
ISSN 1686-0209

Thai Journal of Mathematics
Volume 21 Number 2 (2023)

Pages 385–398

http://thaijmath.in.cmu.ac.th

International Conference on Digital Image Processing and Machine Learning 2022

Randomized Algorithm on Tensor Singular Value

Decomposition for Image and Video Reconstructions

Siriwan Intawichai and Saifon Chaturantabut∗

Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University,
Pathumthani, 12120, Thailand
e-mail : siriwan.in@up.ac.th (S. Intawichai); saifon@mathstat.sci.tu.ac.th (S. Chaturantabut)

Abstract In this work, we introduce a randomized algorithm for analyzing and capturing multi-linear

data structure. Tensor singular value decomposition (T-SVD) is a useful method to extract the most

dominant features of a given tensor data and to compute a low multi-linear rank basis. However, comput-

ing T-SVD can be time-consuming for large-scale data. The randomized algorithm is therefore employed

on T-SVD, so called randomized T-SVD, to reduce the computational complexity on large-scale problems.

We proposed a method that employs the randomized T-SVD to construct an efficient tensor basis used in

the least-squares approximation for estimating the missing values on data recovery applications. Numer-

ical experiments on data recovery are performed for image and video reconstructions. These results show

that the proposed method is considerably faster than the traditional tensor approach while achieving a

comparable peak signal-to-noise ratio.
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1. Introduction

A tensor is a higher generalization of vector and matrix which can be a representation
of high-dimensional and multi-way real world data such as color images, video, etc. Fac-
torization strategies for tensor have been studied in many researches [1–10] with many
applications such as data processing [3, 10], images and video processing [4–7].

The order of tensor is the number of ways or modes of tensor, thus the first order and
second order tensors are vectors and matrices, respectively. Additional, a grey-scale image
can be considered as a second order tensor. A third order tensor can not only represent
a color image but also a grey-scale video. For a color image, its third index component
represents the intensities on red, green, and blue scales. For a grey-scale video, the third
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index component represents the number of frames. Moreover, images on each channel
mode or gray-scale mode can be represented by matrix and the elements in matrix are
represented as pixels which can be solved by matrix completion methods.

Singular value decomposition (SVD) [11, 14, 17] and randomized singular value de-
composition (rSVD) [12, 13, 15] are low-rank matrix completion techniques and widely
used for matrix decomposition. Furthermore, SVD and rSVD method is applied on image
processing [14, 16–18] for solving image compression and image reconstruction.

S. Intawichai et al. [19–22] applied the rSVD method in image reconstruction problems.
The missing pixels in gray-scaled images are recovered by the notion of least-squares
approximation with the proper orthogonal decomposition (POD) basis. The POD basis
is an optimal low-rank basis in Euclidean norm which can compute by SVD method [11]
and also rSVD method. The rSVD method can substantially decrease the computation
work and preserve the accuracy while a full SVD is expensive and memory intensive.

Based on tensor completion, tensor SVD (t-SVD) is one of the tensor factorization
which is applied in image processing [8, 9]. A randomized algorithm is applied on the
tensor SVD [6], called randomized tensor SVD (randomized t-SVD) which is an im-
proved method of the t-SVD but that is more computationally efficient on extremely
large datasets.

In this paper, we focus on the third order tensor which represents color images and
gray-scaled videos. Based on tensor completion, the t-SVD is used for constructing a POD
tensor which is an optimal basis for tensor. With the similar properties to the t-SVD,
the randomness can be applied in the t-SVD, called t-rSVD and it can be also used to
compute the POD tensor. With the notion of rSVD method, we obtain randomized t-SVD
to recover the missing components in high dimensional data. The reconstruction method
in [19, 20] is modified for the color image and gray-scaled video which are represented by
third order tensor. The proposed method need the POD tensor which can be constructed
by t-SVD, t-rSVD or randomized t-SVD. The performance is compared between the three
methods. In addition, we compare this proposed reconstruction method to the previous
method in [19].

This paper is organized as follows. After establishing basic notations and some pre-
liminaries in Section 2, the formulation of tensor completion is introduced in section 3.
The reconstruction algorithm is detailed in section 4. Experimental results are presented
in section 5, and some concluding remarks are given in section 6.

2. Preliminaries on Tensors and Notations

In this section, we provide explanations of the notations and introduce some tensor
operations that appear in this paper.

For convenience, we let scalars, vectors, matrices and tensors be denoted as lowercase
letters {a, b, ...}, bold - case letters {a,b, ...}, capital letters {A,B, ...} and Euler script

letters {A,B, ...}, respectively. For a third-order tensor A ∈ IRm×n×l, its mode-1, mode-
2, and mode-3 fibers are denoted by A(:, i2, i3),A(i1, :, i3), and A(i1, i2, :), where i1 =
1, ...,m, i2 = 1, ..., n and i3 = 1, ..., l. Its horizontal slices A(i1, :, :), i1 = 1, ...,m lateral
slices A(:, i2, :), i2 = 1, ..., n and frontal slices A(:, :, i3), i3 = 1, ..., l are shown in Fig. 1.

In this paper, the frontal slices represent the channel color modes, and we refer to
the frontal slice of A as a matrix A(·). First, we define an operator that converts the

third-order tensor A ∈ IRm×n×l into a block circulant matrix.
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Figure 1. The illustration of (a) A third-order tensor A ∈ IRm×n×l, (b)
Horizontal slides A(i1, :, :), i1 = 1, ...,m, (c) lateral slices A(:, i2, :), i2 =
1, ..., n and (d) frontal slices A(:, :, i3), i3 = 1, ..., l.

Definition 2.1. ([10] p.9) Let A ∈ IRm×n×l be a third-order tensor with m × n frontal
slices denoted A(·), then a block circulant matrix of A with size ml × nl is written as

bcirc(A) =


A(1) A(l) A(l − 1) . . . A(2)
A(2) A(1) A(l) . . . A(3)

...
. . .

. . .
. . .

...

A(l) A(l − 1)
. . . A(2) A(1)

 (2.1)

It is well-known that block circulant matrices can be block diagonalized by using the
Fourier transform as

(Fl ⊗ Im)bcirc(A)(FH
l ⊗ In) =


Â(1) 0 . . . 0

0 Â(2) . . . 0
...

. . .
. . .

...

0 0 . . . Â(l)

 ,

where ⊗ denotes the Kronecker product, H denotes the conjugate transpose, Fl is a l× l
normalized discrete Fourier transform (DFT) matrix and Im, Il are identity matrices with

size m×m and l× l respectively. Â(i) is the ith frontal slice of Â. Using Matlab notation,

define Â =: fft(A, [ ], l) as the tensor obtained by applying the fast Fourier transform
(FFT) along each tubal-element of A.

The unfold command is setting the third-order tensor A to a block ml × n matrix,
whereas the fold command undoes this operation:

unfold(A) =


A(1)
A(2)

...
A(l)

 , fold(unfold(A)) = A. (2.2)

Definition 2.2. (T-product [10] p.9). Let A ∈ IRm×n×l and B ∈ IRn×J1×l. Then the
T-product A ∗ B is the m× J1 × l tensor

A ∗ B = fold(bcirc(A) · unfold(B)). (2.3)

Definition 2.3. (Transpose [10] p.6). Let A ∈ IRm×n×l, then AT is n×m× l tensor ob-
tained by transposing each of the frontal slices and then reversing the order of transposed
frontal slices 2 through l.
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Definition 2.4. (Identity [10] p.11). The m × m × l identity tensor I is the tensor
whose first frontal slice is the m ×m identity matrix, and whose other frontal slices are
all zeros.

Definition 2.5. (Orthogonal [10] p.11). The m×m×l real-valued tensorQ is orthogonal
if QT ∗ Q = Q ∗ QT = I

Tensor Decompositions

We now introduce the tensor QR (t-QR), tensor SVD (t-SVD), and truncated t-SVD,
which builds on the above operations of tensors.

Definition 2.6. (t-QR factorization [2] p.652). Given an m×n× l tensor A, the t-QR
factorization of A is A = Q∗R, where tensor Q is orthogonal and R is f-upper triangular
(i.e. each frontal slide of R is upper triangular).

Definition 2.7. (t-SVD [2] p.651). Given an m× n× l tensor A, the t-SVD of A is

A = U ∗ S ∗ VT , (2.4)

where tensor U ∈ IRm×m×l, V ∈ IRn×n×l are orthogonal and S ∈ IRm×n×l is f-diagonal
tensor (i.e. each frontal slide of S is diagonal).

Definition 2.8. (truncated t-SVD [2] p.652). Given a tensor A ∈ IRm×n×l, the
truncated t-SVD of A is

Ak = Uk ∗ Sk ∗ VT
k , (2.5)

where k is a target truncation term, tensors Uk ∈ IRm×k×l, Vk ∈ IRn×k×l are orthogonal
and Sk ∈ IRm×n×l is f-diagonal tensor.

Algorithm 1: The truncated t-SVD algorithm

INPUT : A tensor A ∈ IRm×n×l and target truncation term k.

OUTPUT : Uk ∈ IRm×k×l,Sk ∈ IRk×k×l,Vk ∈ IRn×k×l

Step 1. Â ← fft(A, [], 3)
Step 2. for i = 1 to I3 do
Step 3. [U, S, V ] = SVD(A(i))
Step 4. Truncating U, S, V with target truncation term k

Step 5. Form Ûk(i) = Uk, Ŝk(i) = Sk, V̂k(i) = Vk

Step 6. end for

Step 7. Uk ← ifft(Ûk, [], 3)

Step 8. Sk ← ifft(Ŝk, [], 3)

Step 9. Vk ← ifft(V̂k, [], 3)

Next, we will introduce the randomized tensor SVD (randomized t-SVD). Since it
follows from the randomized SVD in matrix completion, random samping is used to
generate a Gaussian random tensor and form a random projection of tensor. The random
projection is used to construct a reduced tensor whose range approximates the range of
original tensor.

Definition 2.9 (Gaussian random tensor [6]). A tensor G ∈ IRI1×I2×I3 is called a
Gaussian random tensor, if the elements of G(1) satisfy the standard normal distribution,
and the other frontal slices are all zeros.
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Randomized t-SVD [6]: Given a tensor A ∈ IRm×n×l, the randomized t-SVD of A is

Ak = Uk ∗ Sk ∗ VT
k , (2.6)

where k is a target truncation term, tensor Uk ∈ IRm×k×l, Vk ∈ IRn×k×l are orthogonal
and Sk ∈ IRm×n×l is f-diagonal tensor.

Algorithm 2: The randomized t-SVD algorithm

INPUT : A tensor A ∈ IRm×n×l, target truncation term k and oversampling parameter p.

OUTPUT : Uk ∈ IRm×k×l,Sk ∈ IRk×k×l,Vk ∈ IRn×k×l

Step 1. Generate a Gaussian random tensor G ∈ IRn×(k+p)×l

Step 2. Form a random projection of the tensor A as Y = A ∗ G
Step 3. Construct the tensor Q by using t-QR factorization of tensor Y
Step 4. Form a reduced tensor B = QT ∗ A, whose size is (k + p)× n× l

Step 5. Compute truncated t-SVD of B, Bk = Ũk ∗ Sk ∗ VT
k

Step 6. Set Uk = Q ∗ Ũk

3. Proposed Method

This section describes the proposed method for reconstructing the missing data com-
ponents in a color image which is represented as a third-order tensor.

Let A ∈ IRm×n×l be a target tensor whose some pixels are missing. This tensor is
separated to two sets by the lateral slides, which are a set of complete lateral slides and
a set of incomplete data tensor. Let {A(:, i2, :)}ns

i2=1, be a set of complete lateral slides

and form a complete data tensor as X ∈ IRm×ns×l. Then {Ā(:, i2, :)}nt
i2=1, is a set of

incomplete lateral slides, where n = ns + nt.

3.1. POD Tensor

We will investigate an optimal basis of third-order tensor which is called Proper
orthogonal decomposition tensor or POD tensor. It follows from the matrix com-
pletion, that proper orthogonal decomposition (POD) basis is the optimal low-rank basis
in Euclidean norm. POD basis can be computed by using SVD, i.e., it can be obtained
from the left singular vector of SVD[19]. For tensor Completion, the POD tensor can be
obtained by the left tensor of the t-SVD.

Algorithm 3 : POD Tensor

INPUT : A set of lateral slides {Y (i2)}ns
i2=1 ⊂ IRm×l and target truncation term k.

OUTPUT : POD tensor Uk.

Step 1. Create a tensor : Y = [Y1, Y2, ..., Yi2 ] ∈ IRm×ns×l

Step 2. Compute the truncated t-SVD of Y with truncation term k,
Y = Uk ∗ Sk ∗ VT

k .
Step 3. The POD tensor Uk.

Note that, we can approximate the POD tensor by the left tensor of the randomized
t-SVD for reducing computation time. Moreover, the POD tenser is more accurate than
the POD basis which is computed from each frontal slides by using SVD method [6].

Since, the randomized SVD is used to decrease the computation time when compare to
SVD. Thus, we modify an above algorithm by using randomized SVD for reducing time
consuming as Algorithm 4.
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Algorithm 4: The t-rSVD algorithm

INPUT : A tensor A ∈ IRm×n×l and target k.

OUTPUT : Uk ∈ IRm×k×l,Sk ∈ IRk×k×l,Vk ∈ IRn×k×l

Step 1. Â ← fft(A, [], 3)
Step 2. for i = 1 to I3 do
Step 3. [Uk, Sk, Vk] = rSVD(A(i), k)

Step 4. Form Ûk(i) = Uk, Ŝk(i) = Sk, V̂k(i) = Vk

Step 5. end for

Step 6. Uk ← ifft(Ûk, [], 3)

Step 7. Sk ← ifft(Ŝk, [], 3)

Step 8. Vk ← ifft(V̂k, [], 3)

Next, the tensor reconstruction is considered by extending the previous reconstruction
approaches [19–21].

3.2. Tensor Reconstruction

Suppose that A = [y1,y2, ...,yl] := A(:, i2, :) ∈ IRm×l is an incomplete lateral slide
sample which is represented an incomplete data matrix. Let x̂ := yi ∈ IRm, i = 1, ..., l be
an incomplete sample with m = mc + mg, where mc,mg are the numbers of known and
unknown components respectively.

Define the matrices C = [ec1 , . . . , ecmc
] ∈ IRm×mc and G = [eg1 , . . . , egmg

] ∈ IRm×mg ,

where {c1, c2, . . . , cmc
}, {g1, g2, . . . , gmg

} ⊂ {1, 2, . . . ,m} are the index sets of the known

and unknown components, respectively. The column vector ej = [0, ..., 0, 1, 0, ..., 0]T is
the j-th, column of the identity matrix Im.

Note that, CT (GT ) is equivalent to extracting the mc (mg) rows corresponding to the
indices c1, . . . , cmc

(g1, . . . , gmg
). Let x̂c := CT x̂ ∈ IRmc and x̂g := GT x̂ ∈ IRmg . Then,

the known components and the unknown components are given in the vectors x̂c and x̂g,
respectively.

Given a basis tensor U with truncation term k which can considered by the left tensor
of truncated t-SVD or randomized t-SVD. Suppose that U := U(i), i = 1, ..., l is a frontal
slide of U . Since the basis tensor is constructed by the t-SVD, then U is also a basis
matrix with orthonormal columns. The missing components contained in x̂g will be
approximated by first projecting x̂ onto the column span of the basis matrix U with rank
k.

x̂ ≈ Ua, or x̂c ≈ Uca and x̂g ≈ Uga, (3.1)

for some coefficient vector a ∈ Rk, and Uc := CTU ∈ Rmc×k, Ug := GTU ∈ Rmg×k.
Using x̂c to determine a through x̂c ≈ Uca from least-squares problem:

min
a∈Rk

‖x̂c − Uca‖22. (3.2)

Then the solution of (3.2) is a = U†c x̂c, which U†c = (UT
c Uc)

−1UT
c , where U†c is called

the Moore-Penrose inverse. Therefore

x̂g ≈ Uga = UgU
†
c x̂c. (3.3)

The steps described above, which will called Tensor Reconstruction, are summarized in
Algorithm 4.
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Algorithm 5: Tensor Reconstruction

INPUT : A set of complete lateral slides {A(:, i2, :)}ns
i2=1, and target rank k.

Incomplete lateral slide A ∈ IRm×1×l

OUTPUT : Approximation of Ag

Step 1. Create a complete tensor : X ∈ IRm×ns×l which the lateral slides are
A(:, i2, :), i2 = 1, ..., ns.

Step 2. Construct a basis tensor U of X .
Step 3. for i = 1 to l do

Step 4. Let x̂ = A(i) ∈ IRm and separate to known and unknown components,
x̂c and x̂g respectively.

Step 5. Using x̂c to find coefficient vector a through Least Squares problem:

min
a∈IRk

‖x̂c − Uca‖22, where Uc = CTU and U is the corresponding frontal slide.

Step 6. Compute the approximation x̂g ≈ Uga then Ag(i) = x̂g

Step 7. end for

3.3. Approximate Tensor Decomposition

Definition 3.1 (Frobenius norm of tensor [2]). Suppose A = (aijk) ∈ IRm×n×l. Then

‖A‖F =

√√√√ m∑
i=1

m∑
j=1

l∑
k=1

a2ijk

Based on the tensor SVD, the low-rank approximation is given by

Ak = argminA∈M‖A − Ã‖F ,

where M describes a special class of tensors that can be written as a product of tensors
of appropriate dimension as seen in Theorem 3.2.

Theorem 3.2. ([2] P.653) Let the t-SVD of A ∈ IRm×n×l and A = U ∗ S ∗ VT and for

k < min(m,n). Define Ak = Uk ∗ Sk ∗ VT
k , then Ak = argminA∈M‖A − Ã‖F , where

M = {X ∗ Y|X ∈ IRm×k×l,Y ∈ IRk×n×l.}

4. Experimental Results

In this section, we compare the performance of the t-SVD, the t-rSVD and the ran-
domized t-SVD methods to compute POD tensor for recovering missing data in color
images through the least-squares approach.

We consider two numerical experiments: color image and gray-scale video. We com-
pare the performance of the reconstructed examples by the computation times and the
accuracy.

4.1. Image Quality

The accuracy of the reconstruction is measured by the relative error of the recon-
structed missing data which defined as

error =
‖A∗ −A‖2F
‖A‖2F

. (4.1)



392 Thai J. Math. Vol. 21 (2023) /S. Intawichai and S. Chaturantabut

In order to evaluate the images recovery quality of the missing images, we employ the
peak signal-to-noise ratio (PSNR) [7], defined as

PSNR = 10 log10

( mnl‖A‖2∞
‖A∗ −A‖2F

)
, (4.2)

where A and A∗ ∈ IRm×n×l are a sample image and a reconstruction image, respectively.
‖A‖∞ is the absolute value maximum of A and ‖A‖F is the Frobenius norm of A.

4.2. Test 1: Color Image

We investigate the color image, Girl (200x200x3) with 20% and 40% missing, as shown
in Figure 2. From the color test image with different dimensions, the 20% and 40% missing
pixels are reconstructed in different [k, k, 3], where k = 10, 20, 30, 40. The performance of
them are shown in Figure 3.

Figure 2. The test image: Girl, with the examples 20% and 40% missing pixels.

Figure 3. The reconstructed images for images with 20% missing pixels
by using t-SVD, t-rSVD and randomized t-SVD when truncation term k =
10, 20, 30, and 40 respectively.
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The computational times of the reconstruction process are compared between using t-
SVD, t-rSVD and randomized t-SVD for constructing the POD tensor in the reconstruc-
tion method, are shown in Figure 4. Since the rSVD method can reduce the computation
time when computing the POD basis of the matrix [19–22], the t-rSVD uses less CPU
time than the others while randomized t-SVD is the most time consuming. For (B) in
Figure 4, we compare the result from using SVD and rSVD methods to compute POD
basis for each frontal slices of image tensor. The t-rSVD and rSVD give similar results
which are better than the others.

(a) (b)

Figure 4. Computational time for constructing the POD tensor (A)
by using t-SVD, t-rSVD and randomized t-SVD when truncation term
k = 10, 20, 30, and 40 respectively. Additional, (B) compared to the
previous methods from [19–22] by using SVD and rSVD.

The relative errors in Figure 5 show that the t-SVD and t-rSVD methods are more
accurate than the randomized t-SVD while the comparison between using t-SVD and t-
rSVD in the proposed method give the same order of accuracy. Furthermore, the proposed
method using the t-SVD and the randomized t-SVD uses less CPU times than t-rSVD as
shown in Figure 6.

(a) 20% missing (b) 40% missing

Figure 5. Relative errors of the reconstruction results of 20% and 40%
missing images when truncation term k = 10, 20, 30, and 40 respectively.
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(a) 20% missing (b) 40% missing

Figure 6. Computational time for reconstructing missing images by
using t-SVD t-rSVD and randomized t-SVD when truncation term k =
10, 20, 30, and 40 respectively.

4.3. Test 2: Video

We investigate a gray-scale video Girl (200x200x10), which has 10 frames. The illus-
tration is shown in Figure 7.

Figure 7. The test video: 10 frames gray-scale video with 25% missing pixels.

The computational times for constructing the POD tensor of the 10 frames video are
shown in Figure 8. Comparing between using t-SVD, t-rSVD and randomized t-rSVD is
the fastest while the randomized t-SVD is the most time consuming. For (B) in Figure 8,
the results from the t-rSVD and rSVD are quite similar and using t-SVD is faster than
computing each slices by SVD.
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(a) (b)

Figure 8. Computational time for constructing the POD tensor (A) by
using t-SVD, t-rSVD and randomized t-SVD (B) adding compare to the
previous methods from [19–21] by using SVD and rSVD when truncation
term k = 10, 20, 30, and 40 respectively.

The computational times of the video reconstruction process are shown in Figure 9.
Here, the randomized t-SVD uses less CPU time than the others. When comparing to
the previous method in [19, 22], the three methods for video tensor are better than the
previous methods using SVD as well as rSVD to reconstruct each video frames.

The relative errors of video reconstruction are shown in Figure 10, which illustrates
that the t-SVD and t-rSVD methods are more accurate than the randomized t-SVD based
on PSNR, while the comparison between using t-SVD and t-rSVD in the proposed method
show that they give the same order of accuracy. Furthermore, the proposed method is
compared to the previous method in [19, 22], using t-SVD and SVD and the corresponding
results are shown to be similar to the ones from using the t-rSVD and rSVD.

(a) (b)

Figure 9. Computational time for reconstruction missing images by
using t-SVD t-rSVD and randomized t-SVD when truncation term k =
10, 20, 30, and 40 respectively.
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(a) (b)

(c) (d)

Figure 10. Relative errors and PSNR of the reconstruction results of
25% missing images when truncation term k = 10, 20, 30, and 40 respec-
tively.

5. Conclusions

In this paper, we employ the tensor reconstruction approach to recover the missing
data pixels in color images and gray-scale video. We have investigated and performed a
comparative study of the tensor-based approach with existing techniques, t-SVD, t-rSVD
and randomized t-SVD, which can be used to speed up the reconstruction process with
some trade off on accuracy. For the color images and gray-scale video represented as the
third-order tensors of dimension m×n× l in our experiments, the t-rSVD and the t-SVD
approaches are suitable for small l, while the randomized t-SVD approach is particularly
favorable for large l. The randomness in the reconstruction approaches makes it more
efficient in terms of both computation time and memory. Moreover, the effectiveness of
proposed method has been compared to the previous method in [19, 22].
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