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1. Introduction and Preliminaries

Fixed point theory constitutes an important part of the subject of nonlinear functional
analysis and it is useful for proving the existence theorems for nonlinear differential and
integral equations. The Banach contraction principle is the simplest and one of the
most versatile elementary results in fixed point theory, which is a very popular tool for
solving existence problems in many branches of mathematical analysis. Several authors
have extended Banach’s fixed point theorem in various ways. The family of contraction
mappings was introduced and studied by Ćirić [5] and Tasković [13]. Also in the process,
the study of existence of common fixed point for finite and infinite families of self-mappings
has been carried out by many authors. For example, one may refer [1–4, 6, 8, 10–12, 14,
15].
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The aim of this paper is to define some new conditions of common contractivity for an
infinite family of mappings and give some new results on the existence and uniqueness of
common fixed points in the setting of complete metric space. The following definitions
and results will be needed in the sequel.

Definition 1.1. Let X be a nonempty set and {Tn} a family of self-mappings on X. A
point x0 ∈ X is called a common fixed point for this family if and only if Tn(x0) = x0,
for each n ∈ N.

The following interesting theorem was given by Ćirić [5] for a family of generalized
contractions.

Theorem 1.2. Let (X, d) be a complete metric space and {Tα}α∈J a family of self-
mappings of X. If there exists fixed β ∈ J such that for each α ∈ J :

d(Tαx, Tβy) ≤ λmax

{
d(x, y), d(x, Tαx), d(y, Tβy),

1

2
[d(x, Tβy) + d(y, Tαx)]

}
,

for some λ = λ(α) ∈ (0, 1) and all x, y ∈ X, then all Tα’s have a unique common fixed
point, which is a unique fixed point of each Tα, α ∈ J.

Definition 1.3. Let {Tn} be a sequence of mappings and g a self-mapping on X. If
y = gx = Tnx for all n ∈ N and for some x ∈ X, then x is called a coincidence point of
{Tn} and g, where y is called a point of coincidence of {Tn} and g.

Definition 1.4. [7] Let f and g be two self-mappings defined on a set X. Then f and g
are said to be weakly compatible if they commute at every coincidence point.

Definition 1.5. [9] Let S denote the class of those functions β : R+ → [0, 1) which satisfy
the condition β(tn)→ 1 implies tn → 0.

The following generalization of Banach contraction principle is due to Geraghty [9].

Theorem 1.6. Let (X, d) be a complete metric space and T : X → X. Suppose there
exists β ∈ S such that for each x, y ∈ X,

d(Tx, Ty) ≤ β(d(x, y)) d(x, y).

Then T has a unique fixed point z ∈ X, and {Tn(x)} converges to z, for each x ∈ X.

In Section 2, we prove a version of Theorem 1.6, for infinite families of self mappings
of a complete metric space. In Section 3, existence of a unique common solution for the
functional integral equation (3.1) is obtained under suitable conditions.

2. Common Fixed Point Theorems

In this section, we prove existence of a unique common fixed point for a family of
contractive type self maps on a complete metric space.

Theorem 2.1. Let (X, d) be a complete metric space and {Tn} a sequence of self-
mappings on X. Suppose that there exists β ∈ S such that

d(Tix, Tjy) ≤ β(Mi,j(x, y)) max{d(x, y), d(x, Tix), d(y, Tjy)}, (2.1)

where

Mi,j(x, y) = max

{
d(x, y), d(x, Tix), d(y, Tjy),

d(x, Tjy) + d(y, Tix)

2

}
,
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for all x, y ∈ X, i, j = 1, 2, ... with x 6= y, i 6= j, then all Tn’s have a unique common fixed
point in X.

Proof. For any x0 ∈ X, let xn = Tn(xn−1), n = 1, 2, ..., then using (2.1) we obtain

d(xn, xn+1) = d(Tn(xn−1), Tn+1(xn))

≤ β(Mn,n+1(xn−1, xn)) max{d(xn−1, xn), d(xn−1, Tnxn−1), d(xn, Tn+1xn)}
= β(Mn,n+1(xn−1, xn)) max{d(xn−1, xn), d(xn, xn+1)}.

Since β : [0,∞) −→ [0, 1), we have

d(xn, xn+1) ≤ β(Mn,n+1(xn−1, xn)) max{d(xn−1, xn), d(xn, xn+1)}
< max{d(xn−1, xn), d(xn, xn+1)}.

This shows that

d(xn, xn+1) < d(xn−1, xn),

and so

d(xn, xn+1) ≤ β(Mn,n+1(xn−1, xn))d(xn−1, xn) < d(xn−1, xn). (2.2)

It follows that the sequence {d(xn, xn+1)} is a monotone decreasing sequence of nonneg-
ative real numbers and, consequently, there exists δ ≥ 0 such that

lim
n−→∞

d(xn, xn+1) = δ. (2.3)

We show that δ = 0. Suppose, on the contrary, that δ > 0. If xn−1 = xn for some n ∈ N,
then xn−1 is a fixed point of Tn and the existence part of the proof is finished. Suppose
that xn−1 6= xn for every n ∈ N. Then, from (2.2)

d(xn, xn+1)

d(xn−1, xn)
≤ β(Mn,n+1(xn−1, xn)) = β(d(xn−1, xn)) < 1. (2.4)

Indeed, since

1

2
d(xn−1, xn+1) ≤ 1

2
[d(xn−1, xn) + d(xn, xn+1)] ≤ max{d(xn−1, xn), d(xn, xn+1)},

then,

Mn,n+1(xn−1, xn)

= max

{
d(xn−1, xn), d(xn−1, Tnxn−1), d(xn, Tn+1xn),

d(xn−1, Tn+1xn)+d(xn, Tnxn−1)

2

}
= max

{
d(xn−1, xn), d(xn−1, xn), d(xn, xn+1),

d(xn−1, xn+1) + d(xn, xn)

2

}
≤ max{d(xn−1, xn), d(xn, xn+1)} = d(xn−1, xn).

Taking the limit as n→∞ in (2.4), we obtain

1 =
δ

δ
= lim
n→∞

d(xn, xn+1)

d(xn−1, xn)
≤ lim
n→∞

β(d(xn−1, xn)) ≤ 1.

Consequently, lim
n→∞

β(d(xn−1, xn)) = 1 and, since β ∈ S, δ = lim
n→∞

d(xn, xn+1) = 0. This

contradicts that δ > 0. So

lim
n→∞

d(xn, xn+1) = 0. (2.5)
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Now, we claim that for any positive integersm and n withm ≥ n, we have lim
n,m→∞

d(xn, xm)

= 0. Assume, on the contrary that

lim sup
n,m→∞

d(xn, xm) > 0. (2.6)

Using the triangle inequality, we obtain

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xm+1) + d(xm+1, xm)

≤ d(xn, xn+1) + d(xm+1, xm) + d(Tn+1xn, Tm+1xm)

≤ d(xn, xn+1) + d(xm+1, xm)

+ β(Mn+1,m+1(xn, xm)) max{d(xn, xm), d(xn, Tn+1xn), d(xm, Tm+1xm)}
= d(xn, xn+1) + d(xm+1, xm)

+ β(Mn+1,m+1(xn, xm)) max{d(xn, xm), d(xn, xn+1), d(xm, xm+1)}
≤ d(xn, xn+1) + d(xm+1, xm) + β(Mn+1,m+1(xn, xm))d(xn, xm)

+ max{d(xn, xn+1), d(xm, xm+1)}
≤ β(Mn+1,m+1(xn, xm))d(xn, xm) + 3 max{d(xn, xn+1), d(xm, xm+1)},

since β ∈ S, then 1 − β(Mn+1,m+1(xn, xm)) > 0. Therefore, from the last inequality, it
follows

d(xn, xm) ≤ 3[1− β(Mn+1,m+1(xn, xm))]−1 max{d(xn, xn+1), d(xm, xm+1)}.

From the above inequality and (2.5), we have lim
n→∞

[1− β(Mn+1,m+1(xn, xm))]−1 =∞ or

lim
n→∞

β(Mn+1,m+1(xn, xm)) = 1 or lim
n→∞

Mn+1,m+1(xn, xm) = 0. Since

d(xn, xm)

≤Mn+1,m+1(xn, xm)

= max

{
d(xn, xm), d(xn, Tn+1xn), d(xm, Tm+1xm),

d(xn, Tm+1xm) + d(xm, Tn+1xn)

2

}
= max

{
d(xn, xm), d(xn, xn+1), d(xm, xm+1),

d(xn, xm+1) + d(xm, xn+1)

2

}
,

we get lim sup
n,m→∞

d(xn, xm) = 0, a contradiction to (2.6). Therefore (2.5) holds and we have

lim
n,m→∞

d(xn, xm) = 0. Thus {xn} is a Cauchy sequence and by completeness of X, {xn}
converges to x (say) in X, that is,

lim
n→∞

d(xn, x) = 0. (2.7)

Now, we will prove that for any positive integer m, x is a common fixed point of {Tm}.
Observe that

d(x, Tmx) ≤ d(x, xn) + d(xn, Tmx) = d(x, xn) + d(Tnxn−1, Tmx)

≤ d(x, xn) + β(Mn,m(xn−1, x)) max{d(xn−1, x), d(xn−1, Tnxn−1), d(x, Tmx)}
≤ d(x, xn) + β(Mn,m(xn−1, x)) max{d(xn−1, x), d(xn−1, xn)}

+ β(Mn,m(xn−1, x))d(x, Tmx)

< d(x, xn) + max{d(xn−1, x), d(xn−1, xn)}+ β(Mn,m(xn−1, x))d(x, Tmx).
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Suppose that Tmx 6= x. Now, since

Mn,m(xn−1, x)

= max

{
d(xn−1, x), d(xn−1, Tnxn−1), d(x, Tmx),

1

2
[d(xn−1, Tmx) + d(x, Tnxn−1)

}
= max

{
d(xn−1, x), d(xn−1, xn), d(x, Tmx),

1

2
[d(xn−1, Tmx) + d(x, xn)

}
,

then

lim
n→∞

Mn,m(xn−1, x) = d(x, Tmx). (2.8)

Therefore

d(x, Tmx) ≤ [1− β(Mn,m(xn−1, x))]−1[d(x, xn) + max{d(xn−1, x), d(xn−1, xn)}].
Taking the limit as n → ∞ and using (2.5), (2.8) and β ∈ S, we obtain d(x, Tmx) = 0 a
contradiction to Tmx 6= x, so that Tmx = x. Let y be another fixed point of {Tn}, then

d(x, y) = d(Tnx, Tmy) ≤ β(Mn,m(x, y)) max{d(x, y), d(x, Tnx), d(y, Tmy)} < d(x, y).

a contradiction. Hence, x is the unique common fixed point of {Tn}.

If β(t) = k, where 0 ≤ k < 1, then we have the following result.

Corollary 2.2. Let (X, d) be a complete metric space and {Tn} a sequence of self-
mappings on X. Suppose that there exists 0 ≤ k < 1 such that

d(Tix, Tjy) ≤ k max{d(x, y), d(x, Tix), d(y, Tjy)}, (2.9)

for all x, y ∈ X, i, j = 1, 2, ... with x 6= y, i 6= j. Then all Tn’s have a unique common
fixed point in X.

From Theorem 2.1, we deduce the following corollary.

Corollary 2.3. Let (X, d) be a complete metric space and {Tn} a sequence of self-
mappings on X. Suppose that there exists β ∈ S such that

d(Tix, Tjy) ≤ β(Mi,j(x, y))d(x, y), (2.10)

where

Mi,j(x, y) = max

{
d(x, y), d(x, Tix), d(y, Tjy),

d(x, Tjy) + d(y, Tix)

2

}
,

for all x, y ∈ X, i, j = 1, 2, ... with x 6= y, i 6= j. Then all Tn’s have a unique common
fixed point in X.

From Corollary 2.3, we deduce the following corollary.

Corollary 2.4. Let (X, d) be a complete metric space and {Tn} a sequence of self-
mappings on X. Suppose that there exists β ∈ S such that

d(Tix, Tjy) ≤ β(d(x, y))d(x, y), (2.11)

for all x, y ∈ X, i, j = 1, 2, ... with x 6= y, i 6= j. Then all Tn’s have a unique common
fixed point in X.

Now we introduce the following theorem for discussing the existence of unique common
fixed point of the sequence (Tn) of self mappings and g on a complete metric space (X, d).
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Theorem 2.5. Let (X, d) be a complete metric space. Let 0 ≤ ai,j+bi,j < 1 (i, j = 1, 2, ...)
satisfy

(i) for each i, lim
j→∞

ai,j < 1 and lim
j→∞

bi,j < 1;

(ii)

∞∑
n=1

An <∞, where An =

n∏
i=1

bi,i+1

1− ai,i+1
.

Also, let {Tn : X −→ X : n ∈ N} be a sequence of self-mappings and g : X −→ X.
Assume that there exists n0 ∈ N such that Tn0(X) ⊆ g(X), g(X) is closed subset of X
and Tn0 is weakly compatible with g on X such that

d(Tn0
x, Tny) ≤ an0,nd(gy, Tny)ϕ(d(gx, Tn0

x), d(gx, gy)) + bn0,nd(gx, gy), (2.12)

for all x, y ∈ X, n0, n ∈ N with n0 6= n where ϕ : [0,∞)×[0,∞) −→ [0,∞) is a continuous
function such that ϕ(t, t) = 1 for all t ∈ [0,∞). Then g and {Tn} have a unique common
fixed point in X.

Proof. Suppose that g and {Tn} have two common fixed points x, y ∈ X. Then, for all
n ∈ N, we have

x = gx = Tnx and y = gy = Tny. (2.13)

From (2.12) and (2.13), we have

d(x, y) = d(Tn0x, Tny)

≤ an0,nd(gy, Tny)ϕ(d(gx, Tn0
x), d(gx, gy)) + bn0,nd(gx, gy)

= bn0,nd(x, y),

since lim
n→∞

bn0,n < 1, it follows from the above inequality that d(x, y) = 0, that is, x = y.

Hence, the common fixed point of g and {Tn}, if it exists, is unique. Now suppose that x
is a common fixed point of g and Tn0 . Then

x = gx = Tn0x. (2.14)

For any n ∈ N, from (2.12) using (2.14), we have

d(x, Tnx) = d(Tn0x, Tnx)

≤ an0,nd(gx, Tnx)ϕ(d(gx, Tn0x), d(gx, gx)) + bn0,nd(gx, gx)

= an0,nd(x, Tnx)

since lim
n→∞

an0,n < 1, it follows from the above inequality that d(x, Tnx) = 0, that is,

x = Tnx. Then x = gx = Tnx for all n ∈ N, that is, x is common fixed point of g and
{Tn}. Hence, any common fixed point of g and Tn0

is a common fixed point of g and {Tn}.
The converse part is trivial. Next we claim that T has a fixed point. To substantiate our
claim we assume that x0 ∈ X. As Tn0(X) ⊆ g(X), we can define a sequence {xn} in X
as follows (for all n ∈ N) gxn = Tn(xn−1). Then from (2.12), we obtain

d(gx1, gx2) = d(T1(x0), T2(x1))

≤ a1,2d(gx1, T2x1)ϕ(d(gx0, T1x0), d(gx0, gx1)) + b1,2d(gx0, gx1)

≤ a1,2d(gx1, gx2)ϕ(d(gx0, gx1), d(gx0, gx1)) + b1,2d(gx0, gx1)
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≤ a1,2d(gx1, gx2) + b1,2d(gx0, gx1),

implies

(1− a1,2)d(gx1, gx2) ≤ b1,2d(gx0, gx1).

Hence, we have

d(gx1, gx2) ≤ b1,2
1− a1,2

d(gx0, gx1).

Also,

d(gx2, gx3) = d(T2(x1), T3(x2))

≤ a2,3d(gx2, T3x2)ϕ(d(gx1, T2x1), d(gx1, gx2)) + b2,3d(gx1, gx2)

≤ a2,3d(gx2, gx3)ϕ(d(gx1, gx2), d(gx1, gx2)) + b2,3d(gx1, gx2)

≤ a2,3d(gx2, gx3) + b2,3d(gx1, gx2).

Then

d(gx2, gx3) ≤ b2,3
1− a2,3

d(gx1, gx2)

≤ b1,2
1− a1,2

× b2,3
1− a2,3

d(gx0, gx1).

Generally, we conclude that

d(gxn, gxn+1) ≤
n∏
i=1

bi,i+1

1− ai,i+1
d(gx0, gx1) = And(gx0, gx1). (2.15)

Therefore, for m,n ∈ N, m ≥ n, and using (2.15), we get

d(gxn, gxm) ≤
m−1∑
k=n

d(gxk, gxk+1)

≤
m−1∑
k=n

Akd(gx0, gx1).

Now, passing limit n,m→∞, we get d(gxn, gxm)→ 0. Thus {gxn} is a Cauchy sequence
and by completeness of X, {gxn} converges to y in X, that is, lim

n→∞
gxn = y ∈ X. Since

Tn0
(X) ⊆ g(X) and g(X) is closed subset of X, therefore there exists x ∈ X such that

y = gx. Assume that Tn0
x 6= gx. From the condition (2.12), we have

d(Tn0
x, gx) ≤ d(gx, gxn) + d(Tn0

x, gxn) = d(gx, gxn) + d(Tn0
x, Tnxn−1)

≤ d(gx, gxn) + an0,nd(gx, Tn0
x)ϕ(d(gxn−1, Tnxn−1), d(gxn−1, gx))

+ bn0,nd(gxn−1, gx)

≤ d(gx, gxn) + an0,nd(gx, Tn0
x)ϕ(d(gxn−1, gxn), d(gxn−1, gxn))

+ bn0,nd(gxn−1, gx)

≤ d(gx, gxn) + an0,nd(gx, Tn0
x) + bn0,nd(gxn−1, gx).

Taking lim as n→∞, we get

d(Tn0
x, gx) ≤ lim an0,nd(Tn0

x, gx) < d(Tn0
x, gx),
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a contradiction. Therefore, it must be the case Tn0x = gx. Therefore, we have y = gx =
Tn0x, it follows that x is a coincidence point of g and Tn0 . Since Tn0 weakly compatible
with g on X, we have gy = g(Tn0

x) = Tn0
(gx) = Tn0

y. So,

d(Tn0y, y) = d(Tn0y, Tn0x)

≤ an0,n0
d(gx, Tn0

x)ϕ(d(gy, Tn0
y), d(gy, gx)) + bn0,n0

d(gy, gy),

it follows from the above inequality that d(Tn0
y, y) = 0, that is, Tn0

y = y. Therefore
y = gy = Tn0

y. So, y is a common fixed point of g and Tn0
. By what we have already

proved, y is the unique common fixed point of g and {Tn}.

Corollary 2.6. Let (X, d) be a complete metric space and T,G, g : X −→ X be three
mappings. Assume that T (X) ⊆ g(X), g(X) is closed subset of X and T commutes with
g on X such that

d(Tx,Gy) ≤ a d(gy,Gy)ϕ(d(gx, Tx), d(gx, gy)) + b d(gx, gy),

for all x, y ∈ X where a, b non-negative real numbers with a + b < 1 and ϕ : [0,∞) ×
[0,∞) −→ [0,∞) is a continuous function such that ϕ(t, t) = 1 for all t ∈ [0,∞). Then
g,G and T have a unique common fixed point in X.

Corollary 2.7. Let (X, d) be a complete metric space and T,G : X −→ X be two
mappings. Assume that

d(Tx,Gy) ≤ a d(y,Gy)ϕ(d(x, Tx), d(x, y)) + b d(x, y),

for all x, y ∈ X where a, b non-negative real numbers with a + b < 1 and ϕ : [0,∞) ×
[0,∞) −→ [0,∞) is a continuous function such that ϕ(t, t) = 1 for all t ∈ [0,∞). Then T
and G have a unique common fixed point in X.

Corollary 2.8. Let (X, d) be a complete metric space. Let 0 ≤ ai,j + bi,j < 1 (i, j =
1, 2, ...), satisfy

(i) for each i, lim
j→∞

ai,j < 1 and lim
j→∞

bi,j < 1;

(ii)

∞∑
n=1

An <∞ where An =

n∏
i=1

bi,i+1

1− ai,i+1
.

Also, {Tn : X −→ X : n ∈ N} be a sequence of mappings and g : X −→ X be a self
mapping and there exists n0 ∈ N such that Tn0

(X) ⊆ g(X) and g(X) closed subset of X,
and Tn0

commutes with g on X such that

d(Tn0
x, Tny) ≤ an0,nd(gy, Tny)

1 + d(gx, Tn0
x)

1 + d(gx, gy)
+ bn0,nd(gx, gy),

for all x, y ∈ X, n0, n ∈ N with x 6= y and n0 6= n. Then g and {Tn} have a unique
common fixed point in X.

Corollary 2.9. Let (X, d) be a complete metric space. Let T : X −→ X be a mapping
such that

d(Tx, Ty) ≤ a d(y, Ty)
d(x, Tx)

d(x, y)
+ b d(x, y),

for all x, y ∈ X with x 6= y and a, b non-negative real numbers with a + b < 1. Then T
has a unique fixed point in X.
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3. Application to Integral Equations

In this section, we present the application of Corollary 2.4 from the theory of integral
equations, which are of theoretical interest.
We denote by Φ the set of all functions ϕ : [0,∞) → [0,∞) verifying the following
conditions:

(i) ϕ is increasing;
(ii) for each t > 0, ϕ(t) < t;

(iii) β(t) =
ϕ(t)

t
∈ S.

For example, ϕ(t) = kt, where 0 ≤ k < 1, ϕ(t) =
t

t+ 1
are in Φ.

Throughout this section, we assume that X = C[0, 1] is the set of all continuous func-
tions defined on I = [0, 1]. As an application of our results, we study the existence and
uniqueness of a common solution for the following system of functional integral equations:

x(t) =

∫ 1

0

k(t, s) fi(s, x(s))ds, t ∈ I, i ∈ N. (3.1)

Also, consider the following assumptions:

(a1) the function k : [0, 1]× [0, 1]→ [0,∞) is continuous and bounded with

K = sup{k(t, s) : t, s ∈ [0, 1]} ≤ 1;

(a2) the functions fi : [0, 1] × R → R (i ∈ N) are continuous and there exists a
function ϕ ∈ Φ such that

|fi(t, x)− fj(t, y)| ≤ ϕ(|x− y|);

Theorem 3.1. Under conditions (a1) and (a2), the system of integral equations given in
(3.1) has a unique common solution in C(I).

Proof. Define Ti : X → X by

(Ti(x))(t) =

∫ 1

0

k(t, s) fi(s, x(s))ds, t ∈ I, i ∈ N.

Now, we check that hypotheses in Corollary 2.4 are satisfied. Indeed, (X, d) is a complete
metric space, if we choose

d(x, y) = sup
t∈I
|x(t)− y(t)|, x, y ∈ X.

Also, by virtue of our assumptions, Ti is well defined (this means that for x, y ∈ X then
Ti(x) ∈ X, i ∈ N). Besides, for x, y ∈ X and i, j ∈ N with i 6= j, we can get

d(Tix, Tjy) = sup
t∈I
|(Tix)(t)− (Tjy)(t)|

= sup
t∈I
|
∫ 1

0

k(t, s) fi(s, x(s))ds−
∫ 1

0

k(t, s) fj(s, y(s))ds|

≤ sup
t∈I

∫ 1

0

k(t, s)|fi(s, x(s))− fj(s, y(s))|ds

≤ sup
t∈I

∫ 1

0

k(t, s)ϕ(|x(s)− y(s)|ds.
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As the function ϕ is increasing, then ϕ(|x(t)− y(t)| ≤ ϕ(d(x, y)) we obtain

d(Tix, Tjy) ≤ sup
t∈I

∫ 1

0

k(t, s)ϕ(|x(s)− y(s)|ds

≤ ϕ(d(x, y)) sup
t∈I

∫ 1

0

k(t, s)ds

≤ Kϕ(d(x, y))

≤ ϕ(d(x, y))

d(x, y)
d(x, y) = β(d(x, y)) d(x, y).

Then for x, y ∈ X and i, j ∈ N with i 6= j

d(Tix, Tjy) ≤ β(d(x, y)) d(x, y).

Finally, Corollary 2.4 gives that Tn’s have a unique common fixed point in X.

Example 3.2. Consider the following equation

x(t) =

∫ 1

0

tsx(s) cos s

2i
ds (3.2)

for t ∈ I = [0, 1], i ∈ N.
Here we have

ϕ(t) =
t

2
, k(t, s) = ts and fi(t, x) =

x cos t

2i
.

In this example, we have k is continuous and bounded on [0, 1]× [0, 1]. Also,

K = sup {ts : t, s ∈ [0, 1]} ≤ 1.

Again, the function fi is continuous on [0, 1]× R for all i ∈ N and∣∣∣∣∣fi(t, x)− fj(t, y)

∣∣∣∣∣ =

∣∣∣∣∣x cos t

2i
− y cos t

2j

∣∣∣∣∣
≤ 1

2
|x− y|

= ϕ (|x− y|) .
Hence conditions from (a1)− (a2) are satisfied. Thus by Theorem 3.1 the equation (3.2)
has at least one solution in C(I).
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