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1. Introduction

Shulman [25, 26] introduced the concept of Pedagogical Content Knowledge (PCK) to
the attention of the education world. Despite the fact that Shulman’s original conception
of PCK contained technology, the rapid infusion of technology into our society and edu-
cation, particularly digital technology, necessitated a more explicit augmentation of the
concept with technology. This led to the invention of the phrases information and com-
munication technology (ICT)-related PCK and technologically-enhanced PCK (Angeli
Valanides, 2005; Niess, 2005). This was then developed into the Technology, Pedagogy,
and Content Knowledge conceptual framework. Initially abbreviated as TPCK (Koehler
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Mishra, 2005), this paradigm was renamed TPACK (i.e., entire package) to better em-
phasize the interdependence of the contributing knowledge fields (Koehler Mishra, 2008;
Koehler, Mishra, Kereluik, Shin, Graham, 2014; Thompson Mishra, 2007). TPACK orig-
inally included Technological Knowledge (TK), Pedagogical Knowledge (PK), and Con-
tent Knowledge (CK). From their intersections, other blended knowledge domains such
as TPK, TCK, PCK, and TPACK can be derived.

Numerous studies of TPACK framework have been done to investigate the links be-
tween its constructs and to comprehend its measurement. In this study, the new iterative
method with inertial technique was proposed to classify the TPACK level of pre-service
mathematics teachers from various domains defined as analyzed attributes, while class of
the TPACK level was obtained from self-assessment-based measures. We start proposing
new iterative method with inertial technique for split variational inclusion problem as the
following.

Let H be a real Hilbert space with the inner product 〈·, ·〉 and the induced norm
‖ · ‖. Let B : H → 2H be a set-valued maximal monotone mapping. Then the resolvent
mapping JBβ : H → H associated with B is defined by

JBβ (x) = (I + βB)−1(x),∀x ∈ H, (1.1)

for some β > 0, where I stands for the identity operator on H.
We investigate the following split variational inclusion problem (SVIP) which is finding

x∗ ∈ H1 such that

0 ∈ B1(x∗) and 0 ∈ B2(Ax∗), (1.2)

where B1 : H1 → 2H1 and B2 : H2 → 2H2 are multi-valued maximal monotone mappings,
A : H1 → H2 is a linear and bounded operator.

It is well known that split variational inclusion problem serves as a unified model for
many problems of fundamental importance, including the split common fixed-point prob-
lem, split variational inequality problem, split zero problem and split feasibility problem
[1, 5, 6, 9–11, 18, 23, 30]. Moreover, the split variational inclusion problem has been
applied to solving many real life problems, such as in signal processing, approximating
theory, data compression (see, e.g., [7, 13, 14, 17, 20, 31]).

Very recently, Byrne et al. [8] studied an iterative method for split variational inclusion
problem. Given x1 ∈ H1 and {xn} is a sequence defined as follows:

xn+1 = JB1

β (xn − λA∗(JB2

β − I)Axn),∀n ≥ 1, (1.3)

where A∗ is the adjoint of A, λ ∈ (0, 2/L) and L is the spectral radius of the operator
A∗A. They obtained weak and strong convergence theorems in Hilbert spaces.

In 2001, Alvarez and Attouch [2] applied the inertial technique to obtain an inertial
proximal method, which is as follows: let xn−1, x1 ∈ H, βn > 0 and θn ∈ [0, 1). Define
the sequence {xn}

xn+1 = JB1

β (xn + θn(xn − xn−1)),∀n ≥ 1, (1.4)

and the term θn(xn−xn−1) is inertial term which and it can be improved rate of conver-
gence (see[2, 24]).

In this paper, motivated by the work of Alvarez and Attouch [2], we introduce an
iterative method with inertial term and using the self adaptive stepsize for solving split
variational inclusion problem. Weak convergence theorem is established in the framework
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of Hilbert spaces. Finally, we apply our algorithm to data classification problem to support
the implementation of the proposed.

2. Preliminaries and Lemmas

In this section, we provide some basic definitions and lemmas which will be used in the
sequel. Let H be a real Hilbert space. In what follows, we use the following notations:
• the symbols ⇀ stands for the weak convergence.
• the symbols → stands for the strong convergence.

Recall that a mapping T : H → H is said to be
(1) nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ H.
(2) firmly-nonexpansive if

〈Tx− Ty, x− y〉 ≥ ‖Tx− Ty‖2, ∀x, y ∈ H.
We note that if T is firmly-nonexpansive, then I − T is also firmly-nonexpansive.
(3) L-Lipschitz continuous, if there exists a constant L > 0 such that

‖Tx− Ty‖ ≤ L‖x− y‖, ∀x, y ∈ H.
A set-valued mapping B : H → 2H is called monotone if for all x, y ∈ H

〈u− v, x− y〉 ≥ 0, ∀u ∈ Bx and v ∈ By.
For a set-valued mapping B, graph(B) is defined as graph(B) := {(x, u) ∈ H ×H : u ∈
B(x)}. A monotone mapping B : H → 2H is said to be maximal if the graph(B) is not
properly contained in the graph of any other monotone mapping. Let B : H → 2H be a
set-valued maximal monotone operator. The resolvent operator JBβ : H → H associated
with B is defined by

JBβ (x) = (I + βB)−1(x), ∀x ∈ H,
where β > 0. It is well known that the resolvent operator is single-valued and firmly
non-expansive.

Lemma 2.1. (Demiclosedness principle [15]) Let C be a nonempty closed convex subset
of a real Hilbert space H and let T : C → C be a nonexpansive mapping. If xn ⇀ x ∈ C
and lim

n→∞
‖xn − Txn‖ = 0, then x = Tx.

In order to study the SVIP, we recall some lemmas which are needed in our proof. We
denote by B−1(0) = {x ∈ H : 0 ∈ Bx}, D(T ) the domain of T and Fix(T ) the fixed
point set of T , that is, Fix(T ) = {x ∈ H : x = Tx}.

Lemma 2.2. [4] Let H be a real Hilbert space, B : H → 2H be a set-valued maximal
monotone mapping for each x, y ∈ H, each z ∈ B−1(0), and each β > 0; we have

(i) 〈x− JBβ x, z − JBβ x〉 ≤ 0

(ii) ‖JBβ x− JBβ y‖2 ≤ 〈JBβ x− JBβ y, x− y〉
(iii) ‖JBβ x− z‖2 ≤ ‖x− z‖2 − ‖JBβ x− x‖2.

Lemma 2.3. [12, 19] Let H be a real Hilbert space, B : H → 2H be a set-valued maximal
monotone mapping. Thus,

(i) JBβ is a single-valued and firmly nonexpansive mapping for each β > 0;

(ii) D(JBβ ) = H and Fix(JBβ ) = {x ∈ D(B) : 0 ∈ Bx};
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(iii) ‖x− JBβ x‖ ≤ ‖x− JBγ x‖ for all 0 < β ≤ γ and for all x ∈ H;

(iv) Suppose that B−1(0) 6= ∅. Then ‖x − JBβ x‖2 + ‖JBβ − x∗‖2 ≤ ‖x − x∗‖2 for each

x ∈ H, each x∗ ∈ B−1(0), and each β > 0;
(v) Suppose that B−1(0) 6= ∅. Then 〈x − JBβ x, JBβ x − w〉 ≥ 0 for each x ∈ H, each

w ∈ B−1(0), and each β > 0.

The next lemma gives a crucial characterization of the solution sets of the SVIP and
the fixed point sets of the resolvent operator.

Lemma 2.4. [12] Let H1 and H2 be real Hilbert spaces, A : H1 → H2 be a bounded linear
operator. Let β > 0, γ > 0, B1 : H1 → 2H1 and B2 : H2 → 2H2 be set-valued maximal
monotone mappings. Given any x∗ ∈ H1.

(i) If x∗ is a solution of (SVIP), then JB1

β (x∗ − γA∗(I − JB2

β )Ax∗) = x∗.

(ii) Suppose that JB1

β (x∗ − γA∗(I − JB2

β )Ax∗) = x∗ and the solution set of (SVIP) is

nonempty. Then x∗ is a solution of (SVIP).

Lemma 2.5. [12] Let H1 and H2 be real Hilbert spaces, A : H1 → H2 be a bounded linear
operator and β > 0. Let B : H2 → 2H2 be a set-valued maximal monotone mapping.
Define a mapping T : H1 → H1 by Tx := A∗(I − JBβ )Ax for each x ∈ H1. Then

(i) ‖(I − JBβ )Ax− (I − JBβ )Ay‖2 ≤ 〈Tx− Ty, x− y〉 for all x, y ∈ H1;

(ii) ‖A∗(I − JBβ )Ax−A∗(I − JBβ )Ay‖2 ≤ ‖A‖2 · 〈Tx− Ty, x− y〉 for all x, y ∈ H1.

We also need the following tools in convergence analysis.

Lemma 2.6. [22] Let {an}, {bn} and {cn} be real positive sequences such that

an+1 ≤ (1 + cn)an + bn, n ≥ 1.

If Σ∞n=1cn < +∞ and Σ∞n=1bn < +∞, then lim
n→+∞

an exists.

Lemma 2.7. [16] Let {an} and {θn} be real positive sequences such that

an+1 ≤ (1 + θn)an + θnan−1, n ≥ 1.

Then, an+1 ≤ K ·
∏n
i=1(1 + 2θi) where K = max{a1, a2}. Moreover, if

∑∞
n=1 θn < +∞,

then {an} is bounded.

Lemma 2.8. (Opial theorem [21]) Let C be a nonempty subset of a real Hilbert space H
and {xn} be a sequence in H that satisfies the following properties:

(i) lim
n→∞

‖xn − x‖ exists for each x ∈ C;

(ii) every sequential weak limit point of {xn} is in C.
Then {xn} converges weakly to a point in C.

3. Main Results

In this section, we introduce an inertial proximal algorithm using the self adaptive
stepsize and prove the weak convergence theorem. We denote Ω is a the solution set
of the SVIP and assume that Ω is nonempty. Let H1 and H2 be real Hilbert spaces,
A : H1 → H2 be a linear and bounded operator, and A∗ be the adjoint operator of A.
Let B1 : H1 → 2H1 and B2 : H2 → 2H2 be set-valued maximal monotone operators.
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Algorithm 3.1. Let σn ∈ (0, 2), θ1 > 0, 0 < εn < 1 and {βn}n∈N be a sequence in
(0,∞). Given the iterates {xn−1} and {xn} for each n ≥ 1.

Step 1 Compute the inertial step as follows:

wn = xn + θn(xn − xn−1). (3.1)

Step 2 Compute the proximal step as follows:

yn = JB1

βn
(wn − αnA∗(I − JB2

βn
)Awn)

xn+1 = yn − λnA∗(I − JB2

βn
)Ayn (3.2)

where

αn =
σn‖(I − JB2

βn
)Awn‖2

‖A∗(I − JB2

βn
)Awn‖2 + εn

and λn =
σn‖(I − JB2

βn
)Ayn‖2

‖A∗(I − JB2

βn
)Ayn‖2 + εn

. (3.3)

Theorem 3.1. Let {xn} be a sequence generate by Algorithm 3.1. Assume that {βn}n∈N
is a sequence in [β,∞) for some β > 0 and limn→∞ εn = 0. If

∑∞
n=1 θn <∞, then {xn}

weakly converges to a solution in Ω.

Proof. Let z ∈ Ω. Then z ∈ B−11 (0) and Az ∈ B−12 (0). Consider

‖xn+1 − z‖2 = ‖yn − λnA∗(I − JB2

βn
)Ayn − z‖2

= ‖yn − z‖2 − 2λn〈yn − z,A∗(I − JB2

βn
)Ayn〉

+λ2n‖A∗(I − J
B2

βn
)Ayn‖2. (3.4)

Since, JB2

βn
Az = Az, it follows that

〈yn − z,A∗(I − JB2

βn
)Ayn〉 = 〈yn − z,A∗(I − JB2

βn
)Ayn −A∗(I − JB2

βn
)Az〉

= 〈Ayn −Az, (I − JB2

βn
)Ayn − (I − JB2

βn
)Az〉

≥ ‖(I − JB2

βn
)Ayn‖2. (3.5)

Also, we have

〈wn − z,A∗(I − JB2

βn
)Awn〉 ≥ ‖(I − JB2

βn
)Awn‖2. (3.6)

By Lemma 2.2 (iii), we get

‖yn − z‖2 = ‖JB1

βn
(wn − αnA∗(I − JB2

βn
)Awn)− z‖2

≤ ‖wn − αnA∗(I − JB2

βn
)Awn − z‖2 − ‖yn − wn + αnA

∗(I − JB2

βn
)Awn‖2

= ‖wn − z‖2 − 2αn〈wn − z,A∗(I − JB2

βn
)Awn〉+ α2

n‖A∗(I − J
B2

βn
)Awn‖2

−‖yn − wn + αnA
∗(I − JB2

βn
)Awn‖2 (3.7)
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Combine (3.5), (3.6), (3.7) into (3.4)

‖xn+1 − z‖2

≤ ‖wn − z‖2 − 2αn〈wn − z,A∗(I − JB2

βn
)Awn〉+ α2

n‖A∗(I − J
B2

βn
)Awn‖2

−‖yn − wn + αnA
∗(I − JB2

βn
)Awn‖2 − 2λn〈yn − z,A∗(I − JB2

βn
)Ayn〉

+λ2n‖A∗(I − J
B2

βn
)Ayn‖2

≤ ‖wn − z‖2 − 2αn‖(I − JB2

βn
)Awn‖2 + α2

n‖A∗(I − J
B2

βn
)Awn‖2

−‖yn − wn + αnA
∗(I − JB2

βn
)Awn‖2 − 2λn‖(I − JB2

βn
)Ayn‖2

+λ2n‖A∗(I − J
B2

βn
)Ayn‖2

= ‖wn − z‖2 −
2σn‖(I − JB2

βn
)Awn‖2

‖A∗(I − JB2

βn
)Awn‖2 + εn

‖(I − JB2

βn
)Awn‖2

+
σ2
n(‖(I − JB2

βn
)Awn‖2)2

(‖A∗(I − JB2

βn
)Awn‖2 + εn)2

‖A∗(I − JB2

βn
)Awn‖2

−‖yn − wn + αnA
∗(I − JB2

βn
)Awn‖2 −

2σn‖(I − JB2

βn
)Ayn‖2

‖A∗(I − JB2

βn
)Ayn‖2 + εn

‖(I − JB2

βn
)Ayn‖2

+
σ2
n(‖(I − JB2

βn
)Ayn‖2)2

(‖A∗(I − JB2

βn
)Ayn‖2 + εn)2

‖A∗(I − JB2

βn
)Ayn‖2

≤ ‖wn − z‖2 −
2σn(‖(I − JB2

βn
)Awn‖2)2

‖A∗(I − JB2

βn
)Awn‖2 + εn

+
σ2
n(‖(I − JB2

βn
)Awn‖2)2

‖A∗(I − JB2

βn
)Awn‖2 + εn

−‖yn − wn + αnA
∗(I − JB2

βn
)Awn‖2 −

2σn(‖(I − JB2

βn
)Ayn‖2)2

‖A∗(I − JB2

βn
)Ayn‖2 + εn

+
σ2
n(‖(I − JB2

βn
)Ayn‖2)2

‖A∗(I − JB2

βn
)Ayn‖2 + εn

= ‖wn − z‖2 − (2− σn)σn
(‖(I − JB2

βn
)Awn‖2)2

‖A∗(I − JB2

βn
)Awn‖2 + εn

−‖yn − wn + αnA
∗(I − JB2

βn
)Awn‖2

−(2− σn)σn
(‖(I − JB2

βn
)Ayn‖2)2

‖A∗(I − JB2

βn
)Ayn‖2 + εn

. (3.8)

Since σn ∈ (0, 2), this implies that

‖xn+1 − z‖ ≤ ‖wn − z‖, (3.9)

So, we obtain

‖xn+1 − z‖ ≤ ‖wn − z‖
= ‖xn + θn(xn − xn1

)− z‖
≤ ‖xn − z‖+ θn‖xn − xn−1‖
≤ ‖xn − z‖+ θn(‖xn − z‖+ ‖xn−1 − z‖). (3.10)
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Hence, ‖xn+1 − z‖ ≤ (1 + θn)‖xn − z‖+ θn‖xn−1 − z‖. By Lemma 2.7, we obtain

‖xn+1 − z‖ ≤ K
n∏
i=1

(1 + 2θi) (3.11)

where K = max{‖x1−z‖, ‖x2−z‖}. By Lemma 2.7 and
∑∞
n=1 θn < +∞, we obtain {xn}

is bounded. So
∑∞
n=1 θn‖xn−xn−1‖ < +∞. By Lemma 2.6, we obtain limn→∞ ‖xn− z‖

exists.
Further, we have

‖wn − z‖2 = ‖xn + θn(xn − xn−1)− z‖2

= ‖xn − z‖2 + 2θn〈xn − z, xn − xn−1〉+ θ2n‖xn − xn−1‖2

≤ ‖xn − z‖2 + 2θn‖xn − z‖‖xn − xn−1‖+ θ2n‖xn − xn−1‖2 (3.12)

From (3.8) and (3.12), we have

‖xn+1 − z‖2 ≤ ‖xn − z‖2 + 2θn‖xn − z‖‖xn − xn−1‖+ θ2n‖xn − xn−1‖2

−(2− σn)σn
(‖(I − JB2

βn
)Awn‖2)2

‖A∗(I − JB2

βn
)Awn‖2 + εn

−‖yn − wn + αnA
∗(I − JB2

βn
)Awn‖2

−(2− σn)σn
(‖(I − JB2

βn
)Ayn‖2)2

‖A∗(I − JB2

βn
)Ayn‖2 + εn

. (3.13)

From (3.13) and assumption of σn, it follows that

lim
n→∞

(‖(I − JB2

βn
)Awn‖2)2

‖A∗(I − JB2

βn
)Awn‖2 + εn

= 0. (3.14)

It is easy to check that {‖A∗(I − JB2

βn
)Awn‖} is bounded. Therefore, we obtain

lim
n→∞

‖(I − JB2

βn
)Awn‖ = 0, (3.15)

Also, we get

lim
n→∞

‖(I − JB2

βn
)Ayn‖ = 0. (3.16)

From (3.15), we see that

αn‖A∗(I − JB2

βn
)Awn‖ =

σn‖(I − JB2

βn
)Awn‖2

‖A∗(I − JB2

βn
)Awn‖2 + εn

‖A∗(I − JB2

βn
)Awn‖

→ 0 as n→∞. (3.17)

From (3.13), we have

lim
n→∞

‖yn − wn + αnA
∗(I − JB2

βn
)Awn‖ = 0. (3.18)

By (3.17) and (3.18), it implies that

‖yn − wn‖ = ‖yn − wn + αnA
∗(I − JB2

βn
)Awn − αnA∗(I − JB2

βn
)Awn‖

≤ ‖yn − wn + αnA
∗(I − JB2

βn
)Awn‖+ ‖αnA∗(I − JB2

βn
)Awn‖

→ 0 as n→∞. (3.19)
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Hence, we have

lim
n→∞

‖yn − wn‖ = 0. (3.20)

From (3.1), we have

lim
n→∞

‖wn − xn‖ = 0. (3.21)

Also, from (3.3) and limn→∞ ‖(I − JB2

βn
)Ayn‖ = 0, we obtain

lim
n→∞

‖xn+1 − yn‖ = 0. (3.22)

By Lemma 2.3 (i), (3.15) and (3.20), we have

‖Ayn − JB2

βn
yn‖ ≤ ‖Ayn − JB2

βn
Ayn −Awn + JB2

βn
wn‖+ ‖Awn − JB2

βn
Awn‖

≤ 2‖A‖‖yn − wn‖+ ‖Awn − Jb2βn
Awn‖

→ 0 as n→∞. (3.23)

By Lemma 2.3 (iii), we have

‖Ayn − JB2

β Ayn‖ ≤ ‖Ayn − JB2

βn
Ayn‖

→ 0 as n→∞. (3.24)

By Lemma 2.3 (i) and (3.15), we have

‖yn − JB1

βn
wn‖ = ‖JB1

βn
(wn − αnA∗(I − JB2

βn
)Awn)− JB1

βn
(wn)‖

≤ αn‖A∗‖‖(I − JB2

βn
)Awn‖

→ 0 as n→∞. (3.25)

From (3.20) and (3.25), we obtain

‖wn − JB1

βn
wn‖ = ‖wn − yn + yn − JB1

βn
wn‖

≤ ‖wn − yn‖+ ‖yn − JB1

βn
wn‖

→ 0 as n→∞. (3.26)

Also, by Lemma 2.3 (iii), we get

‖wn − JB1

β wn‖ ≤ ‖wn − JB1

βn
wn‖

→ 0 as n→∞. (3.27)

From (3.15) and (3.21), we obtain

‖Axn − JB2

β Axn‖ = ‖Axn − JB2

β Axn −Awn + JB2

β Awn‖+ ‖Awn − JB2

β Awn‖

≤ 2‖A‖‖xn − wn‖+ ‖Awn − JB2

β Awn‖
→ 0 as n→∞. (3.28)

From (3.21) and (3.27), we obtain

‖xn − JB1

β xn‖ = ‖xn − wn + wn − JB1

β wn + JB1

β wn − JB1

β xn‖

≤ ‖xn − wn‖+ ‖wn − JB1

β wn‖+ ‖JB1

β wn − JB1

β xn‖
→ 0 as n→∞. (3.29)

Since {xn} is bounded, there exists a subsequence {xnk
} of {xn} and x∗ ∈ H1 such that

xnk
⇀ x∗. Since A is a bounded linear operator, we have Axnk

⇀ Ax∗. By (3.28), (3.29),
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Lemma 2.1 and Lemma 2.3 (ii), we have x∗ ∈ Ω. By Lemma 2.8, we conclude that the
sequence {xn} converges weakly to a point in Ω. This completes the proof.

4. Application

In this section, we apply the proposed algorithm, Algorithm 3.1 to the split feasibility
problem (SFP) which is the problem of finding x∗ ∈ H1 such that

x∗ ∈ C and Ax∗ ∈ Q,

where H1 and H2 are real Hilbert spaces, C and Q are nonempty closed convex subsets of
H1 and H2, respectively, and A : H1 → H2 is a linear and bounded operator with adjoint
operator A∗.

Let H be a Hilbert space and let g : H → (−∞,∞] be a proper, lower semicontinuous
and convex function. The subdifferential ∂g of g is defined by

∂g(x) = {z ∈ H : g(x) + 〈z, y − x〉 ≤ g(y),∀y ∈ H} (4.1)

for all x ∈ H. Let C be a nonempty closed convex subset of H, and ıC be the indicator
function of C defined by

ıCx =

{
0 x ∈ C,
∞ x /∈ C.

(4.2)

The normal cone NCu of C at u is defined by

NCu = {z ∈ H : 〈z, v − u〉 ≤ 0,∀v ∈ C}. (4.3)

Then, ıC is a proper, lower semicontinuous and convex function on H. See [3, 27]. More-
over, the subdifferential ∂ıC of ıC is a maximal monotone mapping. In this connection,
we can define the resolvent J∂ıCβ of ∂ıC for β > 0 by

J∂ıCβ x = (I + β∂ıC)−1x (4.4)

for all x ∈ H. Hence, we see that

∂ıCx = {z ∈ H : ıCx+ 〈z, y − x〉 ≤ ıCy,∀y ∈ H}
= {z ∈ H : 〈z, y − x〉 ≤ 0,∀y ∈ C}
= NCx (4.5)

for all x ∈ C. Hence, for each β > 0, we obtain the following relation:

u = J∂ıCβ ⇔ x ∈ u+ β∂ıCu

⇔ x− u ∈ βNCu
⇔ 〈x− u, y − u〉 ≤ 0,∀y ∈ C
⇔ u = PCx. (4.6)

So we consequently obtain the following results.

Algorithm 4.1. Let σn ∈ (0, 2), θ1 > 0, 0 < εn < 1. Given the iterates xn−1 and xn for
each n ≥ 1.

Step 1 Compute the inertial step as follows:

wn = xn + θn(xn − xn−1). (4.7)
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Step 2 Compute the PC step as follows:

yn = PC(wn − αnA∗(I − PQ)Awn)

xn+1 = yn − λnA∗(I − PQ)Ayn (4.8)

where

αn =
σn‖(I − PQ)Awn‖2

‖A∗(I − PQ)Awn‖2 + εn
and λn =

σn‖(I − PQ)Ayn‖2

‖A∗(I − PQ)Ayn‖2 + εn
. (4.9)

Theorem 4.1. Let {xn} be a sequence generate by Algorithm 4.1. Assume that limn→∞ εn
= 0. If

∑∞
n=1 θn <∞, then {xn} weakly converges to a solution in Ω.

We next consider the example by using Algorithm 4.1 to data classification problems,
which based on a learning technique called extreme learning machine (ELM).

Let {(xn, yn) : xn ∈ RN , yn ∈ RM , n = 1, 2, 3, ...,K} be a training set of K distinct
samples, xn is an input training data and yn is a training target. For the output of ELM
with single hidden layer at the i-th hidden node is

hi(x) = U(ai · x+ bi),

where U is an activation function, ai is the weight at the i-th hidden node and bi is the
bias at the i-th hidden node.

The output function with L hidden nodes is the single-hidden layer feed forward neural
networks (SLFNs)

On =

L∑
i=1

ωihi(xn),

where ωi is the optimal output weight at the i-th hidden node. The hidden layer output
matrix A is defined by

A =

U(a1 · x1 + b1) · · · U(aL · x1 + bL)
...

. . .
...

U(a1 · xK + b1) · · · U(aL · xK + bL)

 .
The main aim of ELM is to calculate an optimal weight ω = [ω1, ..., ωL]T such that

Aω = χ, where χ = [t1, ..., tK ]T is the training target data. We find the solution ω
for avoiding overfitting of our model via constrained optimization problem. It can be
formulated as follows:

min
ω∈RL

‖Aω − χ‖22 such that ‖ω‖1 ≤ τ, (4.10)

where τ > 0 is a given constant. In particular, if C = {ω ∈ RL : ‖ω‖1 ≤ τ} and Q = {χ},
then (4.10) can be consider as the SFP.

We use the sigmoid as the activation function and the hidden nodes L = 200. Accuracy,
Recall and Precision. A measure of the algorithm can correctly predict cases into their
correct category is measured by the classifier accuracy, the percentage of a certain class
correctly identified is presented by recall (also known as sensitivity), and the percentage
of quality of a positive prediction made by the algorithm is measured by precision. The
formulation of three measures [29] is defined as follow:

Precision (Pre) =
TP

TP + FP
× 100%
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Recall (Rec) =
TP

TP + FN
× 100%

Accuracy (Acc) =
TP + TN

TP + FP + TN + FN
× 100%

where a confusion matrix for original and predicted classes are shown in terms of TP: =
True Positive which mean accurately classified, TN: =True Negative shows inaccurately
classified, FP: = False Positive.

For the loss of an example, it is computed by the multi-class cross entropy loss function:

Loss = −
K∑
i=1

yk log ŷk,

where yk is 0 or 1, indicating whether class label k is the correct classification and ŷk is
a probability of class yk and K is the number of scalar values in the model output.

The regularization parameter is τ = 10−5 and σ = 1.2. The stopping criteria is the
multi-class cross entropy (Loss=0.12). We consider five cases for the different parameters
θn as follows:

Case 1: θn = 0, Case 2: θn =
1

n2
, Case 3: θn =

1

n2 + 1
, Case 4: θn =

1

‖xn − xn−1‖3 + n3
,

Case 5: θn =
1010

‖xn − xn−1‖3 + n3 + 1010
. Then the result as follows Table 1.

Table 1. Numerical results for different parameter θn

θn Iter Time Pre(%) Rec(%) Acc(%)
Case 1 238 0.5067 52.38 52.38 76.1905
Case 2 238 0.4643 52.38 52.38 76.1905
Case 3 18 0.1524 55.56 55.56 77.7778
Case 4 238 0.5205 52.38 52.38 76.1905
Case 5 19 0.0446 55.56 55.56 77.7778

From Table 1, we see that Case 3 (θn =
1

n2 + 1
) has number of iterations less than

other cases in the proposed algorithm 3.1 at performance of accuracy 77.7778%.
Next, we show graphs of the accuracy and loss of training data and testing data for

overfitting of Algorithm 3.1.

(a) Acc (b) Loss

Figure 1. Graph accuracy and loss of Algorithm 3.1 in Case 1
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(a) Acc (b) Loss

Figure 2. Graph accuracy and loss of Algorithm 3.1 in Case 2

(a) Acc (b) Loss

Figure 3. Graph accuracy and loss of Algorithm 3.1 in Case 3

(a) Acc (b) Loss

Figure 4. Graph accuracy and loss of Algorithm 3.1 in Case 4



New Iterative Method with Inertial Technique ... 363

(a) Acc (b) Loss

Figure 5. Graph accuracy and loss of Algorithm 3.1 in Case 5

From Figures 1-5, we observe that our Algorithm 3.1 has good fitting model show
that our algorithm suitably learns the training dataset and generalizes well to a hold-out
dataset.

5. Conclusions and Discussion

In this paper, we introduced an iterative method with inertial term using the self
adaptive stepsize. We also proved weak convergence theorem under some suitable condi-
tions for solving the split variational inclusion problem. We also presented a numerical
experiment in data the classification problem and provided a result of different parame-
ters showing our algorithm has efficiency. The application of this study was to classify
the TPACK level of pre-service mathematics teachers through self-assessment-based mea-
sures. The results indicate that the proposed method attained an accuracy of categoriza-
tion of 77.7778%. Accordingly, GPA, gender, CK, PK, TK, PCK, TCK, and TPK are
significant predictors of their TPACK level.

Reviewing the results from this study to those of other studies on the TPACK level
of pre-service mathematics teachers revealed that gender is one of the most accurate
predictors of teachers’ intentions to incorporate technology in their classrooms (Ander-
son,Arumugam). Undoubtedly, Content Knowledge (CK) and Pedagogical Knowledge
(PK) directly predict TPACK level, as well as GPA, which is a reflection of CK and PK.

Moreover, broad technological abilities and knowledge, such as Technological Knowl-
edge (TK), effectively predict TPACK levels (Bonafini,Niess,Niess2). In addition, the in-
tegration of technology knowledge and other knowledge as Technological Content Knowl-
edge (TCK) and Technological Pedagogical Knowledge (TPK), are unquestionable pre-
dictors of TPACK (Niess2,Bonafini,Mouza).

Based on these findings, it is possible to predict future TPACK level using this method.
By projecting the TPACK level of pre-service mathematics teachers, teacher educators
can assess and improve their working approaches and expertise. Given that there are
around four years between teacher education programs, it is simpler to appreciate the
proposed strategy’s implications.

The practical contribution of this research is a curriculum revision policy for mathe-
matics teacher education programs. Specifically, the program should offer more TCK and
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TPK courses, that means the revised curriculum should place a stronger focus on techno-
logical expertise in mathematics, and in teaching. In addition, the finding describes the
concept of the required curricular pattern in terms of balancing courses in pedagogical
knowledge, content knowledge, and technology knowledge.

The results indicate that machine learning approaches can be utilized to forecast the
teacher knowledge level of pre-service mathematics teachers. This research can help
teacher educators identify pre-service mathematics teachers with below-average or above-
average TPACK. Moreover, such data-driven research are crucial for developing a pro-
jected teacher knowledge analysis framework in teacher education and for contributing to
the creation of policies.
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