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1. Introduction and Preliminaries

Let C be a nonempty closed convex subset of real normed linear space X. A self-
mapping T : C → C is said to be nonexpansive if ‖T (x) − T (y)‖ ≤ ‖x − y‖ for all
x, y ∈ C. A self-mapping T : C → C is called asymptotically nonexpansive if there exists
a sequence {kn} ⊂ [1, ∞), kn → 1 as n→∞ such that

‖Tnx− Tny‖ ≤ kn‖x− y‖ (1.1)

for all x, y ∈ C and n ≥ 1. A mapping T : C → C is said to be uniformly L–Lipschitzian
if there exists a constant L > 0 such that

‖Tnx− Tny‖ ≤ L‖x− y‖ (1.2)

for all x, y ∈ C and n ≥ 1.
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It is easy to see that if T is an asymptotically nonexpansive, then it is uniformly
L–Lipschitzian with the uniform Lipschitz constant L = sup{kn : n ≥ 1}.

A self-mapping T : C → C is called generalized asymptotically nonexpansive see [23] if
there exists nonnegative real sequences {kn} and {δn} with kn > 1, kn → 1 and δn → 0
as n→∞ such that

‖Tnx− Tny‖ ≤ kn‖x− y‖+ δn (1.3)

for all x, y ∈ C and n ≥ 1. T : C → C is said to be generalized asymptotically quasi–
nonexpansive if there exists nonnegative real sequences {kn} and {δn} with kn > 1, kn → 1
and δn → 0 as n→∞ such that

‖Tnx− Tnp‖ ≤ kn‖x− p‖+ δn (1.4)

for all x ∈ C, p ∈ F (T ) ( F (T ) denote the set of fixed points of T ) and n ≥ 1.
It is clear from the definition that a generalized asymptotically quasi–nonexpansive

mapping is to unify various definitions of classes of mappings associated with the class
of generalized asymptotically nonexpansive mapping, asymptotically nonexpansive type,
asymptotically nonexpansive mappings, and nonexpansive mappings. However, the con-
verse of each of above statement may be not true. The example shows that a generalized
asymptotically quasi–nonexpansive mapping is not an asymptotically quasi–nonexpansive
mapping; see [23].

Iterative techniques for approximating fixed points of nonexpansive mappings and their
generalizations, for example, asymptotically nonexpansive mappings, etc., have been stud-
ied by a number of authors (see, e.g., [4, 5, 15, 17, 20, 23, 26]) and references cited therein.

Approximation of fixed points remains a widely used technique to prove the existence of
solutions of ordinary as well as partial differential equations. In recent years, a multitude
of iterative procedures has been developed and utilized to approximate the fixed points of
various classes of mappings. Indeed, the Mann and Ishikawa iteration procedures are two
basic iteration schemes which now form the foundation of iterative fixed point theory.

In an attempt to construct a convergent sequence of iterates involving a nonexpansive
mapping, Mann [15] defined an iteration method as (for any x1 ∈ C)

xn+1 = (1− αn)xn + αnTxn, n ≥ 1, (1.5)

where αn ∈ (0, 1).
In 1974, with a view to approximate the fixed point of pseudo–contractive mappings

in Hilbert spaces, Ishikawa [11] introduced a new iteration procedure as (for x1 ∈ K){
yn = (1− αn)xn + αnTxn,
xn+1 = (1− βn)xn + βnTyn, n ≥ 1,

(1.6)

where {αn} and {βn} ∈ (0, 1).
Obviously the iterative schemes and deals with one self–mapping only.
Iterative techniques for approximating fixed points have been investigated by various

authors (e.g., [12, 18, 19, 26, 28–30, 32]) using the Mann iteration scheme or Ishikawa
iteration scheme. By now, there exists an extensive literature on the iterative fixed points
for various classes of mappings. For an up–to date account of literature on this topic, we
refer the readers to Berinde [1].

In 1986, Das and Debata [6] introduced and studied the case of two mapping in iteration
processes. This success can be rich source of inspiration for many authors, see for example,
Takahashi and Tamura [25] and Khan and Takahashi [13]. For approximating the common
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fixed points, the two mappings case has its own importance as it has a direct link with
the minimization problem, see for example Takahashi [24].

Being an important generalization of the class of nonexpansive self–mappings, in 1972,
Goebel and Kirk [10] introduced the class of asymptotically nonexpansive self–mappings,
who proved that if C is a nonempty closed convex subset of a real uniformly convex
Banach space and T is an asymptotically nonexpansive self–mapping on C, then T has a
fixed point.

In 1991, Schu [21] introduced the following modified Mann iteration process:

xn+1 = (1− αn)xn + αnT
nxn, n ≥ 1, (1.7)

to approximate fixed points of asymptotically nonexpansive self–mappings in Hilbert
space. Since then, Schu’s iteration process has been widely used to approximate fixed
points of asymptotically nonexpansive self–mappings in Hilbert space or Banach spaces
(see [17, 20, 21, 26]).

In most of these papers, the well known Mann iteration process (1.5) has been studied
and the operator T has been assumed to map C into itself. The convexity of C then
ensures that the sequence {xn} generated by (1.5) is well defined. If, however, C is a
proper subset of the real Banach space X and T maps C into X (as is the case in many
applications), then the sequence given by (1.5) may not be well defined. One method
that has been used to overcome this in the case of single operator T is to introduce a
retraction P : X → C in the recursion formula (1.5) as follows: x1 ∈ C,

xn+1 = (1− αn)xn + αnPTxn, n ≥ 1. (1.8)

For nonexpansive nonself–mappings, some authors (see [8, 16, 21, 22, 31]) have studied
the strong and weak convergence theorems in Hilbert space or uniformly convex Banach
space.

The concept of asymptotically nonexpansive nonself–mappings was introduced by Chi-
dume, Ofoedu and Zegeye [3] in 2003 as the generalization of asymptotically nonexpansive
self–mappings. The asymptotically nonexpansive nonself–mapping is defined as follows:

Let C be a nonempty subset of a real normed linear space X. Let P : X → C
be a nonexpansive retraction of X onto C. A nonself–mapping T : C → X is called
asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1, ∞), kn → 1 as n→∞
such that

‖T (PT )n−1x− T (PT )n−1y‖ ≤ kn‖x− y‖ (1.9)

for all x, y ∈ C and n ≥ 1. T is said to be uniformly L–Lipschitzian if there exists a
constant L > 0 such that

‖T (PT )n−1x− T (PT )n−1y‖ ≤ L‖x− y‖ (1.10)

for all x, y ∈ C and n ≥ 1.
In [3], they studied the following iterative sequence: x1 ∈ C,

xn+1 = P ((1− αn)xn + αnT (PT )n−1xn) (1.11)

to approximate some fixed point of T under suitable conditions.
If T is a self–mapping, then P becomes the identity mapping so that (1.9) and (1.10)

reduce to (1.1) and (1.2) respectively. (1.11) reduces to (1.7).
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In 2006, Wang [31] generalizes the iteration process (1.11) as follows: x1 ∈ C,

yn = P ((1− βn)xn + βnT2(PT2)n−1xn),

xn+1 = P ((1− αn)xn + αnT1(PT1)n−1yn) , n ≥ 1, (1.12)

where T1, T2 : C → X are asymptotically nonexpansive nonself–mappings and {αn}, {βn}
are real sequences in [0, 1). He proved strong convergence of the sequence {xn} defined
by (1.12) to a common fixed point of T1 and T2 under proper conditions. Meanwhile, the
results of [31] generalized the results of [3].

The generalized asymptotically nonexpansive nonself and generalized asymptotically
quasi–nonexpansive nonself–mappings are defined by Deng and Liu [8] as follows:

Let C be a nonempty subset of a real normed linear space X. Let P : X → C be a
nonexpansive retraction of X onto C. A nonself–mapping T : C → X is called generalized
asymptotically nonexpansive if there exists nonnegative real sequences {kn} and {δn} with
kn > 1, kn → 1 and δn → 0 as n→∞ such that

‖T (PT )n−1x− T (PT )n−1y‖ ≤ kn‖x− y‖+ δn (1.13)

for all x, y ∈ C and n ≥ 1. T : C → X is said to be generalized asymptotically quasi–
nonexpansive if there exists nonnegative real sequences {kn} and {δn} with kn > 1, kn → 1
and δn → 0 as n→∞ such that

‖T (PT )n−1x− T (PT )n−1p‖ ≤ kn‖x− p‖+ δn (1.14)

for all x ∈ C, p ∈ F (T ) and n ≥ 1.
If T is a self–mapping, then P becomes the identity mappings so that (1.13) and (1.14)

reduces to (1.3) and (1.4), respectively.
Deng and Liu [8] studied the following iterative sequence which can be viewed as an

extension for iterative schemes of Wang [31] : xi ∈ C (i = 0, 1, 2, . . . , q and q ∈ N is a
fixed number),

yn = P (αnxn + βnT2(PT2)n−1xn + γnvn) , n = 0, 1, 2, . . . ,

xn+1 = P (αnxn + βnT1(PT1)n−1yn−q + γnun) , n = q, q + 1, q + 2, . . . , (1.15)

where T1, T2 : C → X are generalized asymptotically quasi–nonexpansive nonself–map-
pings, {un}, {vn} are bounded sequences in C and {αn}, {βn}, {γn}, {αn}, {βn} and {γn}
are real sequences in [0, 1] satisfying αn+βn+γn = αn+βn+γn = 1 for all n ≥ 0. They
also provide the strong convergence theorem in a real uniformly convex Banach space.

In 2009, the projection type Ishikawa iteration for two asymptotically nonexpansive
nonself–mappings was defined and constructed by Thianwan [27]. The scheme is defined
as follows:

yn = P ((1− βn)xn + βnT2(PT2)n−1xn),

xn+1 = P ((1− αn)yn + αnT1(PT1)n−1yn) , n ≥ 1, (1.16)

where {αn} and {βn} are appropriate real sequences in [0, 1). He studied the scheme for
two asymptotically nonexpansive nonself–mappings and proved strong convergence of the
sequences {xn} and {yn} to a common fixed point of T1, T2 under suitable conditions in
a uniformly convex Banach space.

Note that Thianwan process (1.12) and Wang process (1.12) are independent: neither
reduces to the other.
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If T1 = T2 and βn = 0 for all n ≥ 1, then (1.16) reduces to (1.11). It also can be
reduces to Schu process (1.7).

We note that, in applications, there are perturbations always occurring in the iterative
processes because the manipulations are inaccurate. It is no doubt that researching the
convergent problems of iterative methods with perturbation members is a significant job.
This leads us, in this paper, to introduce and study a new class of two–step iterative
scheme with perturbations for solving the fixed point problem for generalized asymptoti-
cally quasi–nonexpansive nonself–mappings. It is given as follows.

Let X be a normed space, C a nonempty convex subset of X,P : X → C a nonexpansive
retraction of X onto C and T1, T2 : C → X are given mappings. Then for an arbitrary
x1 ∈ C, the following iteration scheme is studied:

yn = P ((1− βn − γn)xn + βnT2(PT2)n−1xn + γnvn),

xn+1 = P ((1− αn − λn)T2(PT2)n−1yn + αnT1(PT1)n−1yn + λnun), n ≥ 1,
(1.17)

where {αn}, {βn}, {γn} and {λn} are appropriate real sequences in [0, 1) and {un}, {vn}
are bounded sequences in C. We then prove its strong convergence under some suitable
conditions in Banach spaces.

Now, we recall some well known concepts and results.
Let X be a Banach space with dimension X ≥ 2. The modulus of X is the function

δX : (0, 2] → [0, 1] defined by

δX(ε) = inf{1− ‖1

2
(x+ y)‖ : ‖x‖ = 1, ‖y‖ = 1, ε = ‖x− y‖}.

Banach space X is uniformly convex if and only if δX(ε) > 0 for all ε ∈ (0, 2].
A subset C of X is said to be a retract if there exists a continuous mapping P : X → C

such that Px = x for all x ∈ C. Every closed convex subset of a uniformly convex Banach
space is a retract. A mapping P : X → X is said to be a retraction if P 2 = P . It follows
that if a mapping P is a retraction, then Pz = z for every z ∈ R(P ) , the range of P.

A set C is optimal if each point outside C can be moved to be closer to all points of
C. It is well known (see [7]) that

(1) If X is a separable, strictly convex, smooth, reflexive Banach space, and if C ⊂ X
is an optimal set with interior, then C is a nonexpansive retract of X.

(2) A subset of lp, with 1 < p <∞, is a nonexpansive retract if and only if it is optimal.
Note that every nonexpansive retract is optimal. In strictly convex Banach spaces,

optimal sets are closed and convex. Moreover, every closed convex subset of a Hilbert
space is optimal and also a nonexpansive retract.

Recall that two mappings S, T : C → X where C is a subset of a normed space X, are
said to satisfy condition A′ (see [9]) if there exists a nondecreasing function f : [0, ∞)
→ [0, ∞) with f(0) = 0, f(r) > 0 for all r ∈ (0, ∞) such that either

‖x− Sx‖ ≥ f(d(x, F )) or ‖x− Tx‖ ≥ f(d(x, F ))

for all x ∈ C, where d(x, F ) = inf{‖x− q‖ : q ∈ F = F (S) ∩ F (T )}.
Note that condition A′ reduces to condition (A) (see [26]) when S = T . Maiti and

Ghosh [14] and Tan and Xu [26] have approximated fixed points of a nonexpansive map-
ping T by Ishikawa iterates under the condition (A).

In the sequel, the following lemmas are needed to prove our main results.
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Lemma 1.1. (see [26]). Let {an}, {bn} and {δn} be sequences of non-negative real num-
bers satisfying the inequality

an+1 ≤ (1 + δn)an + bn, n ≥ 1.

If

∞∑
n=1

bn <∞ and

∞∑
n=1

δn <∞, then

(i) lim
n→∞

an exists;

(ii) In particular, if {an} has a sequence {ank
} converging to 0, then lim

n→∞
an = 0.

Lemma 1.2. (see [21]). Let X be a real uniformly convex Banach space and 0 ≤ p ≤ tn ≤
q < 1 for all positive integer n ≥ 1. Also suppose that {xn} and {yn} are two sequences
of X such that lim sup

n→∞
‖xn‖ ≤ r, lim sup

n→∞
‖yn‖ ≤ r and lim

n→∞
‖tnxn + (1− tn)yn‖ = r hold

for some r ≥ 0, then lim
n→∞

‖xn − yn‖ = 0.

2. Main Results

In order to prove our main results, the following lemmas are needed.

Lemma 2.1. Let X be a real Banach space and C a nonempty closed convex nonex-
pansive retract of X with P as a nonexpansive retraction. Let T1, T2 : C → X be
two nonself generalized asymptotically quasi-nonexpansive mappings of C with sequences

{k(i)n }, {δ(i)n } ⊂ [1, ∞) (i = 1, 2), respectively such that

∞∑
n=1

(k(i)n − 1) < ∞,
∞∑
n=1

δ(i)n < ∞

and F = F (T1)∩F (T2) 6= ∅. Suppose that {αn}, {βn}, {γn} and {λn} are real sequences in

[0, 1) such that

∞∑
n=1

γn <∞,
∞∑
n=1

λn <∞ and {un}, {vn} are bounded sequences in C. From

an arbitrary x1 ∈ C, define the sequence {xn} by (1.17). If q ∈ F , then lim
n→∞

‖xn − q‖
exists.

Proof. Let q ∈ F , by boundedness of the sequences {un} and {vn}, so we can put

M = max{sup
n≥1
‖un − q‖, sup

n≥1
‖vn − q‖}.

Setting k
(1)
n = 1+r

(1)
n , k

(2)
n = 1+r

(2)
n . Since

∞∑
n=1

(k(i)n −1) <∞ (i = 1, 2), so

∞∑
n=1

r(1)n <∞,

∞∑
n=1

r(2)n <∞. Using (1.17), we have

‖yn − q‖ = ‖P ((1− βn − γn)xn + βnT2(PT2)n−1xn + γnvn)− P (q)‖
≤ ‖(1− βn − γn)(xn − q) + βn(T2(PT2)n−1xn − q) + γn(vn − q)‖
≤ (1− βn − γn)‖xn − q‖+ βn‖T2(PT2)n−1xn − q‖+ γn‖vn − q‖

≤ (1− βn − γn)‖xn − q‖+ βn(1 + r(2)n )‖xn − q‖+ δ(2)n + γnM

= (1− βn − γn)‖xn − q‖+ (βn + βnr
(2)
n )‖xn − q‖+ δ(2)n + γnM

≤ ‖xn − q‖+ r(2)n ‖xn − q‖+ δ(2)n + γnM

= (1 + r(2)n )‖xn − q‖+ δ(2)n + γnM, (2.1)
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and so

‖xn+1 − q‖ = ‖P ((1− αn − λn)T2(PT2)n−1yn + αnT1(PT1)n−1yn + λnun)− P (q)‖
≤ ‖(1−αn−λn)T2(PT2)n−1(yn − q) + αn(T1(PT1)n−1yn − q) + λn(un − q)‖
≤ (1−αn−λn)‖T2(PT2)n−1yn − q‖+ αn‖T1(PT1)n−1yn − q‖+ λn‖un − q‖

≤ (1−αn−λn)(1 + r(2)n )‖yn − q‖+ αn(1 + r(1)n )‖yn − q‖+ δ(2)n + δ(1)n

+ λn‖un − q‖

≤ (1−αn−λn)(1 + r(2)n )‖yn − q‖+ αn(1 + r(1)n )‖yn − q‖+ δ(2)n + δ(1)n + λnM

≤ (1 + r(2)n )‖yn − q‖+ (r(1)n )‖yn − q‖+ δ(2)n + δ(1)n + λnM

= (1 + r(2)n + r(1)n )‖yn − q‖+ δ(2)n + δ(1)n + λnM

≤ (1 + r(2)n + r(1)n )((1 + r(2)n )‖xn − q‖+ δ(2)n + γnM) + δ(2)n + δ(1)n + λnM

= (1 + r(2)n + r(1)n )(1 + r(2)n )‖xn − q‖+ (1 + r(2)n + r(1)n )δ(2)n

+ (1 + r(2)n + r(1)n )γnM + δ(2)n + δ(1)n + λnM

= (1 + r(2)n + r(2)n + +r(2)n r(2)n + r(1)n + r(1)n r(2)n )‖xn − q‖+ ε(1)n

where ε
(1)
n = (1+r

(2)
n +r

(1)
n )δ

(2)
n +(1+r

(2)
n +r

(1)
n )γnM+δ

(2)
n +δ

(1)
n +λnM and we note here

that

∞∑
n=1

ε(1)n < ∞ since

∞∑
n=1

γn < ∞,
∞∑
n=1

λn < ∞,
∞∑
n=1

r(1)n < ∞,
∞∑
n=1

r(2)n < ∞,
∞∑
n=1

δ(1)n <

∞ and

∞∑
n=1

δ(2)n < ∞. Since

∞∑
n=1

(r(2)n + r(2)n + r(2)n r(2)n + r(1)n + r(1)n r(2)n ) < ∞ we obtained

by Lemma 1.1(i) that lim
n→∞

‖xn − q‖ exists. This completes the proof.

Lemma 2.2. Let X be a real uniformly convex Banach space and C a nonempty closed
convex nonexpansive retract of X with P as a nonexpansive retraction. Let T1, T2 : C →
X be two uniformly L–Lipschitzian, nonself generalized asymptotically quasi-nonexpansive

mappings of C with sequences {k(i)n }, {δ(i)n } ⊂ [1, ∞) (i = 1, 2), respectively such that
∞∑
n=1

(k(i)n − 1) < ∞,
∞∑
n=1

δ(i)n < ∞ and F = F (T1) ∩ F (T2) 6= ∅. Suppose that {αn}, {βn}

are real sequences in [ε, 1 − ε] for some ε ∈ (0, 1), {γn}, {λn} ⊂ [0, 1) such that

∞∑
n=1

γn <

∞,
∞∑
n=1

λn < ∞ and {un}, {vn} are bounded sequences in C. From an arbitrary x1 ∈ C,

define the sequence {xn} by (1.17). Then lim
n→∞

‖xn − T1xn‖ = lim
n→∞

‖xn − T2xn‖ = 0.

Proof. Let q ∈ F . Setting k
(1)
n = 1 + r

(1)
n , k

(2)
n = 1 + r

(2)
n . By Lemma 2.1 we see that

lim
n→∞

‖xn − q‖ exists. It follows that {xn} and {yn} are bounded. Also, {un − yn} and

{vn − xn} are bounded. Now we set

C = max{sup
n≥1
‖un − yn‖, sup

n≥1
‖vn − xn‖}.



322 Thai J. Math. Vol. 21 (2023) /C. Chairasiripong and T. Thianwan

Assume that lim
n→∞

‖xn − q‖ = c. In addition,

‖yn − q‖ ≤ (1 + r(2)n )‖xn − q‖+ δ(2)n + γnM, (2.2)

where the notation M is taken from Lemma 2.1. Taking the lim sup on both sides in the
inequality (2.2), we have

lim sup
n→∞

‖yn − q‖ ≤ c. (2.3)

Note that

‖T2(PT2)n−1yn−q+λn(un − T2(PT2)n−1yn)‖ ≤ ‖T2(PT2)n−1yn − q‖
+ λn‖un − T2(PT2)n−1yn‖
≤ ‖T2(PT2)n−1yn − q‖+ λn‖un − yn‖

+ λn‖T2(PT2)n−1yn − yn‖
≤ ‖T2(PT2)n−1yn − q‖+ λn‖un − yn‖

+ λn‖T2(PT2)n−1yn − q‖
+ λn‖yn − q‖

≤ (1 + r(2)n )‖yn − q‖+ δ(2)n

+ λn‖un − yn‖+ λn(1 + r(2)n )‖yn − q‖

+ δ(2)n + λn‖yn − q‖

≤ (1 + r(2)n )‖yn − q‖+ δ(2)n + λnC

+ λn(1 + r(2)n )‖yn − q‖+ δ(2)n

+ λn‖yn − q‖,

taking the lim sup on both sides in this inequality, using (2.3) and we note here that
∞∑
n=1

r(2)n <∞,

∞∑
n=1

λn <∞ and

∞∑
n=1

δ(2)n <∞, we have

lim sup
n→∞

‖T2(PT2)n−1yn − q + λn(un − T2(PT2)n−1yn)‖ ≤ c. (2.4)

In addition,

‖T1(PT1)n−1yn − q + λn(un − T2(PT2)n−1yn)‖ ≤ ‖T1(PT1)n−1yn − q‖
+ λn‖un − T2(PT2)n−1yn‖

≤ (1 + r(1)n )‖yn − q‖+ δ(1)n

+ λn‖un − yn‖
+ λn‖T2(PT2)n−1yn − q‖
+ λn‖yn − q‖

≤ (1 + r(1)n )‖yn − q‖+ δ(1)n

+ λnC + λn(1 + r(2)n )‖yn − q‖

+ δ(2)n + λn‖yn − q‖,
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taking the lim sup on both sides in this inequality, using (2.3) and we note here that
∞∑
n=1

r(1)n <∞,

∞∑
n=1

r(2)n <∞,

∞∑
n=1

λn <∞,

∞∑
n=1

δ(1)n <∞ and

∞∑
n=1

δ(2)n <∞, we have

lim sup
n→∞

‖T1(PT1)n−1yn − q + λn(un − T2(PT2)n−1yn)‖ ≤ c. (2.5)

In addition,

‖xn+1 − q‖ ≤ ‖(1− αn − λn)(T2(PT2)n−1yn − q) + αn(T1(PT1)n−1yn − q)
+ λn(un − q)‖

≤ (1 + r(2)n + r(2)n + +r(2)n r(2)n + r(1)n + r(1)n r(2)n )‖xn − q‖+ ε(1)n , (2.6)

where the notation ε
(1)
n is taken from Lemma 2.1.

Since

∞∑
n=1

(r(2)n +r(2)n +r(2)n r(2)n +r(1)n +r(1)n r(2)n ) <∞,

∞∑
n=1

ε(1)n <∞ and lim
n→∞

‖xn+1−q‖ = c,

letting n→∞ in the inequality (2.6), we have

lim
n→∞

‖(1− αn − λn)(T2(PT2)n−1yn − q) + αn(T1(PT1)n−1yn − q) + λn(un − q)‖ = c

(2.7)

From

‖(1− αn)(T2(PT2)n−1yn − q + λn(un − T2(PT2)n−1yn)) + αn(T1(PT1)n−1yn − q
+ λn(un − T2(PT2)n−1yn))‖ =

‖(1− αn − λn)(T2(PT2)n−1yn − q) + αn(T1(PT1)n−1yn − q) + λn(un − q)‖

and (2.7), we have

lim
n→∞

‖(1− αn)(T2(PT2)n−1yn − q + λn(un − T2(PT2)n−1yn)) + αn(T1(PT1)n−1yn − q

+λn(un − T2(PT2)n−1yn))‖ = c.
(2.8)

By using (2.4), (2.5), (2.8) and Lemma 1.2, we have

lim
n→∞

‖T1(PT1)n−1yn − T2(PT2)n−1yn‖ = 0. (2.9)

In addition,

‖T2(PT2)n−1xn − q + γn(vn − xn)‖ ≤ ‖T2(PT2)n−1xn − q‖+ γn‖vn − xn‖

≤ k(2)n ‖xn − q‖+ δ(2)n + γnC,

and taking the lim sup on both sides in this inequality, we have

lim sup
n→∞

‖T2(PT2)n−1xn − q + γn(vn − xn)‖ ≤ c. (2.10)
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Using (1.17) and (2.1), we have

‖xn+1 − q‖ ≤ (1− αn − λn)‖T2(PT2)n−1yn − q‖+ αn‖T1(PT1)n−1yn − q‖
+ λn‖un − q‖

= (1− αn − λn)‖T2(PT2)n−1yn − T1(PT1)n−1yn + T1(PT1)n−1yn − q‖
+ αn‖T1(PT1)n−1yn − q‖+ λn‖un − q‖
≤ (1− αn − λn)‖T2(PT2)n−1yn − T1(PT1)n−1yn‖

+ (1− αn − λn)‖T1(PT1)n−1yn − q‖+ αn‖T1(PT1)n−1yn − q‖
+ λn‖un − q‖

= (1− αn − λn)‖T2(PT2)n−1yn − T1(PT1)n−1yn‖
+ (1− λn)‖T1(PT1)n−1yn − q‖+ λn‖un − q‖
≤ ‖T2(PT2)n−1yn − T1(PT1)n−1yn‖+ (1− λn)‖T1(PT1)n−1yn − q‖

+ λn‖un − yn‖+ λn‖yn − q‖

≤ ‖T2(PT2)n−1yn − T1(PT1)n−1yn‖+ (1− λn)(1 + r(1)n )‖yn − q‖+ δ(1)n

+ λn‖un − yn‖+ λn‖yn − q‖

= ‖T2(PT2)n−1yn − T1(PT1)n−1yn‖+ (1 + r(1)n − λn − λnr(1)n )‖yn − q‖

+ δ(1)n + λn‖un − yn‖+ λn‖yn − q‖

= ‖T2(PT2)n−1yn − T1(PT1)n−1yn‖+ (1 + r(1)n − λnr(1)n )‖yn − q‖

+ δ(1)n + λn‖un − yn‖

≤ ‖T2(PT2)n−1yn − T1(PT1)n−1yn‖+ (1 + r(1)n )‖yn − q‖

+ δ(1)n + λn‖un − yn‖

≤ ‖T2(PT2)n−1yn − T1(PT1)n−1yn‖+ ‖yn − q‖+ r(1)n ‖yn − q‖

+ δ(1)n + λnC

≤ ‖T2(PT2)n−1yn − T1(PT1)n−1yn‖+ ‖yn − q‖

+ r(1)n ((1 + r(2)n )‖xn − q‖+ δ(2)n + γnM) + δ(1)n + λnC

= ‖T2(PT2)n−1yn − T1(PT1)n−1yn‖+ ‖yn − q‖

+ (r(1)n + r(1)n r(2)n )‖xn − q‖+ r(1)n δ(2)n + r(1)n γnM + δ(1)n + λnC. (2.11)

Taking the lim inf on both sides in the inequality (2.11), by (2.9),

∞∑
n=1

r(1)n <∞,

∞∑
n=1

r(2)n <

∞,

∞∑
n=1

γn < ∞,

∞∑
n=1

λn < ∞,

∞∑
n=1

δ(1)n < ∞,

∞∑
n=1

δ(2)n < ∞ and lim
n→∞

‖xn+1 − q‖ = c, we

have

lim inf
n→∞

‖yn − q‖ ≥ c. (2.12)
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It follows from (2.3) and (2.12) that lim
n→∞

‖yn − q‖ = c. This implies that

c = lim
n→∞

‖yn − q‖ ≤ lim
n→∞

‖(1− βn − γn)(xn − q)

+ βn(T2(PT2)n−1xn − q) + γn(vn − q)‖
≤ lim
n→∞

‖xn − q‖ = c,

and so

lim
n→∞

‖(1− βn − γn)(xn − q) + βn(T2(PT2)n−1xn − q) + γn(vn − q)‖ = c. (2.13)

From

‖(1− βn)(xn − q + γn(vn − xn)) + βn(T2(PT2)n−1xn − q + γn(vn − xn))‖ =

‖(1− βn − γn)(xn − q) + βn(T2(PT2)n−1xn − q) + γn(vn − q)‖

and (2.13), we have

lim
n→∞

‖(1− βn)(xn − q + γn(vn − xn)) + βn(T2(PT2)n−1xn − q + γn(vn − xn))‖ = c.

(2.14)

Note that ‖xn − q + γn(vn − xn)‖ ≤ ‖xn − q‖+ γnC gives that

lim sup
n→∞

‖xn − q + γn(vn − xn)‖ ≤ c. (2.15)

By using (2.10), (2.14), (2.15) and Lemma 1.2 we have

lim
n→∞

‖T2(PT2)n−1xn − xn‖ = 0. (2.16)

From yn = P ((1 − βn − γn)xn + βnT2(PT2)n−1xn + γnvn),

∞∑
n=1

γn < ∞ and (2.16), we

have

‖yn − xn‖ = ‖P ((1− βn − γn)xn + βnT2(PT2)n−1xn + γnvn)− xn‖
≤ βn‖T2(PT2)n−1xn − xn‖+ γn‖vn − xn‖
≤ ‖T2(PT2)n−1xn − xn‖+ γnC

→ 0 (as n→∞). (2.17)

Now, since Ti(i = 1, 2) are uniformly L–Lipschitzian for Lipschitz constant L = max
1≤i≤2

{Li}
> 0. We note that
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‖T1(PT1)n−1xn − xn‖ = ‖T1(PT1)n−1xn − yn + yn − xn‖
≤ ‖T1(PT1)n−1xn − yn‖+ ‖yn − xn‖
= ‖T1(PT1)n−1xn − T1(PT1)n−1yn

+ T1(PT1)n−1yn − yn‖+ ‖yn − xn‖
≤ ‖T1(PT1)n−1xn − T1(PT1)n−1yn‖

+ ‖T1(PT1)n−1yn − yn‖+ ‖yn − xn‖
≤ L‖xn − yn‖+ ‖T1(PT1)n−1yn − yn‖+ ‖yn − xn‖
≤ L‖xn − yn‖+ ‖T1(PT1)n−1yn − T2(PT2)n−1yn‖

+ ‖T2(PT2)n−1yn − T2(PT2)n−1xn‖+ ‖T2(PT2)n−1xn − xn‖
+ ‖xn − yn‖+ ‖yn − xn‖
≤ L‖xn − yn‖+ ‖T1(PT1)n−1yn − T2(PT2)n−1yn‖

+ L‖yn − xn‖+ ‖T2(PT2)n−1xn − xn‖+ ‖xn − yn‖
+ ‖yn − xn‖

Thus, it follows from (2.9), (2.16), (2.17) and (2.18) that

lim
n→∞

‖T1(PT1)n−1xn − xn‖ = 0. (2.18)

Since Ti(i = 1, 2) are uniformly L–Lipschitzian for Lipschitz constant L = max
1≤i≤2

{Li} >

0, using (1.17), we have

‖xn+1 − xn‖ ≤ (1− αn − λn)‖T2(PT2)n−1yn − xn‖+ αn‖T1(PT1)n−1yn − xn‖
+ λn‖un − xn‖
≤ (1− αn − λn)‖T2(PT2)n−1yn − T1(PT1)n−1yn‖

+ (1− αn − λn)‖T1(PT1)n−1yn − xn‖+ αn‖T1(PT1)n−1yn − xn‖
+ λn‖un − yn‖+ λn‖yn − xn‖

= (1− αn − λn)‖T2(PT2)n−1yn − T1(PT1)n−1yn‖
+ (1− λn)‖T1(PT1)n−1yn − xn‖+ λn‖un − yn‖+ λn‖yn − xn‖
≤ (1− αn − λn)‖T2(PT2)n−1yn − T1(PT1)n−1yn‖

+ (1− λn)‖T1(PT1)n−1yn − T1(PT1)n−1xn‖
+ (1− λn)‖T1(PT1)n−1xn − xn‖+ λn‖un − yn‖+ λn‖yn − xn‖
≤ (1− αn − λn)‖T2(PT2)n−1yn − T1(PT1)n−1yn‖

+ (1− λn)L‖yn − xn‖+ (1− λn)‖T1(PT1)n−1xn − xn‖
+ λn‖un − yn‖+ λn‖yn − xn‖
≤ ‖T2(PT2)n−1yn − T1(PT1)n−1yn‖+ L‖yn − xn‖

+ ‖T1(PT1)n−1xn − xn‖+ λn‖yn − xn‖+ λnC
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It follows from (2.9), (2.17), (2.18),

∞∑
n=1

λn <∞,

∞∑
n=1

r(1)n <∞ and

∞∑
n=1

δ(1)n <∞ that

lim
n→∞

‖xn+1 − xn‖ = 0. (2.19)

Using (2.18) and (2.19), we have

‖xn+1 − T1(PT1)n−1xn+1‖ = ‖xn+1 − xn + xn − T1(PT1)n−1xn

+ T1(PT1)n−1xn − T1(PT1)n−1xn+1‖
≤ ‖xn+1 − xn‖+ ‖T1(PT1)n−1xn+1 − T1(PT1)n−1xn‖
+ ‖T1(PT1)n−1xn − xn‖
≤ ‖xn+1 − xn‖+ L‖xn+1 − xn‖+ ‖T1(PT1)n−1xn − xn‖,
→ 0 (as n→∞). (2.20)

In addition, for n ≥ 2,

‖xn+1 − T1(PT1)n−2xn+1‖ = ‖xn+1 − xn + xn − T1(PT1)n−2xn

+ T1(PT1)n−2xn − T1(PT1)n−2xn+1‖
≤ ‖xn+1 − xn‖+ ‖T1(PT1)n−2xn − xn‖

+ ‖T1(PT1)n−2xn+1 − T1(PT1)n−2xn‖
≤ ‖xn+1 − xn‖+ ‖T1(PT1)n−2xn − xn‖

+ L‖xn+1 − xn‖.

It follows from (2.19) and (2.20) that

lim
n→∞

‖xn+1 − T1(PT1)n−2xn+1‖ = 0. (2.21)

We denote as (PT1)1−1 the identity maps from C onto itself. Thus by the inequality
(2.20) and (2.21), we have

‖xn+1 − T1xn+1‖ = ‖xn+1 − T1(PT1)n−1xn+1 + T1(PT1)n−1xn+1 − T1xn+1‖
≤ ‖xn+1 − T1(PT1)n−1xn+1‖+ ‖T1(PT1)n−1xn+1 − T1xn+1‖
≤ ‖xn+1 − T1(PT1)n−1xn+1‖+ L‖(PT1)n−1xn+1 − xn+1‖
= ‖xn+1 − T1(PT1)n−1xn+1‖+ L‖(PT1)(PT1)n−2xn+1 − P (xn+1)‖
≤ ‖xn+1 − T1(PT1)n−1xn+1‖+ L‖T1(PT1)n−2xn+1 − xn+1‖
→ 0 (as n→∞) ,

which implies that lim
n→∞

‖xn − T1xn‖ = 0. Similary, we may show that

lim
n→∞

‖xn − T2xn‖ = 0.

The proof is completed.

We prove the strong convergence of the scheme (1.17) under condition A′ which is
weaker than the compactness of the domain of the mappings.



328 Thai J. Math. Vol. 21 (2023) /C. Chairasiripong and T. Thianwan

Theorem 2.3. Let X be a real uniformly convex Banach space and C a nonempty closed
convex nonexpansive retract of X with P as a nonexpansive retraction. Let T1, T2 : C →
X be two uniformly L–Lipschitzian, nonself generalized asymptotically quasi–nonexpansive

mappings of C satisfying condition A′ with sequences {k(i)n }, {δ(i)n } ⊂ [1, ∞)(i = 1, 2),

respectively such that

∞∑
n=1

(k(i)n − 1) < ∞,
∞∑
n=1

δ(i)n < ∞ and F = F (T1) ∩ F (T2) 6= ∅.

Suppose that {αn}, {βn} are real sequences in [ε, 1 − ε] for some ε ∈ (0, 1), {γn}, {λn} ⊂

[0, 1) such that
∞∑
n=1

γn < ∞,
∞∑
n=1

λn < ∞ and {un}, {vn} are bounded sequences in C.

Then the sequences {xn} and {yn} defined by the iterative scheme (1.17) converge strongly
to a common fixed point of T1 and T2.

Proof. By Lemma 2.2 we have lim
n→∞

‖xn−T1xn‖ = lim
n→∞

‖xn−T2xn‖ = 0. It follows from

condition A′ that

lim
n→∞

f(d(xn, F )) ≤ lim
n→∞

‖xn − T1xn‖ = 0 or

lim
n→∞

f(d(xn, F )) ≤ lim
n→∞

‖xn − T2xn‖ = 0.

In the both case, lim
n→∞

f(d(xn, F )) = 0. Since f : [0, ∞) → [0, ∞) is a nondecreasing

function satisfying f(0) = 0, f(r) > 0 for all r ∈ (0, ∞), we obtain that lim
n→∞

d(xn, F ) =

0. That is
lim inf

n→∞ y∗∈F
‖xn − y∗‖ = lim

n→∞
d(xn, F ) = 0.

It implies that
inf
y∗∈F

lim
n→∞

‖xn − y∗‖ = 0.

So, for any given ε > 0, there exists p ∈ F and N > 0 such that for all n ≥ N ,

‖xn − p‖ <
ε

2
. This shows that

‖xn+m − xn‖ ≤ ‖xn+m − p‖+ ‖xn − p‖

<
ε

2
+
ε

2
= ε

for all n ≥ N and m ≥ 1. Hence, {xn} is a Cauchy sequence and so is convergent since X
is complete. Let lim

n→∞
xn = u. From lim

n→∞
‖xn − T1xn‖ = lim

n→∞
‖xn − T2xn‖ = 0 and the

continuity of T1 and T2, we have ‖T1u− u‖ = ‖T2u− u‖ = 0. Thus u ∈ F . From (2.17),
we have

lim
n→∞

‖yn − xn‖ = 0,

it follows that lim
n→∞

‖yn − u‖ = 0. This completes the proof.

The following result follows from Theorem 2.3.

Theorem 2.4. Let X be a real uniformly convex Banach space and C a nonempty closed
convex nonexpansive retract of X with P as a nonexpansive retraction. Let T1, T2 : C →
X be two nonself asymptotically nonexpansive mappings of C condition A′ with sequences

{k(i)n } ⊂ [1, ∞) (i = 1, 2) such that

∞∑
n=1

(k(i)n − 1) < ∞ and F = F (T1) ∩ F (T2) 6= ∅.

Suppose that {αn}, {βn} are real sequences in [ε, 1 − ε] for some ε ∈ (0, 1), {γn}, {λn} ⊂
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[0, 1) such that

∞∑
n=1

γn <∞,
∞∑
n=1

λn <∞ and {un}, {vn} are bounded sequences in C. Then

the sequences {xn} and {yn} defined by the iterative scheme (1.17) converge strongly to
a common fixed point of T1 and T2.

In the remainder of this section, we deal with the strong convergence of the new
iterative scheme (1.17) to a common fixed point of nonself generalized asymptotically
quasi–nonexpansive mappings in a real Banach space.

Theorem 2.5. Let X be a real Banach space and C a nonempty closed convex non-
expansive retract of X with P as a nonexpansive retraction. Let T1, T2 : C → X be
two nonself generalized asymptotically quasi–nonexpansive mappings of C with sequences

{k(i)n }, {δ(i)n } ⊂ [1,∞) (i = 1, 2), respectively such that

∞∑
n=1

(k(i)n − 1) < ∞,

∞∑
n=1

δ(i)n < ∞

and F = F (T1) ∩ F (T2) 6= ∅ is closed. Suppose that {αn}, {βn} are real sequences in

[ε, 1 − ε] for some ε ∈ (0, 1), {γn}, {λn} ⊂ [0, 1) such that

∞∑
n=1

γn < ∞,
∞∑
n=1

λn < ∞ and

{un}, {vn} are bounded sequences in C. Then the sequence {xn} defined by the iterative
scheme (1.17) converges strongly to a common fixed point of T1 and T2 if and only if
lim inf
n→∞

d(xn, F ) = 0, where d(xn, F ) = inf
y∈F
‖xn − yn‖, n ≥ 1.

Proof. The necessity of the conditions is obvious. Thus, we will only prove the sufficiency.
As in the proof of Lemma 2.1 by the arbitrariness of q ∈ F , we have

‖xn+1 − q‖ ≤ (1 + r(2)n + r(2)n + +r(2)n r(2)n + r(1)n + r(1)n r(2)n )‖xn − q‖+ ε(1)n ,

and so

d(xn+1, F ) ≤ (1 + r(2)n + r(2)n + +r(2)n r(2)n + r(1)n + r(1)n r(2)n )d(xn, F ) + ε(1)n ,

where ε
(1)
n = (1 + r

(2)
n + r

(1)
n )δ

(2)
n + (1 + r

(2)
n + r

(1)
n )γnM + δ

(2)
n + δ

(1)
n + λnM . Since

∞∑
n=1

(r(2)n + r(2)n + +r(2)n r(2)n + r(1)n + r(1)n r(2)n ) < ∞ and

∞∑
n=1

ε(1)n < ∞, we obtained by

Lemma 1.1 that lim
n→∞

d(xn, F ) exists. Then, by hypothesis lim inf
n→∞

d(xn, F ) = 0, we have

lim
n→∞

d(xn, F ) = 0. From Theorem 2.3 it obtain that {xn} defined by (1.17) is a Cauchy

sequence in C. Let lim
n→∞

xn = u. Now lim
n→∞

d(xn, F ) = 0 gives that d(u, F ) = 0. F is

closed; therefore u ∈ F . This completes the proof of Theorem 2.5.

Let {an} be a sequence that converges to a, with an 6= a for all n. If positive constants

λ and ϑ exist with lim
n→∞

|an+1 − a|
|an − a|ϑ

= λ, then {an} converges to a of order ϑ, with

asymptotic error constant λ. If ϑ = 1 (and λ < 1), the sequence is linearly convergent
and if ϑ = 2, the sequence is quadratically convergent (see [2]).

The following examples show that generalized asymptotically quasi–nonexpansive map-
ping is not nonexpansive mapping and hence asymptotically nonexpansive mapping.
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Example 2.6. Let E = [−π, π] and let T be defined by Tx = xcosx for each x ∈ E.
Clearly F (T ) = {0}. T is a quasi–nonexpansive mapping since if x ∈ E and z = 0, then

|Tx− z| = |T1x− 0| = |x||cosx| ≤ |x| = |x− z|,
and hence T is generalized asymptotically quasi–nonexpansive mapping with constant
sequences {kn} = {1} and {δn} = {0}. But it is not a nonexpansive mapping and hence
asymptotically nonexpansive mapping. In fact, if we take x = π

2 and y = π, then

|Tx− Ty| = |π
2
cos

π

2
− πcosπ| = π,

whereas
|x− y| = |π

2
− π| = π

2
.

Example 2.7. Let E = R and let S be defined by

S(x) =

{
x
2 cos

1
x , if x 6= 0,

0, if x = 0.

If x 6= 0 and Sx = x, then x = x
2 cos

1
x . Thus 2 = cos 1

x . This is not hold. S is a
quasi–nonexpansive mapping since if x ∈ E and z = 0, then

|Sx− z| = |Sx− 0| = |x
2
||cos 1

x
| ≤ |x|

2
< |x| = |x− z|,

and hence S is generalized asymptotically quasi–nonexpansive mapping with constant
sequences {kn} = {1} and {δn} = {0}. But it is not a nonexpansive mapping and hence
asymptotically nonexpansive mapping. In fact, if we take x = 2

3π and y = 1
π , then

|Tx− Ty| = | 1

3π
cos

3π

2
− 1

2π
cosπ| = 1

2π
,

whereas

|x− y| = | 2

3π
− 1

π
| = 1

3π
.

Additionally, Let αn = n
2n+5 , βn = n

2n+3 , γn = n
3n+3 , λn = n

4n+3 , vn = 1
5n4 and

un = 1
3n4 . Suppose that T1 = T and T1 = S given in Example 2.6 and Example 2.7,

respectively. So, the convergence of the sequence {xn} generated by (1.17) to a point
0 ∈ F (T ) ∩ F (S) can be received.

We choose x1 = 1 and run our process within 50 iteration. All code were written in
Matlab2019b. We obtain the iteration steps and its amplification factor of the proposed
algorithms as shown in Table 1. For convenience, we call the iteration (1.17) the proposed
iteration process.

Table 1 shows that the proposed method converges to solution of Example 2.6 and
Example 2.7. It can be concluded that the proposed method is linearly convergent and
its amplification factor less than 0.763.
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Table 1. Numerical experiment of the proposed method for Example

The Proposed Iteration Process

Iteration Number (n) |xn| |xn+1|
|xn|

1 1.7187e-01 1.7187e-01
2 3.4087e-03 1.9832e-02
3 6.0751e-04 1.7821e-01
4 3.1363e-04 5.1626e-01
5 1.4623e-04 4.6624e-01
...

...
...

10 9.8621e-06 4.8094e-01
...

...
...

20 6.4370e-07 6.1130e-01
...

...
...

30 1.3558e-07 8.0878e-01
...

...
...

40 4.1139e-08 7.3432e-01
...

...
...

50 1.6900e-08 7.6262e-01

3. Conclusions

Authors constructed a new projection type of two-step iterative procedure with pertur-
bations to approximate a common fixed point for two nonself generalized asymptotically
quasinonexpansive mappings in Banach spaces. The authors proved strong convergence
results of such mappings in real uniformly convex Banach and real Banach spaces. Our
results extend the corresponding results of Thianwan [27] to the more general class of
asymptotically quasi-nonexpansive mappings considered in this paper. Our results also
improve the related results of Deng and Liu [8] to the case of the more general class of
asymptotically quasi-nonexpansive mappings and two-step iteration process with errors
considered in this paper. Illustrative examples are also provided as Example 2.6 and
Example 2.7. Our results extend, improve and generalize some known results from the
existing literature.
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