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Abstract In holomorphic semigroup dynamics, Fatou and escaping sets are, in general, forward invariant

and Julia sets are backward invariant. Therefore, some fundamental results of the holomorphic dynamics

of a single holomorphic function cannot be generalized and preserved for holomorphic semigroup dy-

namics. In this paper, we define completely invariant Julia, Fatou, and escaping sets of transcendental

semigroups, and we see how far the results of the holomorphic dynamics of a single transcendental entire

function can be preserved and generalized for transcendental semigroup dynamics.
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1. Introduction

A transcendental semigroup S is a semigroup of transcendental entire functions defined
on the complex plane C, with the semigroup operation being functional composition. Let
F = {fα : α ∈ ∆} be a set of transcendental entire functions, where the index set ∆ is
allowed to be infinite unless otherwise stated. When a semigroup S is generated by F ,
we write S = 〈fα〉α∈∆ or simply S = 〈fα〉. A semigroup generated by finitely many tran-
scendental entire functions fi, i = 1, 2, . . . , n, is called a finitely generated transcendental
semigroup, and we write S = 〈f1, f2, . . . , fn〉. If S is generated by only one transcenden-
tal entire function f , then S is called a cyclic transcendental semigroup, and we write
S = 〈f〉. In this case, each g ∈ S can be written as g = fn, where fn is the nth iterate of
f .

We say that F is a normal family in C if every sequence (fα) ⊆ F has a subsequence
(fαk

) which either is uniformly convergent on all compact subsets of C or diverges to ∞.
If there is a neighborhood U of a point z ∈ C such that F is a normal family in U , then
we say that F is normal at z. If F is a semigroup S such that it is normal family at z,
we say that S is normal at z. We say that a function f is iteratively divergent at z ∈ C
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if fn(z) → ∞ as n → ∞. A semigroup S is iteratively divergent at z if every f ∈ S is
iteratively divergent at z.

As in the iteration theory of a single transcendental entire function, the Fatou, Julia,
and escaping sets in the settings of transcendental semigroups, are defined as follows:

Definition 1.1 (Fatou, Julia, and escaping sets). Let S be a transcendental semi-
group. The Fatou set of S is defined by

F (S) = {z ∈ C : S is normal at z} .
The Julia set J(S) of S is the complement of F (S). The escaping set of S is defined by

I(S) = {z ∈ C : S is iteratively divergent at z}.
We call each point of the set I(S) an escaping point.

If S = 〈f〉, then the Fatou, Julia, and escaping sets are respectively denoted by
F (f), J(f) and I(f). Thus Definition 1.1 generalizes the definition of Fatou, Julia, and
escaping sets of a single transcendental entire function. Any maximal connected subset
U of the Fatou set F (S) is called a Fatou component. Note that for any transcendental
semigroup S, we have

(1) F (S) ⊂ F (f) for all f ∈ S, and hence F (S) ⊂
⋂
f∈S F (f).

(2) J(f) ⊂ J(S) for all f ∈ S, and J(S) =
⋃
f∈S J(f).

(3) I(S) ⊂ I(f) for all f ∈ S, and hence I(S) ⊂
⋂
f∈S I(f)

Definition 1.2 (Forward, backward and completely invariant set). Let f be a
map of a set X into itself. A subset U ⊂ X is said to be

(1) forward invariant under f if f(U) ⊂ U ;
(2) backward invariant under f if f−1(U) = {z ∈ C : f(z) ∈ U} ⊂ U ;
(3) completely invariant under f if it is both forward and backward invariant.

It is well known in classical transcendental dynamics that the Fatou set F (f) is a
largest completely invariant open set, and the Julia set J(f) is a smallest completely
invariant closed set. The escaping set I(f) is completely invariant but it is neither open
nor closed. However, in transcendental semigroup dynamics, the following results hold.

Proposition 1.3. Let S be a transcendental semigroup. Then F (S) is a forward invariant
open set and J(S) is a backward invariant closed set for each element of S.

Proposition 1.3 was proved by Poon [1, Theorem 2.1].

Proposition 1.4. Let S be a transcendental semigroup. Then I(S) is a forward invariant
set for each element of S.

This Proposition 1.4 was proved by Kumar and Kumar [2, Theorem 4.1]. We also
proved the same in [3, Theorem 3.1] based on Definition 1.1 of escaping set.

From Propositions 1.3 and 1.4, we can say that the sets F (S), J(S) and I(S) are not
neccessirly completely invariant under each element of S. In this paper, we generalize the
completely invariant notion of the Fatou, Julia, and escaping sets of a single transcen-
dental entire functions to the completely invariant notion of these sets in transcendental
semigroup dynamics. Note that Stankewitz [4, 5] studied completely invariant Julia and
Fatou sets of rational semigroups. In this paper, we define a completely invariant Julia,
Fatou and escaping sets of a transcendental semigoup S as follows.
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Definition 1.5. Let S be a transcendental semigroup. We define a completely invariant
Julia set of S by

J1(S) =
⋂
{G : G is a closed, completely invariant set under each f ∈ S}

The completely invariant Fatou set F1(S) is defined as the complement of J1(S) in C.

Definition 1.6. Let S be a transcendental semigroup. We define a completely invariant
escaping set of S by

I1(S) =
⋂
i∈N
{Gi : Gi is a completely invariant set under each f ∈ S, and each Gi

contains points z ∈ C such that fn(z)→∞ as n→∞ for every f ∈ S}

Note that in a transcendental semigroup S, J1(S) is closed and completely invariant
under each f ∈ S, and it contains the Julia sets of each element of S. The corresponding
Fatou set F1(S) is open, completely invariant and contained in the Fatou set of each
element of S and the set I1(S) is neither an open nor a closed set and is contained in the
escaping set of each element of S. We prove the following results.

Theorem 1.7. Let S be a transcendental semigroup. If J1(S) has non-empty interior,
then J1(S) = C.

Theorem 1.8. Let S be a transcendental semigroup which contains functions f and g
such that J(f) 6= J(g). Then J1(S) = C.

Theorem 1.9. Let F1(S) be a completely invariant Fatou set of a transcendental semi-
group S. Then number of components of F1(S) is either 0, 1 or ∞.

Theorem 1.10. Let S be a transcendental semigroup. Then E = I1(S), where E is a set
defined by E = ∩n∈N∪{0}En, where E0 =

⋂
h∈S I(h), E1 = ∪h∈Sh−1(E0) ∪

⋃
h∈S h(E0),

. . . , and En =
⋃
h∈S h

−1(En−1) ∪
⋃
h∈S h(En−1).

The organization of this paper is as follows. In section 2, we study completely invariant
Julia and Fatou sets of transcendental semigroups and we prove Theorems 1.7, 1.8 and 1.9.
In section 3, we study completely invariant escaping sets of transcendental semigroups
and we prove Theorem 1.10.

2. Completely Invariant Julia and Fatou Sets of Transcenden-
tal Semigroups

In rational semigroups and, in particular, in polynomial semigroups, there are a few
studies of such completely invariant Fatou and Julia sets (see for instance [4–6] for more
detail) but there are no studies of such sets in transcendental semigroups. In this section,
we concentrate on completely invariant Julia and Fatou sets of transcendental semigroups.

The sets J1(S) and F1(S) of Definition 1.5 may or may not coincide with the sets J(S)
and F (S) respectively. The following examples can help to compare the sets J1(S) and
J(S), and also F1(S) and F (S).

Example 2.1. Let S = 〈f, g〉 be a transcendental semigroup generated by f(z) = λ sin z
and g(z) = λ sin z + 2π, where 0 < |λ| < 1. Then J1(S) = J(f) = J(g). One can also
verify that J(S) = J(f) = J(g). In this case, J1(S) = J(S), and so F1(S) = F (S).
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There are other examples (see for instance [7, Example 3.2], and [1, Example 2.1]) of
transcendental semigroups similar to Example 2.1.

Example 2.2. Let S = 〈f, g〉 be a transcendental semigroup generated by f(z) =
λez, (0 < λ < 1

e ) and g(z) = λez, (λ > 1
e ). Then, by Devaney [8], J(f) is a Cantor

set (bouquet), and J(g) = C. In this case, F (g) = ∅. Thus we have F (S) = ∅ and
J(S) = C. It is easy to verify that J1(S) = J(S) = C and F1(S) = F (S) = ∅.
Example 2.3. Let S = 〈f, g〉 be a transcendental semigroup generated by f(z) = λ sin z,
where λ ∈ C is chosen in such a way that there are two attracting cycles, and |<(λ)| ≥ π/2,
where <(λ) represents the real part of λ; and g(z) = µez, where µ ∈ (0, 1/e). Then, by
Osborne [9, Example 6.4], J(f) is a spider web, and by Devaney [8], J(g) is a Cantor
bouquet. In this case, it is easy to verify that J1(S) = J(S) = C and F1(S) = F (S) = ∅.

Note that the Cantor’s bouquet and the spider’s web are structurally different sets.
Cantor’s bouquet is closed and has uncountably many components with a single un-
bounded complementary component; whereas the spider web is connected with infinitely
many complementary components, each of which is bounded. Therefore, the Julia set
J(S) that contains both J(f) and J(g) of Example 2.3 must be the entire complex plane
C. In all of these three examples, we have J1(S) = J(S) and F1(S) = F (S). However, in
Example 2.1, we have J(f) = J(g), but in Examples 2.2 and 2.3, we have J(f) 6= J(g).
In the following example, an entire (polynomial) semigroup, we have J(f) 6= J(g) as well
as F1(S) 6= F (S) and J1(S) 6= J(S).

Example 2.4. [4, Example-2] Let S = 〈z2, z2/a〉, where a ∈ C, |a| > 1. Then the Julia
set J(S) = {z : 1 ≤ |z| ≤ |a|}, which is not forward invariant. Hence J1(S) 6= J(S).
In this case, J1(S) = C∞. Note that J(f) = {z : |z| = 1} and J(g) = {z : |z| = |a|}.
The Fatou set F (S) = {z : |z| < 1 or |z| > |a|} is not backward invariant, and so
F1(S) 6= F (S). In this case it is obvious that F1(S) = ∅.

One of the main result in classical complex dynamics is that if a Julia set has non-empty
interior, then the Julia set explodes and it becomes whole complex plane C. This result
is generalized and preserved to completely invariant Julia set J1(S). For this, we workout
some constructions for the comparison of sets J1(S) and J(S). Let S = 〈f1, f2, . . . fn〉 be
a finitely generated transcendental semigroup. Note that J(h) ⊂ J1(S) for all h ∈ S and
so

⋃
h∈S J(h) ⊂ J1(S). Let us define the following countable collections of sets:

E0 = {J(h)} for all h ∈ S

E1 =
⋃
h∈S

h−1(E0) ∪
⋃
h∈S

h(E0)

. . . . . . . . . . . . . . .

En+1 =
⋃
h∈S

h−1(En) ∪
⋃
h∈S

h(En)

and

E =

∞⋃
n=0

En

where h−1(Ei) = {h−1(E) : E ∈ Ei} and h(Ei) = {h(E) : E ∈ Ei} for any collection of sets
Ei, (i = 1, 2, . . .) and a function h ∈ S. The following result gives an alternate description
of the set J1(S) of a transcendental semigroup S.
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Theorem 2.5. For a transcendental semigroup 〈f1, f2, . . . fn〉, we have J1(S) =
⋃
E∈E E.

Proof. By Definition 1.5, J1(S) is closed, is completely invariant under each h ∈ S, and
contains J(h) for all h ∈ S. Therefore we can write

J1(S) ⊃
⋃
E∈E

E

Since the set
⋃
E∈E E is closed and contains J(h) for all h ∈ S, it remains to show that

it is also completely invariant under each h ∈ S. Since h is a continuous closed map,
h(
⋃
E∈E E) and h−1(

⋃
E∈E E) are closed sets for each h ∈ S. This proves our claim.

Theorem 2.6. The set J1(S) is a perfect set.

Proof. By definition, J(h) ⊂ J1(S) for all h ∈ S and J(h) is perfect, unbounded and
contains an infinite number of points for each h ∈ S. The assertion will be proved if we
show J1(S) has no isolated points. Suppose α ∈ J1(S) is an isolated point. Then it an
isolated point of some E ∈ E . Choose a neighborhood U of α so that U − {α} ⊂ F1(S)
where F1(S) is a completely invariant Fatou set of S. Since h−1(F1(S)) ⊂ F1(S) and
h(F1(S)) ⊂ F1(S) for all h ∈ S. Each h ∈ S omits J1(S) on U − {α}, and hence every
element in S is normal on U . This is a contradiction.

Proof of Theorem 1.7. Let int.(J1(S)) 6= ∅, where int.J1(S) denotes the interior of J1(S).
Then there exists a disk D = {|z− z0| < r} ⊂ J1(S) such that D intersects J(h) for some
h ∈ S. Then by [10, Theorem 3.9], for each finite value a, there is sequence zk → z0 ∈ J(h)
and a sequence of positive integers nk →∞ such that fnk(zk) = a, (k = 1, 2, 3, . . .) except
at most for a finite value. Then by backward invariance of J(h), zk ∈ J(h), and by forward
invariance of J(h), a ∈ J(h). This shows that every finite value is in J(h), except at most
a single value. Since h ∈ S is arbitrary, so we must have J1(S) = C.

Corollary 2.7. If J1(S) 6= C, then F1(S) is unbounded.

Proof. Suppose by the way of contradiction that F1(S) is bounded. Then J1(S) has
interior points. By Theorem 1.7, J1(S) = C, which is a contradiction.

Similar to the description of the sets J1(S) in Theorem 2.5, we can give analogous
description of the Julia set J(S) of transcendental semigroup S. Let us define the following
countable collections of sets:

F0 = {J(h)} for all h ∈ S

F1 =
⋃
h∈S

h−1(F0)

. . . . . . . . .

Fn+1 =
⋃
h∈S

h−1(Fn)

and

F =

∞⋃
n=0

Fn
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where h−1(Fi) = {h−1(F ) : F ∈ Fi} for any collection of sets Fi, (i = 1, 2, . . .) and any
function h ∈ S. The following result will give a convenient description of the set J(S) of
transcendental semigroup S.

Theorem 2.8. Let S be a finitely generated transcendental semigroup. Then J(S) =⋃
F∈F F .

Proof. By Proposition 1.3, J(S) is closed, backward invariant under each h ∈ S and
contains J(h) for all h ∈ S. Therefore we can write

J(S) ⊃
⋃
F∈F

F

Since the set
⋃
F∈F F is closed and contains J(h) for all h ∈ S, it remains to show that

it is also backward invariant under each h ∈ S. Since h is a continuous closed map,
h−1(

⋃
F∈F F ) is a closed set for each h ∈ S. This proves our claim.

Corollary 2.9. Let S be a finitely generated transcendental semigroup. Then J(S) ⊂
J1(S).

Proof. By construction, F ⊂ E , and hence the assertion follows from Theorems 2.5 and
2.8.

Corollary 2.10. If J(S) has non-empty interior, then J1(S) = C.

Proof. This corollary follows from Theorem 1.7 and Corollary 2.9.

Before proving Theorem 1.8, we prove the following lemma.

Lemma 2.11. Let S = 〈f, g〉 be a transcendental semigroup such that J(f) 6= J(g). Then
J1(S) = C.

Proof. Let U be a completely invariant component of F (f). Then by [10, Theorem
4.36], U is unbounded and simply connected, and ∂U = J(f). Likewise, a completely
invariant component V of F (g) is unbounded and simply connected, and ∂V = J(g).
J(f) 6= J(g) implies that ∂U 6= ∂V . By [10, Theorem 3.8], J(f) and J(g) are unbounded,
so U ∩ J(g) 6= ∅ and V ∩ J(f) 6= ∅. The fact that ∂U 6= ∂V implies that J(f) must
intersect the interior of V and J(g) must intersect the interior of U .

Let z ∈ J(f)∩ int.(V ), where int.(V ) is the interior of V . Then, by the forward invari-
ance of J1(S) and int.(V ) under the map g, one has gn(z) ∈ J1(S) and gn(z) ∈ int.(V )
for all n ∈ N. Likewise, fn(z) ∈ J1(S) and J1(S) intersects open sets int.(U) and int.(V ).
Thus J1(S) intersects int.(U) ∩ int.(V ). Since J1(S) is perfect and completely invariant,
it contains all limits of the sequences (fn) and (gn). This proves that int.(J1(S)) 6= ∅,
and hence, by Theorem 1.7, J1(S) = C.

Proof of Theorem 1.8. The proof follows by using Lemma 2.11 and Theorem 1.7.

F1(S) may also have a completely invariant component, as in classical transcendental
dynamics.

Lemma 2.12. If S is a transcendental semigroup, then F1(S) has at most one completely
invariant component.
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Proof. For a transcendental entire function f , F (f) has at most one completely invariant
component [10, Theorem 4.38]. By Definition 1.5, F1(S) ⊂ F (h) for all h ∈ S. The
assertion follows.

F1(S) can have either 0 or infinitely many multiply connected components as in classical
transcendental dynamics.

Lemma 2.13. Let F1(S) be a completely invariant Fatou set of a transcendental semi-
group S. Then the number of multiply connected components of F1(S) is either 0 or
∞.

Proof. For a transcendental entire function f , the number of multiply connected compo-
nents of F (f) is either 0 or ∞ [10, Theorem 4.43]. By Definition 1.5, F1(S) ⊂ F (h) for
all h ∈ S. The assertion follows.

Proof of Theorem 1.9. The proof follows from Lemmas 2.12 and 2.13.

3. Completely Invariant Escaping Sets

In [2, Theorem 4.1] and [3, Theorem 2.3], it was proved that the escaping set I(S) of a
transcendental semigroup S is forward invariant for each f ∈ S. There are several classes
of transcendental semigroups from which we get backward invariant escaping sets. In [11,
Theorem 2.1] and [3, Theorem 3.3], it was proved that the escaping set I(S) of an abelian
transcendental semigroup S is backward invariant for each f ∈ S. This is a condition for
a completely invariant escaping set of a transcendental semigroup. It is a generalization
of the completely invariant property of classical escaping sets of a single function to the
more general settings of semigroups. In this section, we generalize the classical completely
invariant notion of escaping sets of a single function to the completely invariant notion of
escaping sets of transcendental semigroups. By Definition 1.6, the set I1(S) is completely
invariant under each element of S, and this set coincides with the escaping set I(S) if
and only if S is an abelian semigroup. There are non-abelian transcendental semigroups
from which one can get completely invariant escaping sets. The following assertion will
be a good source of several examples.

Theorem 3.1. If S = 〈f, g〉 and I(f) = I(g), then I1(S) = I(S).

Proof. We know that I(f) is completely invariant under f and I(g) is completely invariant
under g. If I(f) = I(g), then I(h) = I(f) = I(g) = I(S) for all h ∈ S. In this case,
I1(S) = I(S).

As an example, the semigroup S = 〈f, g〉 generated by the functions f(z) = eλz, λ ∈ C\
{0} and g(z) = fk + 2πi

λ , k ∈ N, is completely invariant. Here we find that I(h) = I(f) =
I(g) = I(S) for all h ∈ S. Another example of the same kind is the semigroup S = 〈f, g〉
generated by the functions f(z) = λ sin z, λ ∈ C \ {0} and g(z) = fk + 2π, k ∈ N. Note
that in both of examples, the semigroup S is not abelian. From this discussion, we can
conclude that the escaping set I(S) may be completely invariant even if the semigroup
S is not abelian. In such a case, the escaping set I(S) is nothing other than the set
I1(S). There are transcendental semigroups where escaping sets and completely invariant
escaping sets are empty.
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Example 3.2. Suppose that S = 〈f, g〉, where f(z) = ez and g(z) = e−z. Then both
I1(S) and I(S) are empty. If z ∈ I(f), then g(fn(z)) = 1/ef

n(z) = 1/f(fn(z)) =
1/fn+1(z)→ 0 as n→∞.

Theorem 3.3. Let S be a transcendental semigroup. Then I1(S) ⊂ I(f) for every f ∈ S.

Proof. Let z ∈ I1(S). Then, by Definition 1.6, z ∈ Gi for all i and fn(z)→∞ as n→∞
for every f ∈ S. This proves that z ∈ I(S).

Let S be a transcendental semigroup such that I1(S) 6= ∅. Then by Theorem 3.3, we
can write I1(S) ⊂ I(h) for every h ∈ S since each I(h) is completely invariant, their
intersection

⋂
h∈S I(h) is also completely invariant. Define

E0 =
⋂
h∈S

I(h)

E1 =
⋃
h∈S

h−1(E0) ∪
⋃
h∈S

h(E0)

. . . . . . . . . . . . . . .

En+1 =
⋃
h∈S

h−1(En) ∪
⋃
h∈S

h(En)

and

E =
⋂

n∈N∪{0}

En (3.1)

Theorem 3.4. The set E =
⋂
n∈N∪{0}En is non-empty.

Proof. We show that I1(S) ⊂ En for every n ∈ N∪{0} by induction. That I1(S) ⊂ E0 is
obvious. By the completely invariant property of I1(S) under each h ∈ S, I1(S) is subset
of each set h−1(E0) and h(E0) for all h ∈ S. This shows I1(S) ⊂ E1. Let us suppose
I1(S) ⊂ En. By construction, En+1 = h−1(En) ∪ h(En) for all h ∈ S. By the similar
argument, we can show that I1(S) is subset of each of the sets h−1(En) and h(En) for all
h ∈ S. This shows that I1(S) ⊂ En+1 for each n ∈ N ∪ {0}. This proves that E 6= ∅.

Theorem 1.10 can give a convenient description of the completely invariant escaping
set of a transcendental semigroup. First, we prove the following lemma.

Lemma 3.5. Let f be a transcendental entire function and let E ⊂ C. The closure E of
E is completely invariant under f if and only if the set E itself is completely invariant
under f .

Proof. Let E be completely invariant under f . Then f(E) ⊂ E and f−1(E) ⊂ E. Let
z ∈ E. Then f(z) ∈ f(E) and so f(z) ∈ E. Also, z ∈ E implies that there exists a
sequence (zn)n∈N in E such that zn → z as n→∞. From the continuity of the function
f we can write f(zn) → f(z) as n → ∞. As f(z) ∈ E, we must have f(zn) ∈ E. Note
that f(zn) ∈ f(E) as zn ∈ E. Thus we must have f(E) ⊂ E.

Next, let z ∈ E, then f−1(z) ∈ f−1(E) ⊂ E. So there exists f−1(zn) ∈ E such that
f−1(zn) → f−1(z) as n → ∞. However, it is obvious that f−1(zn) ∈ f−1(E). Thus we
must have f−1(E) ⊂ E.

The converse part of this lemma follows from [12, Theorem 3.2.3].
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Note that under the assumption of Lemma 3.5, not only is the closure of completely
invariant set completely invariant, but also its complement, interior and boundary are
completely invariant (see for instance [12, Theorem 3.2.3]).

Proof of Theorem 1.10. By Definition 1.6, I1(S) is completely invariant under each h ∈ S
and is contained in I(h) for each h ∈ S. Hence, by Theorem 3.4, I1(S) is contained in
En for all n ∈ N ∪ {0}. Therefore, I1(S) ⊂ E. On the other hand, E is contained in
I(h) where each of I(h) is completely invariant. We need to show that E is completely
invariant under each f ∈ S, and for every z ∈ E, fn(z) → ∞ as n → ∞ for all
f ∈ S. f ∈ S is continuous in C and E ⊂ C. So by the usual topological argument,
f(E) ⊂ f(E) ⇒ f−1(f(E)) is closed in C for every f ∈ S ⇒ f is a continuous closed
map. This shows that f(E) and f−1(E) are both closed sets in C. Each f ∈ S is a
continuous closed map and f(En) ⊂ En and f−1(En) ⊂ En for all n. This shows that

f(E) ⊂ E and f−1(E) ⊂ E. By Lemma 3.5, it proves that E is completely invariant
under each f ∈ S.

Finally, every z ∈ E belongs to En for all n. Again, En is a union of all images and
pre-images of En−1 under the each map f ∈ S. In this way, the point z belongs to the
image or pre-image of E0 under each map f ∈ S. Since E0 is contained in I(f) for all
f ∈ S, so this point z goes to infinity under the iteration of any function in S. Hence
E ⊂ I1(S).

Note that I1(S) = E by Theorem 1.10, and E ⊂ I(S) by construction of the set E
(that is, E is completely invariant and I(S) is not) in (3.1). This fact is equivalent to
I1(S) ⊂ I(S).

We also can construct I(S) by similar fashion as in I1(S). Note that I(S) ⊂
⋂
h∈S I(h).

Suppose I(S) 6= ∅. Define

F0 =
⋂
h∈S

I(h),

F1 =
⋃
h∈S

(h(F0))

. . . . . . . . .

Fn+1 =
⋃
h∈S

(h(Fn))

and

F =
⋂
n∈N

Fn (3.2)

We can show that F 6= ∅ by a process similar to the one used in the proof of Theorem
3.4. The fundamental difference between this set F and the set E of (3.1) is that F is
constructed from only the forward invariant property under each h ∈ S., whereas the
set E was constructed from the completely invariant property under each h ∈ S. The
following theorem provides an alternative definition of the escaping set of transcendental
semigroup.

Theorem 3.6. Let S be a transcendental semigroup. Then F = I(S), where F =⋂
n∈N Fn.

Proof. Since I(S) is forward invariant under each h ∈ S and is contained in each I(h), it
is contained in F . On the other hand, the set F is contained in I(S) by the construction
above.
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