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Abstract This work aims to propose an inertial proximal gradient method using the adaptive stepsize to

solve unconstrained minimization problems. We prove that our algorithm weakly converges to a solution

of the problems. Finally, we give numerical experiments on image restoration problem. It shows that the

proposed algorithms outrun known algorithms introduced by many authors.

MSC: 65K05; 90C25; 90C30

Keywords: inertial technique; proximal gradient method; self-adaptive algorithm; weak convergence

Submission date: 14.12.2022 / Acceptance date: 20.04.2023

1. Introduction and Preliminaries

In various fields of applied sciences, economics and engineering, such as signal recov-
ery, image restoration, and machine learning, can be formulated as the unconstrained
minimization problem, which is described as follows:

min
x∈H

(f(x) + g(x)), (1.1)

where H is a real Hilbert space and f, g : H → R ∪ {+∞} are proper, lower semi-
continuous and convex functions that f is differentiable on H. The proximal operator
proxg : H → domg is defined by proxg(z) = (Id+ ∂g)−1(z), z ∈ H where Id denotes the
identity operator on H. It is well-known that the proximal operator is single-valued with
full domain. It is also known that for all z ∈ H

z − proxαg(z)

α
∈ ∂g(proxαg(z)) (1.2)

where α > 0.
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The minimization problem (1.1) which is equivalent to the following fixed point equa-
tion:

x = proxαg(x− α∇f(x)),

where α > 0, ∇f denotes the gradient of f and proxαg stands for the proximal operator

of g. For solving (1.1), we can construct a simple iteration: let x0 ∈ H and

xn+1 = proxαg(x
n − α∇f(xn)), (1.3)

where α > 0. By this point of view, we know that (1.3) is called a classical forward-
backward algorithm. As a consequence, it has been studied by many authors (see [1–8]).
The set argmin(f + g) is the solution set of (1.1).

To accelerate the convergence of sequence, Moudafi and Oliny [9] introduced the inertial
proximal gradient method. In 2009, Beck and Teboulle [10] introduce a fast iterative
shrinkage-thresholding algorithm (FISTA) as follows:

Algorithm 1.1. Let t1 = 1 and x0 = x1 ∈ H. Calculate

yn = xn + θn(xn − xn−1)

where θn =
tn − 1

tn+1
and tn+1 =

1 +
√

1 + 4t2n
2

. Next, calculate

xn+1 = prox 1
L g

(yn − 1

L
∇f(xn)).

where L is the Lipschitz constant of ∇f .

Recently, Verma and Shukla [11] proposed a new accelerated gradient algorithm (NAGA).
It is defined by:

Algorithm 1.2. Let θn ∈ [0, 1] and x0 = x1 ∈ H. Calculate

yn = xn + θn(xn − xn−1)

xn+1 = Tn[(1− αn)yn + αnTny
n]

where Tn = proxαng(Id− αn∇f) and αn ∈ (0, 2/L).

In 2016, Cruz and Nghia [1] proposed a fast forward-backward method (FFB) based
on the linesearch method for solving (1.1). The main advantage is that the Lipschitz
condition on the gradient of functions is dropped in computing. It is defined as follows:

Algorithm 1.3. Given σ, θ ∈ (0, 1) and δ ∈ (0, 1
2 ). Let Ω := domg is closed, x0 = x1 ∈

domg and t1 = 1. Calculate

yn = PΩ

(
xn +

(
tn − 1

tn+1

))

where tn+1 =
1 +

√
1 + 4t2n
2

and calculate the next step via

xn+1 = proxαng(x
n − αn∇f(xn))

where the stepsize αn generated by Linesearch 1 in [1].
Then (xn) converges weakly to a minimizer of (1.1).
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This work introduces inertial proximal gradient methods using the adaptive stepsize
for convex minimization problems. Our algorithms do not require the Lipschitz condition
of the gradient. Under some conditions, we derive a weak convergent method for un-
constrained minimization problem (1.1). Our content is organized as follows: In Section
2, we construct our main theorems. In Section 3, we provide numerical experiments in
image restoration. Finally, we give the conclusion of this work in Section 4.

2. Main Results

Now, we propose a new inertial forward-backward algorithm and prove the weak con-
vergence. Assume that f : H → R ∪ {+∞} and g : H → R ∪ {+∞} are proper, convex
and lower semi-continuous that ∇f is L-Lipschitz continuous on H.

Algorithm 2.1. Given δ ∈ (0, 1), α1 ≥ 0 and θn ≥ 0. Let x0 = x1 ∈ H be arbitrary and
calculate:

zn = xn + θn(xn − xn−1) (2.1)

and

xn+1 = proxαng(z
n − αn∇f(zn)) (2.2)

where

αn+1 =

{
min{ δ‖zn−xn+1‖

‖∇f(zn)−∇f(xn+1)‖ , αn} if ∇f(zn)−∇f(xn+1) 6= 0

αn otherwise.
(2.3)

Theorem 2.2. Let (xn) be defined by Algorithm 2.1. Assume that θn ≥ 0 and

∞∑
n=1

θn <

+∞. Then, we have

(1) for each x∗ ∈ argmin(f + g), ‖xn+1 − x∗‖ ≤ K ·
n∏
j=1

(1 + 2θj) where K =

max{‖x1 − x∗‖, ‖x2 − x∗‖}.
(2) The sequence (xn) weakly converges to a point in argmin(f + g).

Proof. Using (1.2) and (2.2), we see that

zn − xn+1

αn
−∇f(zn) =

zn − proxαng(z
n − αn∇f(zn))

αn
−∇f(zn) ∈ ∂g(xn+1).

From the convexity of g, we have

g(x)− g(xn+1) ≥
〈
zn − xn+1

αn
−∇f(zn), x− xn+1

〉
(2.4)

for all x ∈ H. Also the convexity of f gives

f(x)− f(y) ≥ 〈∇f(y), x− y〉 (2.5)
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for all x, y ∈ H. Combining (2.4) and (2.5) with y = zn, we obtain

g(x)− g(xn+1) + f(x)− f(zk) ≥ 〈z
n − xn+1

αn
−∇f(zn), x− xn+1〉+ 〈∇f(zn), x− zn〉

=
1

αn
〈zn − xn+1, x− xn+1〉+ 〈∇f(zn), xn+1 − zn〉

=
1

αn
〈zn − xn+1, x− xn+1〉+ 〈∇f(xn+1), xn+1 − zn〉

+〈∇f(zn)−∇f(xn+1), xn+1 − zn〉

≥ 1

αn
〈zn − xn+1, x− xn+1〉+ 〈∇f(xn+1), xn+1 − zn〉

−‖∇f(zn)−∇f(xn+1)‖‖xn+1 − zn‖ (2.6)

By definition of (αn), we have

‖∇f(zn)−∇f(xn+1)‖ ≤ δ

αn+1
‖zn − xn+1‖ (2.7)

Indeed, if ∇f(zn) = ∇f(xn+1), then the inequality (2.7) hold. Otherwise, from (2.3), we
have

αn+1 = min{ δ‖zn − xn+1‖
‖∇f(zn)−∇f(xn+1)‖

, αn} ≤
δ‖zn − xn+1‖

‖∇f(zn)−∇f(xn+1)‖
.

This implies that

‖∇f(zn)−∇f(xn+1)‖ ≤ δ

αn+1
‖zn − xn+1‖.

Therefore, the inequality follows from (2.6) and (2.7). It then follows that

〈zn − xn+1, xn+1 − x〉 ≥ αn[f(zn) + g(xn+1)− (f + g)(x) + 〈∇f(xn+1), xn+1 − zn〉]

− δαn
αn+1

‖zn − xn+1‖2.

Using 2〈zn − xn+1, xn+1 − x〉 = ‖zn − x‖2 − ‖zn − xn+1‖2 − ‖xn+1 − x‖2, we get

‖xn+1 − x‖2 ≤ ‖zn − x‖2 − 2αn[(f + g)(xn+1)− (f + g)(x)]

−(1− 2δαn
αn+1

)‖zn − xn+1‖2. (2.8)

Now, we let x∗ ∈ argmin(f + g) and we will show that (xn) is bounded. By (2.1) and
(2.8), we see that

‖xn+1 − x∗‖ ≤ ‖zn − x∗‖
= ‖xn + θn(xn − xn−1)− x∗‖
≤ ‖xn − x∗‖+ θn(‖xn − x∗‖+ ‖xn−1 − x∗‖).

It implies that

‖xn+1 − x∗‖ ≤ (1 + θn)‖xn − x∗‖+ θn‖xn−1 − x∗‖.
By Lemma 5 in [12], we have

‖xn+1 − x∗‖ ≤ K ·
n∏
j=1

(1 + 2θj)
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where K = max{‖x1 − x∗‖, ‖x2 − x∗‖}. Since

∞∑
n=1

θn < +∞, we have (xn) is bounded.

From (2.1) and (2.8), we see that

‖xn+1 − x∗‖2 ≤ ‖xn + θn(xn − xn−1)− x∗‖2 − 2αn[(f + g)(xn+1)− (f + g)(x∗)]

−(1− 2δαn
αn+1

)‖zn − xn+1‖2

≤ ‖xn − x∗‖2 + 2θn‖xn − x∗‖‖xn − xn−1‖+ θ2
n‖xn − xn−1‖2

−2αn[(f + g)(xn+1)− (f + g)(x∗)]− (1− 2δαn
αn+1

)‖zn − xn+1‖2.

(2.9)

From Remark 3.1 in [13], we know that αn is bounded from below by min

{
α1,

δ

L

}
and

lim
n→∞

αn = α > 0. By Lemma 1 in [14] and (2.9) we obtain that lim
n→∞

‖xn − x∗‖2 exists.

Since lim
n→∞

(1− δαn
αn+1

) = 1− δ > 0, we have

lim
n→∞

‖zn − xn+1‖ = 0.

From definition of zn, it is easily seen that lim
n→∞

‖zn − xn‖ = 0 and implies that

lim
n→∞

‖xn+1 − xn‖ = 0. By the boundedness of (xn), we know that the set of its weak

accumulation points is nonempty. Let x∞ be a weak accumulation point of (xn). So there
is a subsequence (xni) of (xn) such that (xn) converges weakly to x∞. Next, we show
that x∞ ∈ argmin(f + g). Let (v, u) ∈ Graph(∇(f) + ∂(g)), that is u −∇f(v) ∈ ∂g(v).
Since xni+1 = proxαnig

(I − αni∇f)zni , we obtain

(I − αni
∇f)zni ∈ (I + αni

∂g)xni+1,

which yields

1

αni

(zni − xni+1 − αni
∇f(zni)) ∈ ∂g(xni+1).

Since ∂g is maximal monotone, we have

〈v − xni+1, u−∇f(v)− 1

αni

(zni − xni+1 − αni∇f(zni))〉 ≥ 0.

This shows that

〈v − xni+1, u〉 ≥ 〈v − xni+1,∇f(v) +
1

αni

(zni − xni+1 − αni
∇f(zni))〉

= 〈v − xni+1,∇f(v)−∇f(xni)〉+ 〈v − xni+1,
1

αni

(zni − xni+1)〉

= 〈v − xni+1,∇f(v)−∇f(zni+1)〉+ 〈v − xni+1,∇f(xni+1)−∇f(zni)〉

+〈v − xni+1,
1

αni

(zni − xni+1)〉

≥ 〈v − xni+1,∇f(xni+1)−∇f(zni)〉+ 〈v − xni+1,
1

αni

(zni − xni+1)〉.
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Since lim
n→∞

‖zn−xn+1‖ = 0 and by assumptions, we have lim
n→∞

‖∇f(zn)−∇f(xn+1)‖ = 0.

Hence we obtain

〈v − x∞, u〉 = lim
i→∞
〈v − xni+1, u〉 ≥ 0.

Hence, 0 ∈ (∇f + ∂g)x∞, and consequently x∞ ∈ argmin(f + g). This gives that (xn)
converges weakly to a point in argmin(f + g) by applying Theorem 4.1 in [18]. We thus
complete the proof.

3. Numerical Experiments

In this section, we provide the numerical examples and compare the proposed algo-
rithm with some existing algorithms in the literature. All computational experiment were
written in Matlab 2020b and preformed on a 64-bit MacBook Pro Chip Apple M1 and 8
GB of RAM.

In this experiments, firstly, we apply Algorithm 2.1 to solve image restoration problem,
we consider the following linear equation system:

b = Aa+ ε, (3.1)

where a ∈ RN×1 is the original image, b ∈ RN×1 is the observed image, ε ∈ RN×1 is the
additive noise and A ∈ RN×N is the blurring operation. It is known that to solve (3.1)
can be seen as solving the LASSO problem:

min
a∈RN

1

2
‖b−Aa‖22 + λ‖a‖1,

where λ > 0. To measure the quality of restored images, we use the peak signal-to-noise
ratio (PSNR) and the structural similarity index measure (SSIM) [19], which is defined
by

PSNR = 20 log

(
2552

‖ar − a‖22

)
and

SSIM =
(2uauar + c1)(2σaar + c2)

(u2
a + u2

ar + c1)(σ2
a + σ2

ar + c2)

where a is the original image, ar is the restored image, ua and uar are the mean values
of the original image a and restored image ar, respectively, σ2

a and σ2
ar are the variances,

σ2
aar is the covariance of two images, c1 = (0.01L)2 and c2 = (0.03L)2 and L is the

dynamic range of pixel values. SSIM ranges from 0 to 1, where 1 means flawless recovery.
Next, we consider the original images that are corrupted by the following blur types:

(BM1) Gaussian blur of the filter size 5× 5 with standard deviation σ = 5.
(BM2) Out of focus blur (disk) with radius r = 7.
(BM3) Motion blur specified with the motion length of 45 pixels and motion orienta-

tion θ = 45.

The original image and three different types of original image degraded by the blurring
matrices are shown in Figure 1.
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Figure 1. The original image (size 448×332) and the blurred image by
the blurred matrices (BM1), (BM2) and (BM3), respectively.

All parameters are chosen as in Table 1. The initial point a0 and a1 are zero vectors
with the stopping criterion 900th Iter. The inertial parameter θn of FISTA, FFA and
NAGA is defined as in Algorithm 1.1. For IFBAS, we set θn as follows:

θn =


1

n2
, if n < 50

tn − 1

tn+1
, if n ≥ 50

where tn+1 =
(1/10) +

√
(1/50) + 4t2n
2

.

The results of deblurred image for each algorithm are shown in Table 2 and

Table 1. Chosen parameters of each algorithm.

Algorithms
Parameters

γ = 1/‖A‖ θ = 0.2 δ = 0.4 σ = 0.2 t1 = 1
FISTA

√
- - -

√

FFA -
√ √ √ √

NAGA
√

- - -
√

IFBAS - -
√

-
√

Table 2. The results of deblurred image for each algorithm.

Blurred matrices Measurement
Algorithms

FISTA FFB NAGA IFBAS

(BM1)
PSNR 38.7126 39.4788 39.2057 40.1099
SSIM 0.9734 0.9774 0.9760 0.9803

(BM2)
PSNR 33.8526 34.4556 34.2232 34.8416
SSIM 0.9256 0.9324 0.9296 0.9349

(BM3)
PSNR 32.2596 33.9459 32.9459 34.2778
SSIM 0.9102 0.9187 0.9169 0.9271
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Figure 2. The restored images by (MB1) for FISTA (PSNR:38.7126,
SSIM:0.9734), FFB (PSNR:39.4788, SSIM:0.9774), NAGA
(PSNR:39.2057 SSIM:0.9760) and IFBAS (PSNR:40.1099, SSIM:0.9803),
respectively.

Figure 3. Graph of PSNR and SSIM of Figure 2.

Figure 4. The restored images by (MB2) for FISTA (PSNR:33.8526,
SSIM:0.9256), FFB (PSNR:34.4556, SSIM:0.9324), NAGA
(PSNR:34.2232 SSIM:0.9296) and IFBAS (PSNR:34.8416, SSIM:0.9349),
respectively.



Inertial Proximal Gradient Method Using Adaptive Stepsize ... 285

Figure 5. Graph of PSNR and SSIM of Figure 4.

Figure 6. The restored images by (MB3) for FISTA (PSNR:32.2596,
SSIM:0.9102), FFB (PSNR:33.2292, SSIM:0.9187), NAGA
(PSNR:32.9459 SSIM:0.9169) and IFBAS (PSNR:34.2778, SSIM:0.9271),
respectively.

Figure 7. Graph of PSNR and SSIM of Figure 6.

From Tables 2 and Figures 3, 5 and 7, we see that our proposed method has a better
convergence behavior than FISTA, FFB and NAGA in terms of PSNR and SSIM.
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4. Conclusion

In this paper, we proposed a modified proximal gradient method with adaptive stepsize
to solve minimization problems in real Hilbert spaces. We obtained the weak convergence
theorems under some conditions that do not depend on the Lipschitz condition on the
gradient. We gave numerical results to image deblurring by using our algorithms. It was
shown that the proposed proposed methods outperform other methods in comparison.
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