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1. Introduction

It is well known that fixed point theory is among the oldest acquaintances of modern
mathematics. This theory plays a prominent role in many mathematical branches (both
pure and applied), and it has three approaches in literature. The first one is the metric
approach which makes use of the metric properties of the underlying spaces and self-
maps (e.g., Banach’s contraction mapping theorem [2]). The second approach is the
topological one in which one utilizes the topological properties of the underlying spaces
and continuity of self-mappings (e.g., Brouwer’s fixed point theorem [7]). The third
approach is the order-theoretic one for the category of complete lattice, complete Heyting
algebras, pseudo-ordered sets (e.g., Abian and Brown fixed point theorem [1], Tarski and
Davis fixed point theorems [11, 20], Skala fixed point theorem [18], ... etc).

In fuzzy setting, several authors have discussed the same approaches, they have investi-
gated some fixed point theorems in different ways and on different structures. Shen et al.
[17] established several fixed point theorems for a new class of self-maps in M-complete
fuzzy metric spaces and compact fuzzy metric spaces, respectively. Lu [16] studied some
fixed point theorems for fuzzy mappings in general topological spaces. Recently, Včelař
and Patikova [21] have presented a fuzzification of Tarski’s fixed point theorem without
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the assumption of transitivity. For the fuzzy monotone multifunctions Stouti [19] proved
under suitable conditions the existence of fixed points by using iteration method in the
unit interval [0.1].

Motivated by recent developments relating to this framework, in this paper, we in-
troduce and study three types of monotonicity of an L-fuzzy multifunction on a given
L-fuzzy complete lattice and investigate their various properties. Furthermore, we show
that any L-fuzzy multifunction with respect to these types of monotonicity has the fixed
point property. Specific attention is paid to show for one type of these monotonicities
that the set of fixed points of an L-fuzzy monotone multifunction is an L-fuzzy complete
lattice.

The contents of the paper are organized as follows. In Section 2, we recall the necessary
basic concepts and properties of residuated lattices, fuzzy relations, and fuzzy complete
lattices. In Section 3, we introduce the notion of L-fuzzy monotone multifunction on a
given L-fuzzy complete lattice and investigate its various properties. In Section 4, we
extend some fixed point theorems for L-fuzzy monotone multifunctions. Also, we show
that the set of fixed points of an L-fuzzy monotone multifunction is an L-fuzzy complete
lattice. Finally, we present some concluding remarks in Section 5.

2. Basic Concepts

This section serves an introductory purpose. First, we recall some basic definitions and
properties of residuated lattice. Second, we recall some notions and results of L-fuzzy
relations, as well as L-fuzzy complete lattices.

2.1. Residuated Lattices

A poset (L,≤) (see, e.g., [10]) is called a lattice if any two elements x and y have a
smallest upper bound, denoted x ∨ y and called the join (or the supremum) of x and y,
as well as a greatest lower bound, denoted x ∧ y and called the meet (or the infimum) of
x and y. A lattice can also be defined as an algebraic structure namely a set L equipped
with two binary operations ∨ and ∧ that are idempotent, commutative and associative,
and satisfy the absorption laws (x ∨ (x ∧ y) = x and x ∧ (x ∨ y) = x, for any x, y ∈ L).
The order relation, the meet and the join operations are related as follows: x ≤ y if and
only if x ∨ y = y; x ≤ y if and only if x ∧ y = x.
A bounded lattice is a lattice that additionally has a greatest element 1 and a smallest
element 0, which satisfy 0 ≤ x ≤ 1, for any x in L. Often, the notation (L,≤,∨,∧, 0, 1)
is used. A complete lattice is a poset in which every subset has a supremum or join (the
least upper bound) and an infimum or meet (the greatest lower bound).

Definition 2.1. [12] A triangular norm (t-norm, for short) ∗ on a bounded lattice L
is a binary operation on L that is commutative (i.e., α ∗ β = β ∗ α, for any α, β ∈ L),
associative (i.e., α ∗ (β ∗ γ) = (α ∗ β) ∗ γ, for any α, β, γ ∈ L), has neutral element 1 (i.e.,
α ∗ 1 = α, for any α ∈ L) and is order-preserving (i.e., if α ≤ β, then α ∗ γ ≤ β ∗ γ, for
any α, β, γ ∈ L).

Example 2.2. The following four operations are the most common t-norms on L = [0, 1]:

(1) Minimum: x ∗ y = min{x, y}.
(2) Product: x ∗ y = x.y.
(3) Lukasiewicz: x ∗ y = max{x+ y − 1, 0}.
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(4) Drastic product: x ∗ y =

 x if y = 1 ,
y if x = 1 ,
0 if x, y < 1.

Definition 2.3. [3] A residuated lattice is an algebra (L,∨,∧, ∗,→, 0, 1) such that

(i) (L,∨,∧, 0, 1) is a bounded lattice;
(ii) (∗,→) forms an adjoint couple on L, i.e., for any a, b, c ∈ L:

(R1) If a ≤ b and c ≤ d, then a ∗ c ≤ b ∗ d;
(R2) If b ≤ c, then a→ b ≤ a→ c;
(R3) If a ≤ b, then b→ c ≤ a→ c;
(R4) a ∗ b ≤ c⇔ a ≤ b→ c (adjointness condition);

(iii) (L, ∗, 1) forms a commutative monöıd, i.e., for any a, b, c ∈ L:
(R5) (a ∗ b) ∗ c = a ∗ (b ∗ c);
(R6) a ∗ b = b ∗ a;
(R7) 1 ∗ a = a.

A residuated lattice L is called complete if (L,∨,∧, 0, 1) is a complete lattice. The ∗
and → will be called multiplication and residuum, respectively. Multiplication is isotone
while residuum is isotone in the first argument and antitone in the second argument (w.r.t.
lattice order ≤).

Remark 2.4. When the operator ∗ is exactly the min (∧) operation of the residuated
lattice, such structure is called a Heyting algebra. A complete Heyting algebra is a special
case of a complete residuated lattice which is also called a frame.

The following properties of a complete residuated lattices will be used in the paper
(see, e.g., Bělohlávek [3, 4], Ćirić [8] and Hájek [15]). For any a, b, c ∈ L, it holds that:

(1) a→ b =
∨
{c ∈ L | a ∗ c ≤ b} ,

(2) 1→ a = a, a ≤ b⇔ a→ b = 1 ,

(3) b ≤ c implies

 a ∧ b ≤ a ∧ c ,
a→ b ≤ a→ c ,
b→ a ≥ c→ a ,

(4) a ∧ (a→ b) ≤ b, a ≤ (a→ b)→ b, (a→ b) ∧ (b→ c) ≤ a→ c,
(5) a→ (b→ c) = (a ∧ b)→ c, (a→ b) ∧ (c→ d) ≤ a→ (c→ (b ∧ d)),
(6) a→ (

∧
B) =

∧
{a→ b | b ∈ B}, a→ (

∨
B) ≥

∨
{a→ b | b ∈ B},

(7) (
∨
B)→ a =

∧
{b→ a | b ∈ B}, (

∧
B)→ a ≥

∨
{b→ a | b ∈ B}.

Throughout this paper, (L,∨,∧, 0, 1) is a complete residuated lattice.

2.2. L-Fuzzy Relations

Goguen [14] introduced the notion of L-fuzzy set as a generalization of Zadeh’s-fuzzy
set with L being a bounded lattice. An L-fuzzy set A on X is a mapping A : X −→ L.
The set of all L-fuzzy sets on X is denoted by LX .
A binary L-fuzzy relation (L-relation, for short) R on X is an L-fuzzy set on X2, i.e.,
is a mapping R : X × X −→ L. If L = {0, 1}, crisp relations are obtained. For a crisp
relation, we use the usual infix notation, xRy, for any x, y ∈ X. An L-relation R1 is
said to be included in an L-relation R2, denoted R1 ⊆ R2, if R1(x, y) ≤ R2(x, y), for any
x, y ∈ X. The intersection of two L-relations R1 and R2 on X is the L-relation R1 ∩ R2

on X defined by R1 ∩ R2(x, y) = R1(x, y) ∧ R2(x, y), for any x, y ∈ X. Similarly, the
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union of two L-relations R1 and R2 on X is the L-relation R1 ∪ R2 on X defined by
R1 ∪ R2(x, y) = R1(x, y) ∨ R2(x, y), for any x, y ∈ X. The transpose Rt of R is defined
by Rt(x, y) = R(y, x), for any x, y ∈ X.

Next, we need the fommowin definition of fuzzy order on a nonempty set. For more
details on fuzzy order relations, we refer to [4–6, 13, 26].

Definition 2.5. Let X be a nonempty set. An L-fuzzy relation R : X × X −→ L is
called an L-fuzzy order on X if the following statements hold:

(E1) Reflexivity, ∀x ∈ X, R(x, x) = 1,
(E2) Antisymmetry, ∀x, y ∈ X, R(x, y) = R(y, x) = 1 implies x = y,
(E3) Transitivity, ∀x, y, z ∈ X, R(x, y) ∧R(y, z) ≤ R(x, z).

The pair (X,R) is called a L-fuzzy partially ordered set (an L-fuzzy poset, for short).

Example 2.6. (1) On a residuated lattice L, the L-fuzzy relation RL : L×L −→
L defined by RL(x, y) = x→ y is an L-fuzzy ordered relation on L.

(2) Let X = {a, b, c, d} and L = {0, 0.5, 1}. We define R : X ×X −→ L as follows:

R(., .) a b c d
a 1 0 0 0
b 1 1 0.5 0
c 1 0.5 1 0
d 1 1 1 1

Then (X,R) is an L-fuzzy poset on X.

2.3. L-Fuzzy Complete Lattices

In this subsection, we discuss the notion of L-fuzzy complete lattice. First, we recall
the notion of supremum and infimum of an L-fuzzy set.

Definition 2.7 (Zhang and Fan [24, 25]). Let (X,R) be an L-fuzzy poset on a set X
and A ∈ LX .

(1) An element s ∈ X is called a join (or a supremum) of A (w.r.t. the L-fuzzy
order R) if it holds that

(i) For any x ∈ X, A(x) ≤ R(x, s);

(ii) For any y ∈ X,
∧
x∈X

(A(x) −→ R(x, y)) ≤ R(s, y).

(2) An element m ∈ X is called a meet (or an infimum) of A (w.r.t. the L-fuzzy
partial order R) if it holds that

(i) For any x ∈ X,A(x) ≤ R(m,x);

(ii) For any y ∈ X,
∧
x∈X

(A(x) −→ R(y, x)) ≤ R(y,m).

Theorem 2.8 (Bělohlvek [4, 5], Xie [22]). Let (X,R) be an L-Fuzzy poset, A ∈ LX and
s,m ∈ X. The following equivalences hold:

(i) s is a join of A if and only if (R(s, y) =
∧
x∈X

(A(x) −→ R(x, y))), for any

y ∈ X;

(ii) m is a meet of A if and only if (R(y,m) =
∧
x∈X

(A(x) −→ R(y, x))), for any

y ∈ X.
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Corollary 2.9 (Zhang [24]). Let (X,R) be an L-fuzzy poset, A ∈ LX . If the join and
the meet of A exist, then they are unique.

For a given L-fuzzy set A of X, the tA (resp. uA) denotes the join (resp. the meet)
of A.

Definition 2.10 (Bělohlavek [4, 5]). Let (X,R) be an L-Fuzzy poset and A ∈ LX .
(i) Au ∈ LX is called the set of upper bounds of A and defined by

Au(x) =
∧
z∈X

(A(z) −→ R(z, x)), for any x ∈ X.

(ii) A` ∈ LX is called the set of lower bounds of A and defined by

A`(x) =
∧
z∈X

(A(z) −→ R(x, z)), for any x ∈ X.

Combining Definition 2.10 and Theorem 2.8 leads to the following result.

Proposition 2.11. Let (X,R) be an L- fuzzy poset and A ∈ LX . If tA (resp., uA)
exists, then Au(tA) = 1 (resp., Al(uA) = 1).

Theorem 2.12 (Yao [23]). Let (X,R) be an L-fuzzy poset and A ∈ LX . It holds that

(i) if uAu exists, then so is tA and tA = uAu;
(ii) if tA` exists, then so is uA and uA = tA`.

Definition 2.13 (Bělohlavek [4, 5], Lai and Zhang [25] and Zhang [26]). An L-fuzzy
poset (X,R) is called an L-fuzzy complete lattice if tA and uA exist for any L-fuzzy
subset A of X.

Theorem 2.14 (Bělohlavek [5], Lai and Zhang [25] and Zhang [26]). Let (X,R) be an
L-Fuzzy poset. The following statements are equivalent:

(i) (X,R) is an L-fuzzy complete lattice;
(ii) For any A ∈ LX , tA exists;

(iii) For any A ∈ LX , uA exists.

3. L-Fuzzy Multifunctions

In this section, we introduce three types of monotonicity of an L-fuzzy multifunction
on a given L-fuzzy complete lattice and investigate their various properties. Fist we recall
the notion of an L-fuzzy multifunction on a given set.

Definition 3.1. Let X be a nonempty set. An L-fuzzy multifunction on X is a mapping
φ : X −→ LX .

For a given L-fuzzy multifunction φ : X −→ LX , we denote φx instead of φ(x) i.e.,
φx : X −→ L, for any x ∈ X.
Next, we introduce the notion of L-fuzzy monotone multifunction on a given L-fuzzy
complete lattice.

Definition 3.2. Let (X,R) be an L-fuzzy complete lattice and φ : X −→ LX be an
L-fuzzy multifunction.

(1) φ is called t-fuzzy monotone if it holds that
(i) R(x, y) ≤ R(tφx,tφy), for any x, y ∈ X;
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(ii) φx(tφx) = 1, for any x ∈ X.
(2) φ is called u-fuzzy monotone if it holds that

(i) R(x, y) ≤ R(uφx,uφy), for any x, y ∈ X;
(ii) φx(uφx) = 1, for any x ∈ X.

(3) φ is called (t,u)-fuzzy monotone (or an L-fuzzy monotone, simply) if it holds
that

(i) R(x, y) ≤ R(tφx,uφy), for any x, y ∈ X;
(ii) φx(tφx) = φx(uφx) = 1, for any x ∈ X.

Remark 3.3. If φ is a simple function, then Definition 3.2 coincides with the definition
of fuzzy monotone function (see, e.g., Definition 1.4 [26]).

Example 3.4. Let X = {x, y, z} and L = {0, a, b, 1} be the lattice given by the Hasse
diagram in Figure 1. Define the fuzzy relation R : X ×X −→ L as follows:

R(., .) x y z
x 1 1 1
y b 1 b
z b 1 1

It is easy to verify that (X,R) is an L-fuzzy complete lattice.
We define the L-fuzzy multifunctions φ, ϕ, ψ : X −→ LX as follows:

x y z
φx(.) b 1 a
φy(.) b 1 1
φz(.) 1 1 a

x y z
ϕx(.) 1 b 1
ϕy(.) 1 a 1
ϕz(.) 1 0 b

x y z
ψx(.) 1 b 0
ψy(.) 0 1 0
ψz(.) 0 b 1

Then we obtain that
t u

φx y z
φy y z
φz y x

t u
ϕx z x
ϕy y x
ϕz x x

t u
ψx x x
ψy y y
ψz z z

Where,

(i) φ is t-fuzzy monotone multifunction;
(ii) ϕ is u-fuzzy monotone multifunction;
(iii) ψ is (t-u) fuzzy monotone multifunction.

0

a b

1

•

••

•

Figure 1. Hasse diagram of L = {0, a, b, 1}.

Notation 3.5. For a given L-fuzzy multifunction φ : X −→ LX , we associate two L-fuzzy
multifunctions φu, φ` : X −→ LX defined for any x ∈ X as:

φu(x) = φux and φ`(x) = φ`x .
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The following proposition shows the interaction between the monotonicity of a given
L-fuzzy multifunction φ on a set X and that of φu and φ`.

Proposition 3.6. Let (X,R) be an L-fuzzy complete lattice and φ : X −→ LX be an
L-fuzzy multifunction with the corresponding L-fuzzy multifunctions φ` and φu. The
following equivalences hold:

(i) φ is t-fuzzy monotone if and only if φu is u-fuzzy monotone;
(ii) φ is u-fuzzy monotone if and only if φ` is t-fuzzy monotone.

Proof. We only prove (i), as both cases are analogous. For the first implication, we show
that R(x, y) ≤ R(uφux,uφuy ) and φux(uφux) = 1, for any x, y ∈ X.

(a) Since φ is t-monotone, it follows that R(x, y) ≤ R(tφx,tφy), for any x, y ∈ X.
From Theorem 2.12, it holds that tφx = uφux, for any x ∈ X. Hence, R(x, y) ≤
R(uφux,uφuy ), for any x, y ∈ X.
b) Since uφux = tφx, it follows that

φux(uφux) = φux(tφx) =
∧
y∈X

(φx(y) −→ R(y,tφx)) .

Since φx(y) ≤ R(y,tφx), for any y ∈ X, it follows that

φux(uφux) =
∧
y∈X

(φx(y) −→ R(y,tφx)) = 1 .

Thus, φu is u-fuzzy monotone. The converse goes in the same way.

Next, we need the following lemma.

Lemma 3.7. Let (X,R) be an L-fuzzy complete lattice and A ∈ LX satisfies that there
exists x0 in X such that A(x0) = 1. Then it holds that R(uA,tA) = 1.

Proof. Let m = uA and s = tA, then A(x) ≤ R(m,x) and A(x) ≤ R(x, s), for any
x ∈ X. This implies that R(x0, s) = 1 and R(m,x0) = 1. By transitivity of R, we obtain
that R(m, s) = 1.

The above Lemma 3.7 leads to show the relationship between (t,u)-fuzzy monotonicity
and t-fuzzy (resp. u-fuzzy) monotonicity.

Proposition 3.8. Let (X,R) be an L-fuzzy complete lattice and φ : X −→ LX be an
L-fuzzy multifunction. If φ is (t,u)-fuzzy monotone, then φ is t-fuzzy monotone and
u-fuzzy monotone.

Proof. Suppose that φ is (t,u)-fuzzy monotone and let x, y ∈ X. Since φy(tφy) = 1, it
follows from Lemma 3.7 that R(uφy,tφy) = 1. Since R(x, y) ≤ R(tφx,uφy), it holds
that

R(x, y) ≤ R(tφx,uφy) ∧R(uφy,tφy)︸ ︷︷ ︸
=1

,

The transitivity of R guarantees that

R(x, y) ≤ R(tφx,tφy) .

Furthermore, one easily verifies that φx(tφx) = 1. Thus, φ is t-fuzzy monotone multi-
function. In analogous way, we obtain that φ is u-fuzzy monotone multifunction.
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Remark 3.9. The converse of the above implication does not necessarily hold. Indeed,
let φ and ϕ are two L-fuzzy multifunctions given in Example 3.4. We know that φ is
t-fuzzy monotone and ϕ is u-fuzzy monotone. Since R(x, y) � R(tφx,uφy) = R(y, z)
(resp. R(x, y) � R(tϕx,uϕy) = R(z, x)) it holds that φ (resp. ϕ) is not (t,u)- fuzzy
monotone multifunction.

4. Fixed Point Theorems for L-Fuzzy Monotone Multifunctions

The aim of the present section is to show some fixed point theorems of L-fuzzy mul-
tifunction with respect to the three introduced types of monotonicity. Furthermore, we
show that the set of fixed points of an L-fuzzy monotone multifunction is an L-fuzzy
complete lattice.

4.1. Existence Theorems

In this subsection, we investigate the existence of a fixed point for any L-fuzzy mono-
tone multifunction on an L-fuzzy complete lattice. First, we recall the following definition.

Definition 4.1. Let φ : X −→ LX be an L-fuzzy multifunction. An element x ∈ X is
called a fixed point of φ if it holds that φx(x) = 1.

We denote by Fix(φ) the set of all fixed points of φ. More details on fixed points of
multifunctions can be found in [9, 19].

The following theorems shows that any L-fuzzy monotone multifunction has the fixed
point property.

Theorem 4.2. Let (X,R) be an L-fuzzy complete lattice and φ : X −→ LX be an t-fuzzy
monotone multifunction. Then it holds that φ has at least a fixed point.

Proof. Let P be an L-fuzzy set on X defined as:

P (x) = R(tφx, x), for any x ∈ X,
Since (X,R) is an L-fuzzy complete lattice, it follows that P has an infimum. Let
m = uP , i.e., P (x) ≤ R(m,x) and

∧
x∈X(p(x) −→ R(y, x)) ≤ R(y,m), for any x, y ∈ X.

Since φ is t-fuzzy monotone multifunction, it follows that R(m,x) ≤ R(tφm,tφx).
Since P (x) ≤ R(m,x) ≤ R(tφm,tφx) and P (x) = R(tφx, x), it follows that P (x) ≤
R(tφm,tφx) ∧R(tφx, x). From the transitivity of R, it follows that P (x) ≤ R(tφm, x).
In the other hand

∧
x∈X(P (x) −→ R(y, x)) ≤ R(y,m), for any y ∈ X. Setting y =

tφm, then we obtain that
∧
x∈X(P (x) −→ R(tφm, x)) ≤ R(tφm,m). The fact that

P (x) ≤ R(tφm, x), implies that P (x) −→ R(tφm, x) = 1, for any x ∈ X. Hence,∧
x∈X(P (x) −→ R(tφm, x)) = 1. Thus,

R(tφm,m) = 1 (4.1)

Since φ is t-fuzzy monotone, it holds that R(tφm,m)︸ ︷︷ ︸
=1

≤ R(tφtφm ,tφm). This implies

that, R(tφtφm ,tφm) = 1. Since P (x) = R(tφx, x), it follows that P (tφm) = 1. Since
P (x) ≤ R(m,x), it follows that P (tφm) ≤ R(m,tφm). Hence,

R(m,tφm) = 1 (4.2)

From the equations (4.1) and (4.2), and by the antisymmetry of R, we obtain that m =
tφm. From the second condition of t- monotonicity, we obtain that φm(tφm) = 1, this
implies that φm(m) = 1. We conclude that, m is a fixed point of φ.
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In the same way, the following theorem shows that any u-fuzzy monotone multifunction
has at least a fixed point.

Theorem 4.3. Let (X,R) be an L-fuzzy complete lattice and φ : X −→ LX be an u-fuzzy
monotone multifunction. Then it holds that φ has a fixed point.

Proof. The proof can be obtained by combining Proposition 3.6 and Theorem 4.2.

A combination of Proposition 3.8, Theorem 4.2 and Theorem 4.3 leads to the following
fixed point property for (t,u)-fuzzy monotone multifunctions.

Theorem 4.4. Let (X,R) be an L-fuzzy complete lattice and φ : X −→ LX be a (t,u)-
fuzzy monotone multifunction. Then φ has a fixed point.

4.2. Structure of the Fixed Points Set of an L-Fuzzy Monotone

Multifunction

In this subsection, we show that the set of fixed points of an L-fuzzy monotone multi-
function is an L-fuzzy complete lattice.

Theorem 4.5. Let (X,R) be an L-fuzzy complete lattice and φ : X −→ LX be an L-
fuzzy monotone multifunction, then the set of fixed point of φ in X is a nonempty L-fuzzy
complete lattice.

Proof. In order to show that Fix(φ) is an L-fuzzy complete lattice, we prove that tA
exists, for any A ∈ LFix(φ). Let’s consider the L-fuzzy subset B of LX defined for any
x ∈ X by:

B(x) = (
∧

y∈Fix(φ)

A(y) −→ R(x, y)) ∧R(x,tφx).

Assume that s = tB, then it holds that B(x) ≤ R(x, s), for any x ∈ X. Since φ
is (t,u)-fuzzy monotone multifunction, it follows that R(x, s) ≤ R(tφx,uφs), for any
x ∈ X. This implies that

B(x) ≤ R(tφx,uφs), for any x ∈ X. (4.3)

Using the fact that B(x) ≤ R(x,tφx) and equation (4.3), it follows that B(x) ≤ R(x,tφx)
∧R(tφx,uφs), for any x ∈ X. Now, the transitivity of R guarantees that

B(x) ≤ R(x,uφs), for any x ∈ X. (4.4)

In the same line, Proposition 3.8 guarantees that R(x, s) ≤ R(tφx,tφs), for any x ∈ X.
Hence, B(x) ≤ R(x,tφx) ∧R(tφx,tφs), for any x ∈ X. Thus,

B(x) ≤ R(x,tφs), for any x ∈ X. (4.5)

We know from Theorem 2.8 that
∧
x∈X

(B(x) −→ R(x, y)) = R(s, y), for any y ∈ X. By

setting y = tφs, it holds that
∧
x∈X

(B(x) −→ R(x,tφs)) = R(s,tφs).

Equation (4.5) implies that B(x) −→ R(x,tφs) = 1, for any x ∈ X. Hence,

R(s,tφs) = 1. (4.6)



274 Thai J. Math. Vol. 21 (2023) /A. Derardja et al.

Equation (4.6) and the fact of (t,u)-fuzzy monotonicity of φ imply that R(s,tφs)︸ ︷︷ ︸
=1

≤

R(tφs,tφtφs). Thus,

R(tφs,tφtφs
) = 1. (4.7)

Similarly, by the definition of B and the fact that
∧
x∈X

(B(x) −→ R(x, y)) = R(s, y), for

any y ∈ Fix(φ), it follows that

R(s, y) = 1, for any y ∈ Fix(φ). (4.8)

From equations (4.6) and (4.8), it holds that R(s, y)∧R(s,tφs) = 1, for any y ∈ Fix(φ).
Thus, B(s) = 1.
Also, the fact of (t,u)-fuzzy monotonicity of φ imply that 1 = R(s, y) ≤ R(tφs,uφy).
Hence,

R(tφs,uφy) = 1, for any y ∈ Fix(φ). (4.9)

Since φy(z) ≤ R(uφy, z), for any z ∈ X, it follows that φy(y) ≤ R(uφy, y). The fact
thatφy(y) = 1, then implies that

R(uφy, y) = 1, for any y ∈ Fix(φ). (4.10)

Equations (4.9), (4.10) and the transitivity ofR, imply that 1 = R(tφs,uφy)∧R(uφy, y) ≤
R(tφs, y). Thus,

R(tφs, y) = 1, for any y ∈ Fix(φ). (4.11)

From equations (4.7) and (4.11), it follows that R(tφs,tφtφs
) ∧ R(tφs, y) = 1, for any

y ∈ Fix(φ). Hence,

B(tφs) = 1. (4.12)

Since B(x) ≤ R(x, s) for any x ∈ X, it follows that B(tφs) ≤ R(tφs, s) Hence,

R(tφs, s) = 1. (4.13)

Equations (4.6), (4.13) and the antisymmetry of R imply that

s = tφs. (4.14)

Using the second condition of (t,u)-monotonicity of φ, it holds that φs(s) = φs(tφs) = 1.
Thus, s is a fixed point of φ.

We complete this proof by showing that s is the infimum of A (i.e., s = uA) in Fix(φ).
Let t ∈ Fix(φ) such that A(y) ≤ R(t, y), for any y ∈ Fix(φ). The fact that 1 = φt(t) ≤
R(t,tφt) and the transitivity of R imply that R(t,tφt)︸ ︷︷ ︸

=1

∧R(tφt, y) ≤ R(t, y). This implies

that

R(tφt, y) ≤ R(t, y), for any y ∈ Fix(φ). (4.15)

In similar way, we obtain R(uφy, y) ≤ R(tφt, y), for any y ∈ Fix(φ). Now, equation
(4.10) implies that

R(tφt, y) = 1, for any y ∈ Fix(φ). (4.16)

Equations (4.15) and (4.16) imply that

R(t, y) = 1, for any y ∈ Fix(φ). (4.17)
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Furthermore, from the equations (4.8) and (4.17), it holds that R(s, t) = R(t, s) = 1.
The antisymmetry of R guarantees that s = t. Thus, A(x) ≤ R(s, x), for any x ∈ Fix(φ).

Now we show that
∧

x∈Fix(φ)

(A(x) −→ R(y, x)) ≤ R(y, s), for any y ∈ Fix(φ). Indeed,∧
x∈Fix(φ)

(A(x) −→ R(y, x)) =
∧

x∈Fix(φ)

(A(x) −→ R(y, x)) ∧ R(y,tφy)︸ ︷︷ ︸
=1

= B(y) ≤ R(y, s),

for any y ∈ Fix(φ). Thus, s = uA. Therefore, Theorem 2.14 guarantees that Fix(φ) is
an L-fuzzy complete lattice.

5. Conclusion

In this work, we have established some fixed point theorems of L-fuzzy monotone
multifunctions. Moreover, we have provided that the set of all fixed points of L-fuzzy
monotone multifunction has the structure of complete lattice. We anticipate that these
results will facilitate the study of fixed point theorems for fuzzy monotone multifunctions
on more general fuzzy ordered structures.
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