2, 3, we have

d(xn, Tixn) ≤ d(xn, Ti(PT i)
n−1xn) + d(Ti(PT i)

n−1xn, Ti(PT i)
n−1zn−1)

+d(Ti(PT i)
n−1zn−1, Tixn)

≤ d(xn, Ti(PT i)
n−1xn) + max{sup

n≥1
l(1)n , sup

n≥1
l(2)n , sup

n≥1
l(3)n }d(xn, zn−1)

+d(Ti(PT i)
n−1zn−1, Tixn).

Thus, it follows from (2.24), (2.34), (2.36), (2.44) and (2.45), we have

lim
n→∞

d(xn, T1xn) = lim
n→∞

d(xn, T2xn) = lim
n→∞

d(xn, T3xn) = 0.

The first part of the theorem is hence proved. We prove the next part of the theorem, ie.,

lim
n→∞

d(xn,S1xn) = lim
n→∞

d(xn,S2xn) = lim
n→∞

d(xn,S3xn) = 0.
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In fact, for i = 1, 2, 3, we have

d(xn,Sixn) ≤ d(xn, Ti(PT i)
n−1xn) + d(Ti(PT i)

n−1xn,Sixn)

≤ d(xn, Ti(PT i)
n−1xn) + d(Ti(PT i)

n−1xn,Sni xn).

Thus, it follows from (2.22), (2.24), (2.33), (2.34), (2.35) and (2.36) that

lim
n→∞

d(xn,S1xn) = lim
n→∞

d(xn,S2xn) = lim
n→∞

d(xn,S3xn) = 0.

The proof is completed.

Let {an} be a sequence that converges to a, with an 6= a for all n. If positive constants

λ and ϑ exist with lim
n→∞

|an+1 − a|
|an − a|ϑ

= λ, then {an} converges to a of order ϑ, with

asymptotic error constant λ. If ϑ = 1 (and λ < 1), the sequence is linearly convergent
and if ϑ = 2, the sequence is quadratically convergent (see [11]).

The following example presents the condition (ii) in Lemma 2.2.

Example 2.1. [32] Let X be a real line with metric d(x, y) = |x − y| and K = [−1, 1].
Define H : X × X × [0, 1] → X by H(x, y, α) := αx + (1 − α)y for all x, y ∈ X and
α ∈ [0, 1]. Then (X , d,H) is complete uniformly hyperbolic space with a monotone
modulus of uniform convexity and K is a nonempty closed convex subset of X . Define
two mappings S, T : K → K by

T x =

 −2 sin
x

2
, if x ∈ [0, 1],

2 sin
x

2
, if x ∈ [−1, 0)

and

Sx =

{
x, if x ∈ [0, 1],
−x, if x ∈ [−1, 0).

Clearly, F (T ) = {0} and F (S) = {x ∈ K; 0 ≤ x ≤ 1}. Now, we show that T is
nonexpansive. In fact, if x, y ∈ [0, 1] or x, y ∈ [−1, 0), then

d(T x, T y) = |T x− T y| = 2| sin x
2
− sin

y

2
| ≤ |x− y| = d(x, y).

If x ∈ [0, 1] and y ∈ [−1, 0) or x ∈ [−1, 0) and y ∈ [0, 1], then

d(T x, T y) = |T x− T y|

= 2| sin x
2

+ sin
y

2
|

= 4| sin x+ y

4
cos

x− y
4
|

≤ |x+ y|
≤ |x− y|
= d(x, y).

That is, T is nonexpansive. It follows that T is an asymptotically nonexpansive mapping
with kn = 1 for each n ≥ 1. Similarly, we can show that S is an asymptotically nonex-
pansive mapping with ln = 1 for each n ≥ 1. Next, to show that S and T satisfy the
condition (ii) in Lemma 2.2, we have to consider the following cases:
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Case 1. Let x, y ∈ [0, 1]. It follows that

d(x, T y) = |x− T y| = |x+ 2 sin
y

2
| = |Sx− T y| = d(Sx, T y).

Case 2. Let x, y ∈ [−1, 0). It follows that

d(x, T y) = |x− T y| = |x− 2 sin
y

2
| ≤ | − x− 2 sin

y

2
| = |Sx− T y| = d(Sx, T y).

Case 3. Let x ∈ [−1, 0) and y ∈ [0, 1]. It follows that

d(x, T y) = |x− T y| = |x+ 2 sin
y

2
| ≤ | − x+ 2 sin

y

2
| = |Sx− T y| = d(Sx, T y).

Case 4. Let x ∈ [0, 1] and y ∈ [−1, 0]. It follows that

d(x, T y) = |x− T y| = |x− 2 sin
y

2
| = |Sx− T y| = d(Sx, T y).

Hence the condition (ii) in Lemma 2.2 is satisfied. In addition, let αn =
n

2n+ 1
, βn =

n

3n+ 1
and γn =

n

4n+ 1
, ∀n ≥ 1. Consequently, the conditions of Lemma 2.2 are fulfilled.

Thus, the convergence of the sequence {xn} generated by (1.7) to a point 0 ∈ F (T )∩F (S)
can be recived.

Now, we present some numerical examples to illustrate the convergence and efficiency of
the proposed algorithms. We choose x1 = 1 and run our process within 100 iterations. All
codes were written in Matlab 2022a. We obtain the iteration steps and its amplification
factor of the proposed algorithms as shown in Table 1. For convenience, we call the
iteration (1.7) the proposed iteration process.

Table 1. Numerical experiment of the proposed method for Example 2.1

The Proposed Iteration Process

Iteration Number (n) |xn|
|xn+1|
|xn|

1 1.0000e+00 1.8283e-01

2 1.8283e-01 1.1064e-01
3 2.0229e-02 7.6918e-02

4 1.5559e-03 5.8824e-02

5 9.1526e-05 4.7619e-02
.
..

.

..
.
..

10 2.6686e-15 2.4390e-02
...

...
...

20 1.7026e-33 1.2346e-02
...

...
...

40 2.0079e-75 6.2112e-03
...

...
...

60 1.0911e-121 4.1494e-03
...

...
...

80 8.0992e-171 3.1153e-03
...

...
...

100 4.2888e-222 2.4938e-03
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Table 1 show that the proposed method converges to zero. It can be concluded that
the proposed method is linearly convergent and its amplification factor less than 0.003.

Next, we can prove a strong convergence theorem.

Theorem 2.3. Let K, X , S1, S2, S3, T1, T2 and T3 satisfy the hypotheses of Lemma 2.2.
Suppose that {αn}, {βn} and {γn} are real sequences in [ε, 1− ε] for some ε ∈ (0, 1) and
Si, Ti for all i = 1, 2, 3 satisfy the condition (ii) in Lemma 2.2. If there is a nondecreasing
function f : [0,∞)→ [0,∞) with f(0) = 0 and f(r) > 0 for all r ∈ (0,∞) such that

f(d(x,Ω)) ≤ d(x,S1x) + d(x,S2x) + d(x,S3x) + d(x, T1x) + d(x, T2x) + d(x, T3x)

for all x ∈ K, where d(x,Ω) = inf{d(x, v) : v ∈ Ω}. Then the sequence {xn} defined by
algorithm (2.1) converges strongly to a common fixed point of S1, S2, S3, T1, T2 and T3.

Proof. From Lemma 2.2, we have lim
n→∞

d(xn,Sixn) = 0 = lim
n→∞

d(xn, Tixn) for i =

1, 2, 3. It follows from the hypothesis that

lim
n→∞

f(d(xn,Ω)) ≤ lim
n→∞

(d(xn,S1xn) + d(xn,S2xn) + d(xn,S3xn)

+d(xn, T1xn) + d(xn, T2xn) + d(xn, T3xn))

= 0.

Thus lim
n→∞

f(d(xn,Ω)) = 0. Since f : [0,∞) → [0,∞) is a nondecreasing function satis-

fying f(0) = 0, f(r) > 0 for all r ∈ (0,∞). By Lemma 2.1, we obtain that lim
n→∞

d(xn,Ω)

exists. This implies that lim
n→∞

d(xn,Ω) = 0. Next, we show that {xn} is a Cauchy

sequence in K. Using (2.3), we have

d(xn+1, v) ≤ (1 + (h3n − 1))d(xn, v)

for each n ≥ 1, where hn = max{k(1)n , k
(2)
n , k

(3)
n , l

(1)
n , l

(2)
n , l

(3)
n } and v ∈ Ω. For any m,n >

n ≥ 1, we have

d(xm, v) ≤ (1 + (h3m−1 − 1))d(xm−1, v)

≤ eh
3
m−1−1d(xm−1, v)

≤ eh
3
m−1−1eh

3
m−2−1d(xm−2, v)

...

≤ e
∑m−1

i=n h3i − 1d(xn, v)

≤ Md(xn, v),

where M = e
∑∞

i=1(h
3
i−1). So, for any v ∈ Ω, we have

d(xn, xm) ≤ d(xn, v) + d(xm, v) ≤ (1 +M)d(xn, v).

Taking the infimum over all v ∈ Ω, we have

d(xn, xm) ≤ (1 +M)d(xn,Ω).

Thus it follows from lim
n→∞

d(xn,Ω) = 0 that {xn} is a Cauchy sequence. Since K is a

closed subset in a complete hyperbolic space X , the sequence {xn} converges strongly to
some v∗ ∈ K. It is easy to prove that F (S1), F (S2), F (S3), F (T1), F (T2) and F (T3) are
all closed, that is, Ω is closed subset of K. Since lim

n→∞
d(xn,Ω) = 0 gives that d(v∗,Ω) = 0,

we have v∗ ∈ Ω. The proof is completed.
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Theorem 2.4. Considering the assumption in Lemma 2.2 and if one of S1,S2,S3, T1, T2
and T3 is completely continuous after that the sequence {xn} defined by (1.7) converges
strongly to a point in Ω.

Proof. Let S1 be completely continuous. By Lemma 2.1, {xn} is bounded. This mean,
there is a subsequence {S1xnj

} of {S1xn} such that {S1xnj
} converges strongly to some

v∗ ∈ K. Moreover, by Lemma 2.2, we have

lim
j→∞

d(xnj
,S1xn) = lim

j→∞
d(xnj

,S2xn) = lim
j→∞

d(xnj
,S3xn) = 0 and

lim
j→∞

d(xnj
, T1xn) = lim

j→∞
d(xnj

, T2xn) = lim
j→∞

d(xnj
, T3xn) = 0,

which implies that,

d(xnj , v
∗) ≤ d(xnj ,S1xnj ) + d(S1xnj , v

∗)

→ 0 (as j →∞).

Hence S1xnj
→ v∗ ∈ K. Consequently,

d(v∗,Siv∗) = lim
n→∞

d(xnj
,Sixnj

) = 0.

Since S1,S2,S3, T1, T2 and T3 are continuous, for i = 1, 2, 3. By Lemma 2.2, so we have

d(v∗, Tiv∗) = lim
j→∞

d(xnj , Tixnj ) = 0.

This implies that v∗ ∈ F (S1)∩F (S2)∩F (S3)∩F (T1)∩F (T2)∩F (T3). From Lemma 2.1,
we have lim

n→∞
d(xn, v

∗) exists and so lim
n→∞

d(xn, v
∗) = 0. Thus {x} converges strongly to

a common fixed point of S1,S2,S3, T1, T2 and T3 The proof is completed.

3. Conclusions

Authors constructed a novel Noor iteration technique to approximate a common fixed
point for three asymptotically nonexpansive self-mappings and three asymptotically non-
expansive nonself-mappings in a uniformly convex hyperbolic space. An illustrative exam-
ple is also provided as Example 2.1. The authors proved that strong convergence results
were more substantial than the delta and weak convergence results.
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