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Abstract An algebraic system is a structure which consists of a nonempty set together with a sequence

of operations and a sequence of relations which are defined on the set. The concept of a relational

hypersubstitution for algebraic systems is a canonical extension of the concept of a hypersubstitution

for universal algebras. Such relational hypersubstitutions are mappings which map operation symbols to

terms and map relation symbols to relational terms preserving arities. The set of all relational hyper-

substitutions for algebraic systems together with an associative binary operation, which was defined in

[D. Phusanga, J. Koppitz, The monoid of hypersubstitutions for algebraic systems, Announcements of

Union of Scientists Silven 33 (1) (2018) 119–126], forms a monoid. The concept of the special regular

elements are important role in semigroup theory. In this paper, we characterize the set of all completely

regular, left regular and right regular elements of this monoid of type ((m), (n)). The results show that

the set of all completely regular elements and the set of all left(right) regular elements of this monoid are

the same.
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1. Introduction

The notion of a hypersubstitution of a given type τ in universal algebras was introduced
by Denecke et. al [9]. They used the concept of a hypersubstitution for the characteri-
zation of solid varieties of type τ . A solid variety is a variety which is closed under the
following operation: taking a universal algebra (A, (fAi )i∈I) of type τ = (mi)i∈I with
the universe A and a family (fAi )i∈I of mi-ary operation fAi on A for i ∈ I. Then we
replace the operation fAi by any mi-ary term operation tAi , for i ∈ I, and obtain a new
universal algebra (A, (tAi )i∈I), which also belongs to the variety. A hypersubstitution of a
given type τ = (mi)i∈I is a mapping which maps the mi-ary operation symbol fAi to an
mi-ary term, for i ∈ I. Let Hyp(τ) be the set of all hypersubstitutions of type τ . Then
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Hyp(τ) together with an associative binary operation ◦h and the identity hypersubstitu-
tion forms a monoid, see more detail in [9, 17]. There are several published papers on
algebraic properties of this monoid and its submonoids. For example see [4, 5, 8].

On the other hand, we consider the algebraic systems in the sense of Mal′cev. Let
I, J be indexed sets. Let fi be an operation symbol with the arity mi and γj a relation
symbol with the arity nj , for i ∈ I and j ∈ J .

Definition 1.1. [13] An algebraic system of type (τ, τ ′) is a triple (A, (fi)i∈I , (γj)j∈J)
consisting of a nonempty set A, a sequence (fi)i∈I of mi-ary operations defined on A and
a sequence (γj)j∈J of nj-ary relations on A, where τ = (mi)i∈I is a sequence of the arities
of each operation fi and τ ′ = (nj)j∈J is a sequence of the arities of each relation γj . The
pair (τ, τ ′) is called the type of an algebraic system.

There were first attempts to define a concept of a hypersubstitution for algebraic sys-
tems. The concept of such a hypersubstitution, introduced in [10], does not be practicable
enough. Another attempt to define a hypersubstitution for algebraic systems was done in
[11], but also this concept has not proven to be impractical. Five years later, Phusanga
and Koppitz [16] introduced a new concept that generalizes the notion of a hypersub-
stitution of type τ for universal algebras in a canonical way. Such hypersubstitution is
called the relational hypersubstitution for algebraic systems of type (τ, τ ′), that name was
first used in [12]. Since any hypersubstitution for universal algebras of type τ assigns an
mi-ary operation fi to an mi-ary term for i ∈ I, it seems quite naturally that any rela-
tional hypersubstitution for algebraic systems of type (τ, τ ′) assigns an mi-ary operation
symbol fi to an mi-ary term for i ∈ I, and assigns an nj-ary relation symbol γj to an
nj-ary relational term for j ∈ J . The set of all relational hypersubstitutions for algebraic
systems of type (τ, τ ′) equipped with an associative binary operation forms a monoid, see
[16]. The algebraic properties of such monoid were studied intensively for several types.
For examples, all idempotent elements, all regular elements and the order of all relational
hypersubstitutions for algebraic systems of type (τ, τ ′) = ((2), (2)) were characterized by
Phusanga and Koppitz [16]. The order of linear relational hypersubstitutions for algebraic
systems of type (τ, τ ′) = ((m), (n)) was determined by Phusanga and Lekkoksung [12].
In this present paper, we characterize the set of all completely regular, left regular and
right regular elements of this monoid of type (τ, τ ′) = ((m), (n)), where m,n ∈ N.

2. Monoid of All Relational Hypersubstitutions for Algebraic
Systems

In this section, we recall the concept of relational hypersubstitutions for algebraic
systems of type ((m), (n)) and give some useful results that will be used in the next
sections. To define the concept of relational hypersubstitutions for algebraic systems of a
given type, we firstly introduce the notion of terms and formulas.

Let X := {x1, x2, ...} be a countably infinite set of variables. We often refer to these
variables as letters, to X as an alphabet, and also refer to the set Xm := {x1, ..., xm} as
a set of m variables. Let {fi : i ∈ I} be the set of mi-ary operation symbols indexed by
I, where mi ≥ 1 is a natural number. An m-ary term of type τ = (mi)i∈I , for simply an
m-ary term, is defined inductively as follows:

(i) The variables x1, ..., xm are m-ary terms of type τ .
(ii) If t1, ..., tmi are m-ary terms of type τ , then fi(t1, ..., tmi) is an m-ary term of

type τ .
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Let Wτ (Xm) be the set of all m-ary terms of type τ and let Wτ (X) :=
⋃
m≥1

Wτ (Xm) be

the set of all terms of type τ . Clearly, every m-ary term of type τ is also an n-ary term
of type τ , where n ≥ m.

Example 2.1. Let τ = (2) be a type with a binary operation symbol f . These are some
examples of binary terms of type (2): x1, x2, f(x1, x1), f(x2, x2), f(x1, x2), f(x2, x1),
f(f(x1, x2), x1), f(f(x2, x1), f(x1, x2)), f(f(x2, x1), f(f(x1, x2), x1)).

To define formulas of type (τ, τ ′), we need the logical connections ∨, ¬ and the equation
symbol ≈. Let {γj : j ∈ J} be the set of nj-ary relation symbols indexed by J .

Definition 2.2. An n-ary quantifier free formula of type (τ, τ ′) = ((mi)i∈I , (nj)j∈J), for
simply n-ary formula, is defined in the following way:

(i) If t1, t2 are n-ary terms of type τ , then the equation t1 ≈ t2 is an n-ary
quantifier free formula of type (τ, τ ′).

(ii) If j ∈ J and t1, ..., tnj are n-ary terms of type τ , then γj(t1, ..., tnj ) is an n-ary
quantifier free formula of type (τ, τ ′).

(iii) If F is an n-ary quantifier free formula of type (τ, τ ′), then ¬F is an n-ary
quantifier free formula of type (τ, τ ′).

(vi) If F1 and F2 are n-ary quantifier free formulas of type (τ, τ ′), then F1 ∨ F2 is
an n-ary quantifier free formula of type (τ, τ ′).

Let F(τ,τ ′)(Xn) be the set of all n-ary formulas of type (τ, τ ′) and let F(τ,τ ′)(X) :=⋃
n∈N

F(τ,τ ′)(Xn) be the set of all formulas of type (τ, τ ′). Let rF(τ,τ ′)(Xn) be the set of all

n-ary formulas of type (τ, τ ′) of the form (ii) in Definition 2.2. We call such formulas in
this set the n-ary relational terms of type (τ, τ ′). Let rF(τ,τ ′)(X) :=

⋃
n∈N

rF(τ,τ ′)(Xn) be

the set of all relational terms of type (τ, τ ′).
A relational hypersubstitution for algebraic systems of type (τ, τ ′) = ((mi)i∈I , (nj)j∈J)

is a mapping

σ : {fi : i ∈ I} ∪ {γj : j ∈ J} →Wτ (X) ∪ rF(τ,τ ′)(X)

with σ(fi) ∈ Wτ (Xmi) and σ(γj) ∈ rF(τ,τ ′)(Xnj ). We denote by Relhyp(τ, τ ′) the set
of all relational hypersubstitutions for algebraic systems of type (τ, τ ′). To defined a
binary operation on this set, we firstly recall the concept of superposition of terms and
superposition of relational terms.

For any m,n ∈ N. Let t, t1, ..., tmi , s1, ..., snj ∈ Wτ (Xm), u1, ..., um ∈ Wτ (Xn) and
F = γj(s1, ..., snj ) ∈ rF(τ,τ ′)(Xm). We define inductively the concept of superposition of
terms Smn : Wτ (Xm)× (Wτ (Xn))m →Wτ (Xn) by the following steps:

(i) If t = xk for 1 ≤ k ≤ n, then Smn (t, u1, ..., um) := uk.
(ii) If t = fi(t1, ..., tmi), then

Smn (t, u1, ..., um) := fi(S
m
n (t1, u1, ..., um), ..., Smn (tmi , u1, ..., um)).

Next, we define the superposition operation of relational terms

Rmn : (Wτ (Xm) ∪ rF(τ,τ ′)(Xm))× (Wτ (Xn))m →Wτ (Xn) ∪ rF(τ,τ ′)(Xn)

by the following steps:

(i) Rmn (t, u1, ..., um) := Smn (t, u1, ..., um),
(ii) Rmn (F, u1, ..., um) := γj(S

m
n (s1, u1, ..., um), ..., Smn (snj , u1, ..., um)).
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To define the binary operation on Relhyp(τ, τ ′), we need the concept of the extension σ̂
of σ which is defined by:
For any σ ∈ Relhyp(τ, τ ′), we define a mapping

σ̂ : Wτ (X) ∪ rF(τ,τ ′)(X)→Wτ (X) ∪ rF(τ,τ ′)(X)

by the following steps:

(i) σ̂[xk] := xk, for k ∈ N,
(ii) σ̂[fi(t1, ..., tmi)] := Rmim (σ(fi), σ̂[t1], ..., σ̂[tmi ]) = Smim (σ(fi), σ̂[t1], ..., σ̂[tmi ]),
(iii) σ̂[γj(s1, ..., snj )] := R

nj
n (σ(γj), σ̂[s1], ..., σ̂[snj ]).

Then an associative binary operation ◦h on Relhyp(τ, τ ′) is defined by σ ◦h ρ := σ̂ ◦ ρ,
where ◦ denotes the usual composition of mappings, for all σ, ρ ∈ Relhyp(τ, τ ′). Let σid
be the identity relational hypersubstitution for algebraic systems of type (τ, τ ′) which
maps an mi-ary operation symbol fi to a term fi(x1, ..., xmi) and maps an nj-ary rela-
tion symbol γj to a relational term γj(x1, ..., xnj ). Then the structure Relhyp(τ, τ ′) =

(Relhyp(τ, τ ′), ◦h, σid) forms a monoid, see more detail in [11, 12, 16].
In this present paper, we study on the monoid Relhyp((m), (n)). Let f be an m-

ary operation symbol and γ an n-ary relation symbol. For any t ∈ W(m)(Xm) and
F ∈ rF((m),(n))(Xn), we denote

(i) σt,F := the relational hypersubstitution for algebraic systems of type ((m), (n))
which maps f to a term t and maps γ to a relational term F ,

(ii) var(t) := the set of all variables occur in a term t,
(iii) var(F ) := the set of all variables occur in a relational term F ,
(iv) I(t) := the set of all indices of variables occur in a term t,
(v) I(F ) := the set of all indices of variables occur in a relational term F ,

(vi) π(t) := the term such that each xk ∈ var(t) is replaced by xπ(k) where π is a
bijective map on I(t).

Example 2.3. Let τ = (4) be a type with a quaternary operation symbol f . Let
t = f(f(x4, x3, x4, x3), x1, x3, x4) ∈ W(4)(X4). Then var(t) = {x1, x3, x4} and I(t) =
{1, 3, 4}. Let π : I(t) → I(t) by π(1) = 3, π(3) = 4 and π(4) = 1. Then π(t) =
f(f(xπ(4), xπ(3), xπ(4), xπ(3)), xπ(1), xπ(3), xπ(4)) = f(f(x1, x4, x1, x4), x3, x4, x1).

Remark 2.4. var(s) = var(π(s)) and π−1(π(s)) = s = π(π−1(s)).

Lemma 2.5. Let t ∈ W(m)(Xm) and var(t) = {xi1 , ..., xip}. Let π be a bijective
map on I(t). If y1, ..., ym ∈ W(m)(Xm) such that yi1 = xπ(i1), ..., yip = xπ(ip), then
Smm(t, y1, ..., ym) = π(t).

Proof. The proof is straightforward.

Lemma 2.6. [6] Let σt,F , σw,H ∈ Relhyp((m), (n)). Then
var((σt,F ◦h σw,H)(f)) ⊆ var(σw,H(f)) and var((σt,F ◦h σw,H)(γ)) ⊆ var(σw,H(γ)).

In 2015, Wongpinit and Leeratanavalee [18] introduced the notion of the i −most of
terms.

Definition 2.7. For m ∈ N. Let t ∈ W(m)(Xm) and 1 ≤ i ≤ m. Then i −most(t) is
defined inductively by:

(i) If t is a variable, then i−most(t) := t.
(ii) If t = f(t1, ..., tm), then i−most(t) := i−most(ti).
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Example 2.8. Let τ = (3) be a type with a ternary operation symbol f .
Let t = f(f(f(x3, x1, x1), x3, x2), f(x1, x1, x2), x2) ∈W(3)(X3). Then
1−most(t) = 1−most(f(f(x3, x1, x1), x3, x2)) = 1−most(f(x3, x1, x1)) = x3,
2−most(t) = 2−most(f(x1, x1, x2)) = x1 and
3−most(t) = 3−most(x2) = x2.

Remark 2.9. It is easy to see that σ̂xi [t] = i−most(t) and σ̂xi,F [t] = i−most(t).

Lemma 2.10. [7] Let σt,F ∈ Relhyp((m), (n)) and s ∈ W(m)(Xm). If i−most(t) = xj,
then i−most(σ̂t,F [s]) = j −most(s).

Lemma 2.11. [7] Let s, t ∈W(m)(Xm) and F,H ∈ rF((m),(n))(Xn) with s = f(s1, ..., sm)
and H = γ(h1, ..., hn) where s1, ..., sm ∈ W(m)(Xm) and h1, ..., hn ∈ W(m)(Xn). Let
t = σ̂t,F [s] and F = σ̂t,F [H] with xk ∈ var(t) and xl ∈ var(F ). Then

(i) if t = xi ∈ Xm, then i−most(sk) = xk and i−most(hl) = xl,
(ii) if t ∈W(m)(Xm) \Xm, then sk = xk and hl = xl.

Definition 2.12. [1] Let t ∈ W(m)(Xm), a subterm of t, is defined inductively by the
following:

(i) Every variable x ∈ var(t) is a subterm of t.
(ii) If t = f(t1, ..., tm), then t itself, t1, ..., tm and all subterms of ti, 1 ≤ i ≤ m, are

subterms of t.

We denote the set of all subterms of t by sub(t).

Definition 2.13. [3] Let t ∈W(m)(Xm)\Xm, where t = f(t1, ..., tm) for some t1, ..., tm ∈
W(m)(Xm). For each s ∈ sub(t) such that s 6= t. The set seqt(s) of sequences of s in t is
defined by

seqt(s) := {(i1, ..., in) : n ∈ N and s = πin ◦ ... ◦ πi1(t)},
where πij : W(m)(Xm) \Xm → W(m)(Xm) by the form πij (f(t1, ..., tm)) = tij . Maps πij
are defined for j = 1, ..., n.

3. All Completely Regular Elements in Relhyp((m), (n))

In this section, we determine the set of all completely regular elements of the monoid
of all relational hypersubstitutions for algebraic systems of type ((m), (n)). We recall first
the definitions of regular and completely regular.

Definition 3.1. [14] An element a of a semigroup S is called regular if there exists x ∈ S
such that axa = a.

Definition 3.2. [14] An element a of a semigroup S is called completely regular if there
exists x ∈ S such that axa = a and xa = ax.

Clearly, every completely regular element of S is always a regular element of S, but
any regular element of S does not need to be a completely regular element of S. It follows
that the set of all completely regular elements of S is a subset of the set of all regular
elements of S. Let σt,F ∈ Relhyp((m), (n)), we denote
RX := {σt,F | t = xi and F = γ(s1, ..., sn) with var(F ) = {xb1 , ..., xbl} such that

j −most(sb′k) = xbk for all k = 1, ..., l and for some distinct b′1, ..., b
′
l ∈ {1, ..., n} where

j ∈ {1, ...,m}},
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RT := {σt,F | t = f(t1, ..., tm) and F = γ(s1, ..., sn) with var(t) = {xa1 , ..., xak} and
var(F ) = {xb1 , ..., xbl} such that ta′i = xai and sb′j = xbj for all i = 1, ..., k, j = 1, ..., l,
and for some distinct a′1, ..., a

′
k ∈ {1, ...,m} and some distinct b′1, ..., b

′
l ∈ {1, ..., n}}.

In [7], Daengsaen and Leeratanavalee showed that RX ∪ RT is the set of all regular
elements of Relhyp((m), (n)). Next, we will define some subsets of RX ∪ RT and prove
that it is the set of all completely regular elements of Relhyp((m), (n)). Let σt,F ∈
Relhyp((m), (n)), we denote
CR(RX) := {σt,F | t = xi and F = γ(s1, ..., sn) with var(F ) = {xb1 , ..., xbl} such that

i−most(sbj ) = xφ(bj) for all j = 1, ..., l where φ is a bijective map on {b1, ..., bl}},
CR(RT ) := {σt,F | t = f(t1, ..., tm) and F = γ(s1, ..., sn) with var(t) = {xa1 , ..., xak}

and var(F ) = {xb1 , ..., xbl} such that tai = xπ(ai) and sbj = xφ(bj) for all i = 1, ..., k, j =
1, ..., l, where π is a bijective map on {a1, ..., ak} and φ is a bijective map on {b1, ..., bl}},
CR(Relhyp((m), (n))) := CR(RX) ∪ CR(RT ).

Clearly, CR(RX) ⊆ RX and CR(RT ) ⊆ RT .

Lemma 3.3. Let σt,F ∈ RT with var(t) = {xa1 , ..., xak} and var(F ) = {xb1 , ..., xbl}.
Then there exists σu,H ∈ Relhyp((m), (n)) and σt,F ◦h σu,H ◦h σt,F = σt,F if and only if
u = f(u1, ..., um) and H = γ(h1, ..., hn) with uai = xa′i and hbj = xb′j for all i = 1, ..., k

and j = 1, ..., l.

Proof. Let σt,F ∈ RT with t = f(t1, ..., tm) and F = γ(s1, ..., sn) where var(t) =
{xa1 , ..., xak} and var(F ) = {xb1 , ..., xbl}. There exist some distinct integers a′1, ..., a

′
k ∈

{1, ...,m} and some distinct integers b′1, ..., b
′
l ∈ {1, ..., n} such that ta′i = xai and

sb′j = xbj for all i = 1, ..., k, j = 1, ..., l. Suppose that there exists σu,H ∈ Relhyp((m), (n))
such that σt,F ◦h σu,H ◦h σt,F = σt,F . Then

σ̂t,F [σ̂u,H [t]] = (σt,F ◦h σu,H ◦h σt,F )(f) = σt,F (f) = t,

σ̂t,F [σ̂u,H [F ]] = (σt,F ◦h σu,H ◦h σt,F )(γ) = σt,F (γ) = F.

If u = xp ∈ Xm for some p ∈ {1, ...,m}, then

t = σ̂t,F [σ̂u,H [t]] = σ̂t,F [p−most(t)] = p−most(t) ∈ Xm.

This is a contradiction with t ∈ W(m)(Xm) \ Xm. Let u = f(u1, ..., um) and H =
γ(h1, ..., hn). Since var(t) = {xa1 , ..., xak} and by Lemma 2.11(ii), we have σ̂u,H [t] =
f(w1, ..., wm) with wai = xai for all i = 1, ..., k. Consider

f(w1, ..., wm) = σ̂u,H [t] = Smm(f(u1, ..., um), σ̂u,H [t1], ..., σ̂u,H [tm]),

then xai = wai = Smm(uai , σ̂u,H [t1], ..., σ̂u,H [tm]) for all i = 1, ..., k. If there exists i ∈
{1, ..., k} such that uai ∈ W(m)(Xm) \ Xm, then xai = Smm(uai , σ̂u,H [t1], ..., σ̂u,H [tm]) ∈
W(m)(Xm) \ Xm. This is a contradiction. So uai ∈ Xm for all i ∈ {1, ..., k}. Since
ta′i = xai for all i ∈ {1, ..., k}, we have σ̂u,H [ta′i ] = xai for all i ∈ {1, ..., k}. It follows that
we can choose uai = xa′i for all i = 1, ..., k. For case hbj = xb′j for all j = 1, ..., l, the proof

is similar. Conversely, it is obvious.

Proposition 3.4. For any σt,F ∈ CR(RX), σt,F is a completely regular element in
Relhyp((m), (n)).

Proof. Let σt,F ∈ CR(RX). Then t = xi ∈ Xm and F = γ(s1, ..., sn) ∈ rF((m),(n))(Xn)
with var(F ) = {xb1 , ..., xbl} such that i − most(sbj ) = xφ(bj) for all j = 1, ..., l where
φ is a bijective map on {b1, ..., bl}. Let σu,H ∈ Relhyp((m), (n)) with u = xi and H =
γ(h1, ..., hn) such that var(H) = var(F ) and hp = (φ−1 ◦ φ−1)(sp) for all p = 1, ...,m.
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We will show that σt,F ◦h σu,H ◦h σt,F = σt,F and σt,F ◦h σu,H = σu,H ◦h σt,F . For
each bj ∈ {b1, ..., bl} ⊆ {1, ...,m}, we have i−most(hbj ) = i−most((φ−1 ◦ φ−1)(sbj )) =
xφ−1(φ−1(φ(bj))) = xφ−1(bj). First, we show that σt,F ◦h σu,H ◦h σt,F = σt,F . Consider

(σt,F ◦h σu,H ◦h σt,F )(γ) = σ̂xi,F [σ̂xi,H [F ]]

= σ̂xi,F [σ̂xi,H [γ(s1, ..., sn)]]

= σ̂xi,F [Rnn(γ(h1, ..., hn), σ̂xi,H [s1], ..., σ̂xi,H [sn])]

= σ̂xi,F [Rnn(γ(h1, ..., hn), i−most(s1), ..., i−most(sn))]

= σ̂xi,F [γ(φ(h1), ..., φ(hn))]

(since var(H) = var(F ) and i−most(sbj ) = xφ(bj))

= Rnn(F, σ̂xi,F [φ(h1)], ..., σ̂xi,F [φ(hn)])

= Rnn(F, i−most(φ(h1)), ..., i−most(φ(hn)))

= F

(since i−most(φ(hbj )) = xφ(φ−1(bj)) = xbj )

= σt,F (γ).

Clearly, (σt,F ◦h σu,H ◦h σt,F )(f) = xi = σt,F (f). So σt,F ◦h σu,H ◦h σt,F = σt,F . Next,
we show that σt,F ◦h σu,H = σu,H ◦h σt,F . Consider

(σt,F ◦h σu,H)(γ) = Rnn(γ(s1, ..., sn), i−most(h1), ..., i−most(hn)) = γ(w1, ..., wn),

where wp = Snn(sp, i−most(h1), ..., i−most(hn)) for all p = 1, ..., n and

(σu,H ◦h σt,F )(γ) = Rnn(γ(h1, ..., hn), i−most(s1), ..., i−most(sn)) = γ(v1, ..., vn),

where vp = Snn(hp, i−most(s1), ..., i−most(sn)) for all p = 1, ..., n.
Since i−most(hbj ) = xφ−1(bj) for all xbj ∈ var(sp) ⊆ var(F ) and by Lemma 2.5, we have

wp = Snn(sp, i−most(h1), ..., i−most(hn)) = φ−1(sp) for all p = 1, ..., n. Then

vp = Snn(hp, i−most(s1), ..., i−most(sn))

= Snn(φ−1(φ−1(sp)), i−most(s1), ..., i−most(sn))

= φ(φ−1(φ−1(sp)))

(since i−most(sbj ) = xφ(bj) and by Lemma 2.5)

= φ−1(sp)

= wp

for all p = 1, 2, ..., n. It implies that (σt,F ◦h σu,H)(γ) = γ(w1, ..., wn) = γ(v1, ..., vn) =
(σu,H ◦h σt,F )(γ). Clearly, (σt,F ◦h σu,H)(f) = xi = (σu,H ◦h σt,F )(f). So σt,F ◦h σu,H =
σu,H ◦h σt,F . Therefore σt,F is a completely regular element in Relhyp((m), (n)).

Proposition 3.5. For any σt,F ∈ CR(RT ), σt,F is a completely regular element in
Relhyp((m), (n)).

Proof. Let σt,F ∈ CR(RT ). Then t = f(t1, ..., tm) and F = γ(s1, ..., sn) with var(t) =
{xa1 , ..., xak} and var(F ) = {xb1 , ..., xbl} such that tai = xπ(ai) and sbj = xφ(bj) for all
i = 1, ..., k, j = 1, ..., l, where π is a bijective map on {a1, ..., ak} and φ is a bijective map on
{b1, ..., bl}. Pick σu,H ∈ Relhyp((m), (n)) where u = f(u1, ..., um) and H = γ(h1, ..., hn)
with var(u) = var(t) and var(H) = var(F ) such that uπ(a1) = xa1 , ..., uπ(ak) = xak and
hφ(b1) = xb1 , ..., hφ(bl) = xbl . For any i ∈ {1, ...,m} \ {a1, ..., ak} and j ∈ {1, ..., n} \
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{b1, ..., bl}, we choose ui = (π−1 ◦ π−1)(ti) and hj = (φ−1 ◦ φ−1)(sj). By Lemma 3.3, we
have σt,F ◦h σu,H ◦h σt,F = σt,F . Next, we will show that σt,F ◦h σu,H = σu,H ◦h σt,F .
Consider

(σt,F ◦h σu,H)(f) = Smm(f(t1, ..., tm), σ̂t,F [u1], ..., σ̂t,F [um]) = f(w1, ..., wm)

where wp = Smm(tp, σ̂t,F [u1], ..., σ̂t,F [um]) for all p = 1, ...,m,

(σt,F ◦h σu,H)(γ) = Rnn(γ(s1, ..., sn), σ̂t,F [h1], ..., σ̂t,F [hn]) = γ(v1, ..., vn)

where vq = Snn(sq, σ̂t,F [h1], ..., σ̂t,F [hn]) for all q = 1, ..., n,

(σu,H ◦h σt,F )(f) = Smm(f(u1, ..., um), σ̂u,H [t1], ..., σ̂u,H [tm]) = f(w̃1, ..., w̃m)

where w̃p = Smm(up, σ̂u,H [t1], ..., σ̂u,H [tm]) for all p = 1, ...,m,

(σu,H ◦h σt,F )(γ) = Rnn(γ(h1, ..., hn), σ̂u,H [s1], ..., σ̂u,H [sn]) = γ(ṽ1, ..., ṽn)

where ṽq = Snn(hq, σ̂u,H [s1], ..., σ̂u,H [sn]) for all q = 1, ..., n.
Case 1 : i ∈ {a1, ..., ak} and j ∈ {b1, ..., bl}. Since uπ(ai) = xai , we have uai =
uπ(π−1(ai)) = xπ−1(ai). Since tai = xπ(ai), we have tπ−1(ai) = xπ(π−1(ai)) = xai . Then

w̃ai = Smm(uai , σ̂u,H [t1], ..., σ̂u,H [tm])

= Smm(xπ−1(ai), σ̂u,H [t1], ..., σ̂u,H [tm])

= σ̂u,H [tπ−1(ai)]

= xai .

So

wai = Smm(tai , σ̂t,F [u1], ..., σ̂t,F [um])

= Smm(xπ(ai), σ̂t,F [u1], ..., σ̂t,F [um])

= σ̂t,F [uπ(ai)]

= xai

= w̃ai

for all i = 1, ..., k. Similarly, vbj = ṽbj for all j = 1, ..., l.
Case 2 : i ∈ {1, ...,m}\{a1, ..., ak} and j ∈ {1, ..., n}\{b1, ..., bl}. Since ua1 = xπ−1(a1), ...,
uak = xπ−1(ak), we obtain σ̂t,F [uar ] = xπ−1(ar) for all xar ∈ var(ti) ⊆ var(u). By Lemma

2.5, we have wi = Smm(ti, σ̂t,F [u1], ..., σ̂t,F [um]) = π−1(ti) for all i ∈ {1, ...,m} \ {1, ..., k}.
Then

w̃i = Smm(ui, σ̂u,H [t1], ..., σ̂u,H [tm])

= Smm(π−1(π−1(ti)), σ̂u,H [t1], ..., σ̂u,H [tm])

(since σ̂u,H [tar ] = xπ(ar) for all xar ∈ var(π−1(π−1(ti))) and by Lemma 2.5)

= π(π−1(π−1(ti)))

= π−1(ti)

= wi

for all i ∈ {1, ...,m} \ {a1, ..., ak}. Similarly, vj = ṽj for all j ∈ {1, ..., n} \ {b1, ..., bl}.
It follows that f(w1, ..., wm) = f(w̃1, ..., w̃m), γ(v1, ..., vn) = γ(ṽ1, ..., ṽn) and so σt,F ◦h
σu,H = σu,H ◦h σt,F . Therefore σt,F is a completely regular element in Relhyp((m), (n)).
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Lemma 3.6. If σt,F ∈ RX \ CR(RX), then σt,F 6= σu,H ◦h σ2
t,F for all

σu,H ∈ Relhyp((m), (n)).

Proof. Let σt,F ∈ RX \ CR(RX) with t = xi ∈ Xm and F = γ(s1, ..., sn) such that
var(F ) = {xb1 , ..., xbl}. Then there exists xbk ∈ var(F ) such that i−most(sp) 6= xbk for
all p = b1, ..., bl. Since σt,F ∈ RX , there exist j ∈ {1, ..., n} and some distinct integers
b′1, ..., b

′
l ∈ {1, ..., n} such that j − most(sb′r ) = xbr for all r = 1, ..., l. Let σu,H ∈

Relhyp((m), (n)). We show that σt,F 6= σu,H ◦h σ2
t,F . Assume that σt,F = σu,H ◦h σ2

t,F .
First, consider

(σ2
t,F )(γ) = σ̂xi,F [F ] = Rnn(γ(s1, ..., sn), i−most(s1), ..., i−most(sn)) = γ(v1, ..., vn)

where vp = Snn(sp, i−most(s1), ..., i−most(sn)) for all p = 1, ..., n. Next, consider

γ(s1, ..., sn) = σt,F (γ)

= (σu,H ◦h σ2
t,F )(γ)

= σ̂u,H [σ2
t,F (γ)]

= σ̂u,H [γ(v1, ..., vn)]

= Rnn(γ(h1, ..., hn), σ̂u,H [v1], ..., σ̂u,H [vn]) where H = γ(h1, ..., hn)

= γ(Snn(h1, σ̂u,H [v1], ..., σ̂u,H [vn]), ..., Snn(hn, σ̂u,H [v1], ..., σ̂u,H [vn])).

So sp = Snn(hp, σ̂u,H [v1], ..., σ̂u,H [vn]) for all p = 1, ..., n. Without loss of generality, let
j −most(hb′k) = xα and j −most(u) = xβ for some xα ∈ var(H) and xβ ∈ var(u). Then

xbk = j −most(sb′k)

= Snn(j −most(hb′k), j −most(σ̂u,H [v1]), ..., j −most(σ̂u,H [vn]))

= Snn(xα, j −most(σ̂u,H [v1]), ..., j −most(σ̂u,H [vn]))

= j −most(σ̂u,H [vα])

= β −most(vα)

(since j −most(u) = xβ and by Lemma 2.10)

= Snn(β −most(sα), i−most(s1), ..., i−most(sn)).

Since i−most(sp) 6= xbk for all p = b1, ..., bl, we obtain that β−most(sα) /∈ {xb1 , ..., xbl} =
var(F ). This is a contradiction with β −most(sα) ∈ var(f(s1, ..., sm)) = var(F ).
Therefore σt,F 6= σu,H ◦h σ2

t,F for all σu,H ∈ Relhyp((m), (n)).

Lemma 3.7. If σt,F ∈ RT \ CR(RT ), then σt,F 6= σu,H ◦h σ2
t,F for all

σu,H ∈ Relhyp((m), (n)).

Proof. Let σt,F ∈ RT \ CR(RT ) with t = f(t1, ..., tm) and F = γ(s1, ..., sn) such that
var(t) = {xa1 , ..., xak} and var(F ) = {xb1 , ..., xbl}. Since σt,F ∈ RT , there exist some
distinct integers a′1, ..., a

′
k ∈ {1, ...,m} and b′1, ..., b

′
l ∈ {1, ..., n} such that ta′i = xai and

sb′j = xbj for all i = 1, ..., k, j = 1, ..., l. Let σu,H ∈ Relhyp((m), (n)). We will show

that σt,F 6= σu,H ◦h σ2
t,F . Assume that σt,F = σu,H ◦h σ2

t,F . If u = xα ∈ Xm, then

t = σt,F (f) = (σu,H ◦h σ2
t,F )(f) = σ̂xα,H [σ2

t,F (f)] = α −most(σ2
t,F (f)) ∈ Xm. This is a

contradiction with t ∈ W(m)(Xm) \Xm. Let u = f(u1, ..., um) ∈ W(m)(Xm) \Xm. Since
σt,F ∈ RT \ CR(RT ), we can consider into two cases.
(1) There exists xai ∈ var(t) such that tp 6= xai for all p = a1, ..., ak.
(2) There exists xbj ∈ var(F ) such that sp 6= xbj for all p = b1, ..., bl.



344 Thai J. Math. Vol. 21 (2023) /J. Daengsaen and S. Leeratanavalee

Case 1 : There exists xai ∈ var(t) such that tp 6= xai for all p = a1, ..., ak. Consider
(σ2
t,F )(f) = (σt,F ◦h σt,F )(f) = Smm(f(t1, ..., tm), σ̂t,F [t1], ..., σ̂t,F [tm]) = f(w1, ..., wm)

where wp = Smm(tp, σ̂t,F [t1], ..., σ̂t,F [tm]) for all p = 1, ...,m. Then

f(t1, ..., tm) = σt,F (f)

= (σu,H ◦h σ2
t,F )(f)

= σ̂u,H [σ2
t,F (f)] = σ̂u,H [f(w1, ..., wm)]

= Sm
m(f(u1, ..., um), σ̂u,H [w1], ..., σ̂u,H [wm])

= f(Sm
m(u1, σ̂u,H [w1], ..., σ̂u,H [wm]), ..., Sm

m(um, σ̂u,H [w1], ..., σ̂u,H [wm])).

So tp = Smm(up, σ̂u,H [w1], ..., σ̂u,H [wm]) for all p = 1, ...,m. If ua′i = f(ua′i1 , ..., ua′im) ∈
W(m)(Xm) \Xm, then xai = ta′i = Smm(ua′i , σ̂u,H [w1], ..., σ̂u,H [wm]) =

Smm(f(ua′i1 , ..., ua′im), σ̂u,H [w1], ..., σ̂u,H [wm]) ∈W(m)(Xm) \Xm, which is impossible. Let

ua′i = xβ ∈ Xm. Then xai = ta′i = Smm(ua′i , σ̂u,H [w1], ..., σ̂u,H [wm]) = σ̂u,H [wβ ]. Since u ∈
W(m)(Xm) \Xm, it follows that wβ = xai . Then xai = wβ = Smm(tβ , σ̂t,F [t1], ..., σ̂t,F [tm]).
If tβ ∈W(m)(Xm)\Xm, then xai = Smm(tβ , σ̂t,F [t1], ..., σ̂t,F [tm]) ∈W(m)(Xm)\Xm, which
is impossible. So tβ ∈ Xm. Since tp 6= xai for all p = a1, ..., ak, we have σ̂t,F [tp] 6= xai for
all p = a1, ..., ak. It follows that tβ /∈ {xa1 , ..., xak} = var(t). This is a contradiction with
tβ ∈ var(t). Therefore σt,F 6= σu,H ◦h σ2

t,F for all σu,H ∈ Relhyp((m), (n)).
Case 2 : The proof is similar to Case 1.

Theorem 3.8. [14] An element a of a semigroup S is completely regular if and only if
a ∈ a2Sa2.

Theorem 3.9. CR(Relhyp((m), (n))) is the set of all completely regular elements in
Relhyp((m), (n)).

Proof. Since CR(Relhyp((m), (n))) = CR(RX) ∪ CR(RT ), every element in
CR(Relhyp((m), (n))) is completely regular. Let σt,F be a regular element and σt,F /∈
CR(Relhyp((m), (n))). Then σt,F ∈ RX \ CR(RX) or σt,F ∈ RT \ CR(RT ). By Lemma
3.6 and Lemma 3.7, we obtain that σt,F 6= σu,H ◦h σ2

t,F for all σu,H ∈ Relhyp((m), (n)).

It follows that σt,F 6= σ2
t,F ◦h σv,G ◦h σ2

t,F , where σu,H = σ2
t,F ◦h σv,G, for all

σv,G ∈ Relhyp((m), (n)). By Theorem 3.8, σt,F is not a completely regular element in
Relhyp((m), (n)). Therefore CR(Relhyp((m), (n))) is the set of all completely regular
elements in Relhyp((m), (n)).

4. All Right(Left) Regular Elements in Relhyp((m), (n))

In this section, we characterize the set of all right(left) regular elements in
Relhyp((m), (n)). First, we recall the definition of a right(left) regular element of semi-
groups.

Definition 4.1. An element x of a semigroup S is called right(left) regular if there exists
y ∈ S such that xxy = x (yxx = x).

Clearly, in semigroup, every completely regular element is both a right regular and left
regular element. Indeed, if x is a completely regular element in a semigroup S, then there
exists y ∈ S such that xyx = x and xy = yx. Hence x = xyx = xxy and x = xyx = yxx.

Next, we characterize the set of all right regular elements in Relhyp((m), (n)) as the
following lemmas.
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Lemma 4.2. Let t = xi ∈ Xm and F = γ(s1, ..., sn) ∈ rF((m),(n))(Xn) with var(F ) =
{xb1 , ..., xbl}. Then σt,F is right regular if and only if σt,F ∈ CR(RX).

Proof. Let σt,F be right regular. There exists σu,H ∈ Relhyp((m), (n)) such that σt,F =
σt,F ◦h σt,F ◦h σu,H where u ∈W(m)(Xm) and H = γ(h1, ..., hn) ∈ rF((m),(n))(Xn). First,
we consider

(σt,F ◦h σu,H)(γ) = σ̂xi,F [σu,H(γ)]

= σ̂xi,F [H]

= Rnn(F, i−most(h1), ..., i−most(hn))

= γ(w1, ..., wn)

where wp = Snn(sp, i−most(h1), ..., i−most(hn)) for all p = 1, ..., n. Then

F = σt,F (γ)

= (σt,F ◦h σt,F ◦h σu,H)(γ)

= σ̂t,F [(σt,F ◦h σu,H)(γ)]

= σ̂xi,F [γ(w1, ..., wn)]

= Rnn(F, i−most(w1), ..., i−most(wn)).

Since var(F ) = {xb1 , ..., xbl}, it follows that xbj = i−most(wbj ) for all j = 1, ..., l. Then
xbj = i−most(wbj ) = Snn(i−most(sbj ), i−most(h1), ..., i−most(hn)). Without loss of
generality, we may assume that i −most(sbj ) = xb′j ∈ var(F ) for some b′j ∈ {b1, ..., bl}.
Then xbj = i−most(hb′j ) for all j = 1, ..., l and we obtain a subset {b′1, ..., b′l} of {b1, ..., bl}.
Next, we show that all elements of a subset {b′1, ..., b′l} are distinct. Assume that there exist
some integers j, k ∈ {1, ..., l} and j 6= k such that b′j = b′k. Then xbj = i −most(hb′j ) =

i −most(hb′k) = xbk . This is a contradiction with xbj 6= xbk ∈ var(F ). It implies that

{b1, ..., bl} = {b′1, ..., b′l}. Define a bijective map φ : {b1, ..., bl} → {b′1, ..., b′l} such that
φ(bj) = b′j for all j = 1, ..., l. Then i − most(sbj ) = xb′j = xφ(bj) for all j = 1, ..., l.

Therefore σt,F ∈ CR(RX). Conversely, let σt,F ∈ CR(RX). Then σt,F is completely
regular. It follows that σt,F is right regular.

Lemma 4.3. Let t = f(t1, ..., tm)∈W(m)(Xm)\Xm and F =γ(s1, ..., sn)∈ rF((m),(n))(Xn)
with var(t) = {xa1 , ..., xak} and var(F ) = {xb1 , ..., xbl}. Then σt,F is right regular if and
only if σt,F ∈ CR(RT ).

Proof. Let σt,F be right regular. There exists σu,H ∈ Relhyp((m), (n)) such that σt,F =
σt,F ◦h σt,F ◦h σu,H where u ∈ W(m)(Xm) and H = γ(h1, ..., hn) ∈ rF((m),(n))(Xn). If
u ∈ Xm then t = σt,F (f) = (σt,F ◦h σt,F ◦h σu,H)(f) = u ∈ Xm, which is impossible. Let
u = f(u1, ..., um) ∈W(m)(Xm) \Xm. Then

(σt,F ◦h σu,H)(f) = σ̂t,F [u] = Smm(t, σ̂t,F [u1], ..., σ̂t,F [um]) = f(w1, ..., wm)

where wp = Smm(tp, σ̂t,F [u1], ..., σ̂t,F [um]) for all p = 1, ...,m (1)
and (σt,F ◦h σu,H)(γ) = σ̂t,F [H] = Rnn(F, σ̂t,F [h1], ..., σ̂t,F [hn]) = γ(g1, ..., gn)
where gq = Snn(sq, σ̂t,F [h1], ..., σ̂t,F [hn]) for all q = 1, ..., n. (2)
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First, we consider (1). Then

t = σt,F (f)

= (σt,F ◦h σt,F ◦h σu,H)(f)

= σ̂t,F [f(w1, ..., wm)]

= Smm(t, σ̂t,F [w1], ..., σ̂t,F [wm]).

Since var(t) = {xa1 , ..., xak}, it follows that xai = σ̂t,F [wai ] for all i = 1, ..., k. Since
t ∈ W(m)(Xm) \ Xm, it implies that wai = xai for all i = 1, ..., k. Hence xai = wai =
Smm(tai , σ̂t,F [u1], ..., σ̂t,F [um]). If tai ∈W(m)(Xm) \Xm, then
xai = Smm(tai , σ̂t,F [u1], ..., σ̂t,F [um]) ∈W(m)(Xm) \Xm, which is impossible. So tai = xa′i
for some a′i ∈ {a1, ..., ak}. Then xai = Smm(tai , σ̂t,F [u1], ..., σ̂t,F [um]) = σ̂t,F [ua′i ].
It implies that ua′i = xai for all i = 1, ..., k. By using this process, we obtain all distinct

integers a′1, ..., a
′
k ∈ {a1, ..., ak}, i.e., {a′1, ..., a′k} = {a1, ..., ak}. Define a bijective map

π : {a1, ..., ak} → {a′1, ..., a′k} by π(ai) = a′i for all i = 1, ..., k. So tai = xa′i = xπ(ai) for

all i = 1, ..., k. Similarly, if we consider (2) then we can show that there exists a bijective
map φ on {b1, ..., bl} such that sbj = xφ(bj) for all j = 1, ..., l. Therefore σt,F ∈ CR(RT ).
Conversely, let σt,F ∈ CR(RT ). Then σt,F is completely regular. It follows that σt,F is
right regular.

Finally, we determine the set of all left regular elements in Relhyp((m), (n)) as follows.

Lemma 4.4. Let t = xi ∈ Xm and F = γ(s1, ..., sn) ∈ rF((m),(n))(Xn) with var(F ) =
{xb1 , ..., xbl}. Then σt,F is left regular if and only if σt,F ∈ CR(RX).

Proof. Let σt,F be left regular. There exists σu,H ∈ Relhyp((m), (n)) such that σt,F =
σu,H◦hσt,F ◦hσt,F where u ∈W(m)(Xm) and H = γ(h1, ..., hn) ∈ rF((m),(n))(Xn). Assume
that σt,F /∈ CR(RX). Then there exists xbj ∈ var(F ) such that i −most(sbk) 6= xbj for
all k = 1, ..., l. Consider

(σt,F ◦h σt,F )(γ) = σ̂xi,F [σxi,F (γ)] = σ̂xi,F [F ] = Rnn(F, i−most(s1), ..., i−most(sn)).

Then every variable xbk in a relational term F is replaced by i −most(sbk). But xbj 6=
i−most(sbk) for all k = 1, ..., l, so xbj /∈ var((σt,F ◦h σt,F )(γ)). Since
var((σu,H ◦h σt,F ◦h σt,F )(γ)) = var((σu,H ◦h (σt,F ◦h σt,F ))(γ)) ⊆ var((σt,F ◦h σt,F )(γ)),
it follows that xbj /∈ var((σu,H ◦h σt,F ◦h σt,F )(γ)). This contradicts with xbj ∈ var(F ) =
var(σt,F (γ)) = var((σu,H ◦h σt,F ◦h σt,F )(γ)). Therefore σt,F ∈ CR(RX). Conversely, let
σt,F ∈ CR(RX). Then σt,F is completely regular. It follows that σt,F is left regular.

Lemma 4.5. Let t = f(t1, ..., tm) ∈W(m)(Xm)\Xm and F = γ(s1, ..., sn) ∈ rF((m),(n))(Xn)

with var(t) = {xa1 , ..., xak} and var(F ) = {xb1 , ..., xbl}. Then σt,F is left regular if and
only if σt,F ∈ CR(RT ).

Proof. Let σt,F be left regular. There exists σu,H ∈ Relhyp((m), (n)) such that σt,F =
σu,H ◦h σt,F ◦h σt,F where u ∈ W(m)(Xm) and H = γ(h1, ..., hn) ∈ rF((m),(n))(Xn).
Consider

(σt,F ◦h σt,F )(f) = σ̂t,F [σt,F (f)]

= σ̂t,F [t]

= Smm(t, σ̂t,F [t1], ..., σ̂t,F [tm])

= f(w1, ..., wm)
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where wi = Smm(ti, σ̂t,F [t1], ..., σ̂t,F [tn]) for all i = 1, ...,m and

(σt,F ◦h σt,F )(γ) = σ̂t,F [σt,F (γ)]

= σ̂t,F [F ]

= Rnn(F, σ̂t,F [s1], ..., σ̂t,F [sn])

= γ(z1, ..., zn)

where zi = Snn(si, σ̂t,F [s1], ..., σ̂t,F [sn]) for all i = 1, ..., n. We want to show that σt,F ∈
CR(RT ). Assume that σt,F /∈ CR(RT ). We can consider into 4 cases.

(1) ta1 , ..., tak ∈ var(t) such that tp = tq for some p, q ∈ {a1, ..., ak} and p 6= q.
(2) There exists p ∈ {a1, ..., ak} such that tp ∈W(m)(Xm) \Xm.
(3) sb1 , ..., sbl ∈ var(F ) such that sp = sq for some p, q ∈ {b1, ..., bl} and p 6= q.
(4) There exists p ∈ {b1, ..., bl} such that sp ∈W(m)(Xm) \Xm.

Case (1) : ta1 , ..., tak ∈ var(t) such that tp = tq for some p, q ∈ {a1, ..., ak} and p 6=
q. Then there exist at least one element of var(t) which is not an element of the set
{ta1 , ..., tak}, say xai . So xai /∈ var(σ̂t,F [tj ]) for all j = a1, ..., ak. Since (σt,F ◦hσt,F )(f) =
Smm(t, σ̂t,F [t1], ..., σ̂t,F [tm]), we have to replace every variable xj of a term t by σ̂t,F [tj ].
But xai /∈ var(σ̂t,F [tj ]) for all j = a1, ..., ak, so xai /∈ var((σt,F ◦h σt,F )(f)). Since
var((σu,H ◦h σ2

t,F )(f)) ⊆ var(σ2
t,F (f)), it follows that xai /∈ var((σu,H ◦h σ2

t,F )(f)) =

var(σt,F (f)) = var(t). This is a contradiction with xai ∈ var(t).
Case (2) : There exists p ∈ {a1, ..., ak} such that tp ∈W(m)(Xm) \Xm.
Give A := {p | p ∈ {a1, ..., ak} such that tp ∈W(m)(Xm) \Xm}. Then A 6= ∅. If A = I(t)
then tp ∈W(m)(Xm)\Xm for all p = a1, ..., ak. It implies that σ̂t,F [tp] ∈W(m)(Xm)\Xm

for all p = a1, ..., ak. Since wi = Smm(ti, σ̂t,F [t1], ..., σ̂t,F [tn]) for all i = 1, ...,m, we have
to replace every variable xaj of a term ti by σ̂t,F [taj ]. Thus the structure of a subterm
wi = Smm(ti, σ̂t,F [t1], ..., σ̂t,F [tn]) is longer than a subterm ti for all i = 1, ...,m. Hence,

for each j = 1, ..., k, if we pick the smallest sequence (c) of seqt(xaj ) = seqσt,F (f)(xaj ),

then we always obtain the smallest sequence (c′) of seqf(w1,...,wm)(xaj ) = seq(σ
2
t,F )(f)(xaj )

such that |c′| > |c|. It implies that the smallest sequence of seq(σu,H◦hσ
2
t,F )(f)(xaj ) is

longer than the smallest sequence of seqt(xaj ). Since (σu,H ◦h σ2
t,F )(f) = σt,F (f) = t, the

smallest sequence of seq(σu,H◦hσ
2
t,F )(f)(xaj ) and the smallest sequence of seqt(xaj ) are the

same, which is a contradiction. So A ⊂ I(t). Next, consider I(t) \ A 6= ∅. There are 2
subcases.

Case (2.1) : There exists p ∈ I(t) \ A such that tp = xi but i ∈ A. That is ti ∈
W(m)(Xm) \ Xm. Then σ̂t,F [ti] ∈ W(m)(Xm) \ Xm. Give Ĩ(t) = {p ∈ I(t) | tp 6=
tq for all q = 1, ...,m}. Then Ĩ(t) \A ⊆ I(t) \A. Consider (σt,F ◦h σt,F )(f) =
Smm(t, σ̂t,F [t1], ..., σ̂t,F [tm]) = f(w1, ..., wm). Then wp = Smm(tp, σ̂t,F [t1], ..., σ̂t,F [tm]) =
Smm(xi, σ̂t,F [t1], ..., σ̂t,F [tm]) = σ̂t,F [ti] ∈W(m)(Xm) \Xm.
Give B = {p | p ∈ {a1, ..., ak} such that wp ∈ var(t) and wp 6= wq for all q = 1, ...,m}.
Since var(f(w1, ..., wm)) = var((σt,F ◦h σt,F )(f)) ⊆ var(t), |B| ≤ |Ĩ(t) \ A| − 1 (delete
tp = xi such that wp ∈ W(m)(Xm) \ Xm). Since t = σt,F (f) = (σu,H ◦h σ2

t,F )(f) =

σ̂u,H [f(w1, ..., wm)], we have var(t) ⊆ var(f(w1, ..., wm)). It follows that |Ĩ(t) \ A| ≤
|B| ≤ |Ĩ(t) \A| − 1. This is a contradiction.

Case (2.2) : tp = xπ(p) for all p ∈ I(t) \ A, where π is a mapping on I(t) \ A. Then
for each i ∈ A, we have xi /∈ {tp | p ∈ I(t) \ A} and ti ∈ W(m)(Xm) \Xm. There are 2
subcases.
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Case (2.2.1) : xi /∈ var(tq) for all q ∈ A. The proof is similar to Case (1), we have
xi /∈ var((σu,H ◦h σ2

t,F )(f)) = var(σt,F (f)) = var(t). This is a contradiction.

Case (2.2.2) : xi ∈ var(tq) for some q ∈ A. The proof is similar to case A = I(t) and
we also get a contradiction. The proof of Case (3) and Case (4) are similar to Case (1)
and Case (2), respectively. Therefore σt,F ∈ CR(RT ).

Conversely, let σt,F ∈ CR(RT ). Then σt,F is completely regular. It follows that σt,F
is left regular.

By all previous lemmas, we can conclude that the set of all completely regular elements
and the set of all right(left) regular elements in Relhyp((m), (n)) are the same.

Theorem 4.6. CR(Relhyp((m), (n))) is the set of all right(left) regular elements in
Relhyp((m), (n)).
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