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1. Introduction

Fixed point theory is a hot area of research and is one of the most important topics in
mathematics, especially in analysis. Many researchers took interest in fixed point theory
and its applications in diverse fields ranging from different branches of mathematics to
engineering, and from economics to biology. For example, optimization problems, varia-
tional inequalitiey problems, equilibrium problems including minimization problems, and
variational inclusion problems, among others, are known to be very useful in diverse fields
such as economics, computer science, and engineering, and they also find applications in
machine learning. Many problems arising from these fields can be modeled as optimiza-
tion problems. The Banach contraction principle is a fundamental result in fixed point
theory [6]. For one century, due to its importance and simplicity, several authors have
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obtained many interesting extensions and generalizations of the Banach contraction prin-
ciple in several direction. One possible direction is the notion of best proximity point
results. In this line of research, [1, 2, 27] obtained interesting best proximity point results
and derived fixed point results as consequences of their works in which Banach fixed point
is one of them. Also, taking the key role of the notion of the metric in mathematics and
hence in quantitative sciences, it has been extended and generalized in several distinct
directions by many authors.

In 1968, Bryant [8] constructed a remarkable result in fixed point theory and proved
that, in a complete metric space, if, for some positive integer n ≥ 2, the nth iteration
of the given mapping forms a contraction, then it possess a unique fixed point. An-
other outstanding approach was proposed by Kirk, Srinivasan and Veeramani [13] by
introducing the notion of cyclic contraction. More precisely, every cyclic contraction in
a complete metric space possess a unique fixed point. Later, the concept of the cyclic
contractions has been investigated immensely by a considerable large number of authors
who brought several brilliant notions and derived a number of interesting results (see,
e.g., [3, 10, 11, 14–20, 23, 25, 26, 28] and the references therein). Let T be a self-mapping
on a metric space (X, η). Suppose that A and B are nonempty subsets of X such that
X = A ∪B. A self-mapping T : A ∪B → A ∪B is called a cyclic contraction [13] if

1). T (A) ⊆ B and T (B) ⊆ A.
2). If there is a k ∈ (0, 1) such that the following inequality is satisfied

η(Tx, Ty) ≤ kη(x, y), for all x ∈ A, y ∈ B.
After this initial investigation, several extensions of cyclic mappings and cyclic con-

tractions have been introduced. In this paper, we mainly follow the notations defined
in [17, 22]. In [17], a notion of p-cyclic map is introduced. Let D1, D2, . . . , Dp(p ≥ 2)
be nonempty sets. A p-cyclic map T : ∪pi=1Di → ∪pi=1Di is defined such that T (Di) ⊆
Di+1,∀i ∈ {1, 2, . . . , p}, x = x0 ∈ Di defines a sequence {xn} ⊂ ∪pi=1Di as xn = Txn−1.
Then, {xpn} is a subsequence in Di, {xpn+1} is a subsequence in Di+1 and so on. From
the arrangement of such a sequence formed by a p-cyclic map, Karapinar et al. in [22]
introduced a notion of p-cyclic sequence (Definition 2.1(1)). If Dis are subsets of a met-
ric space (X, η), then, to obtain a best proximity point of T under various contractive
conditions (some of them given in the literature), it is enough to prove that: given ε > 0,
there exists N0 ∈ N such that

η(xpn, xpm+1) < dist(Di, Di+1) + ε, ∀n,m ≥ N0

where dist(Di, Di+1) = inf{η(x, y) : x ∈ Di, y ∈ Di+1}.
The authors [22] introduced a concept of p-cyclic Cauchy sequence and p-cyclic com-

plete metric space ([22], Definition 2.1). They investigated the behavior of such p-cyclic
maps, and found that, if η(x, y) > dist(Di, Di+1), then η(Tx, Ty) < η(x, y) and, if
η(x, y) = dist(Di, Di+1), then η(Tx, Ty) = η(x, y), x ∈ Di, y ∈ Di+1. A p-cyclic map
with this property is called to be a p-cyclic strict contraction map (Definition 3.1). Note
that, if the distances between the adjacent sets are zero, then a p-cyclic strict contraction
map is a strict contraction map in the usual sense. All such maps invariably satisfy the
condition: x, y ∈ Di, η(T pnx, T pn+1y)→ dist(Di, Di+1) as n→∞. In the paper [22], all
p-cyclic maps which satisfy the above two properties are said to belong to class Ω (Defi-
nition 3.4). Finally, the authors proved the existence and convergence of best proximity
points of mappings which belong to the class Ω in a p-cyclic complete metric space.

Now we recollect some essential definitions.
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Definition 1.1 ([4]). A continuous function F : [0,∞)2 → R is called a C-class function,
if for any s, t ∈ [0,∞), the following conditions hold:

(1) F (s, t) ≤ s;
(2) F (s, t) = s implies that either s = 0 or t = 0.

Remark 1.2. We denote the class of all C-class functions as C.

Example 1.3 ([4]). Following examples show that the class C of C-class functions is
nonempty:

(1) F (s, t) = s− t.
(2) F (s, t) = ms, 0 < m < 1
(3) F (s, t) = s

(1+t)r for some r ∈ (0,∞).

(4) F (s, t) = log(t+ as)/(1 + t), for some a > 1.
(5) F (s, t) = ln(1 + as)/2, for a > e. Indeed F (s, 1) = s implies that s = 0.
(6) F (s, t) = s logt+a a, for a > 1.

(7) F (s, t) = s− ( 1+s
2+s )( t

1+t ).

(8) F (s, t) = sβ(s), where β : [0,∞)→ [0, 1).
(9) F (s, t) = s− t

k+t .

(10) F (s, t) = s− ( 2+t
1+t )t.

More examples of C-class functions can be founf in [4].

Definition 1.4 ([21]). A function ψ : [0,∞) → [0,∞) is called an altering distance
function, if the following properties are satisfied:

(i) ψ is non-decreasing and continuous,
(ii) ψ (t) = 0 if and only if t = 0.

Definition 1.5 ([4]). An ultra altering distance function is a continuous, non-decreasing
mapping ϕ : [0,∞)→ [0,∞) such that ϕ(t) > 0 , t > 0 and ϕ(0) ≥ 0

Remark 1.6. We let Ψ denote the class of altering distance functions and Ψu denote the
class of ultra altering distance functions. Let R+ = [0,∞).

Motivated by the above mentioned definitions, we introduce a new generalized cyclic
weak (F,ψ, ϕ)-contraction based on the generalized weak ϕ-contraction which is proposed
in [5]. Moreover, we obtain corresponding best proximity point theorems for these cyclic
mappings under certain conditions. Our results extend and improve the results obtained
in [5] as well as some other related results in the literature.

In what follows, we recollect some definitions and fundamental results which are crucial
in the sequel.

Definition 1.7. ([17], Definitions 3.1). For a nonempty set X, suppose η : X ×X → R+

forms a metric and D1, D2, . . . , Dp, (p ≥ 2) are nonempty subsets of X. Define Dp+i :=
Di, for all i ∈ {1, 2, . . . , p}. A map T : ∪pi=1D → ∪

p
i=1D is called a p-cyclic map, if

T (Di) ⊆ Di+1,∀i ∈ {1, 2, . . . , p}. If p = 2, then T is called a cyclic map. A point x ∈ Di

is said to be a best proximity point of T in Di, if η(x, Tx) = dist(Di, Di+1), where
dist(Di, Di+1) := inf{η(x, y) : x ∈ Di, y ∈ Di+1}.

In [22], the authors introduced the conditions for the underlying space and for the
subsets of the space, to have a unique best proximity point under a p-cyclic map, if it
exists, irrespective of the contraction condition imposed on the map.
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Proposition 1.8 ([22]). Let D1, D2, . . . , Dp, (p ≥ 2) be nonempty convex subsets of a
strictly convex norm linear space X such that dist(Di, Di+1) > 0, i ∈ {1, 2, . . . , p}. Let
T : ∪pi=1Di → ∪pi=1Di be a p-cyclic map. Then T has at most one best proximity point in
Di, 1 ≤ i ≤ p.

Let T be a p-cyclic map as given in Definition 1.7. T is said to be a p-cyclic nonex-
pansive map if for all x ∈ Di, y ∈ Di+1, the following holds:

η(Tx, Ty) ≤ η(x, y),∀i ∈ {1, 2, . . . , p}.
The following lemma naturally follows for a p-cyclic nonexpansive map.

Lemma 1.9. ([17], Lemma 3.3). For a nonempty set X, suppose η : X×X → R+ forms
a metric and D1, D2, . . . , Dp, (p ≥ 2) are nonempty subsets of X. If T : ∪pi=1Di → ∪pi=1Di

is a p-cyclic nonexpansive map, then

dist(Di, Di+1) = dist(Di+1, Di+2) = dist(D1, D2),∀i ∈ {1, 2, . . . , p}. (1.1)

In addition, if ν ∈ Di ∩D(T )i 6= ∅, then T jν ∈ Di+1 ∩D(T )i+j 6= ∅, for all j = 1, 2,
. . . , (p-1), where D(T )k is the set of best proximity point of the mapping T in Dk.

The following lemma (see [11, 22]) is crucial to prove that a given sequence is Cauchy.

Lemma 1.10. ([11], Lemma 3.7). For a uniformly convex Banach space (X, ‖.‖), we
suppose that D1, D2 are nonempty closed subsets of X and {an}, {bn} ⊂ D1 and {dn} ⊂
D2. If D1 is convex such that

(i) ‖bn − dn‖ → dist(D1, D2); and
(ii) for every ε > 0 there exists N ∈ N such that for all m > n > N ,

‖am − dn‖ ≤ dist(D1, D2) + ε,

then for all ε > 0, there exists N1 ∈ N such that for all m > n > N1, ‖am− bn‖ ≤
ε.

Next, we recall few p-cyclic maps with some contraction conditions imposed on them,
which are defined in [3, 9, 12, 17, 18].

Definition 1.11. ([18], Definition 3.1). For a nonempty set X, suppose η : X×X → R+

forms a metric and D1, D2, . . . , Dp, (p ≥ 2) are nonempty subsets of X. Let T : ∪pi=1Di →
∪pi=1Di be a p-cyclic map, T is said to be a p-cyclic contraction, if there exists k ∈ (0, 1)
such that for all x ∈ Di and y ∈ Di+1, we have

η(Tx, Ty) ≤ kη(x, y) + (1− k)dist(Di, Di+1),∀i ∈ {1, 2, . . . , p}.

Definition 1.12. ([3], Definition 2.1). For a nonempty set X, suppose η : X ×X → R+

forms a metric and D1 and D2 are nonempty subsets of X. A cyclic map T : D1 ∪D2 →
D1 ∪D2 is said to be a cyclic ϕ-contraction if

η(Tx, Ty) ≤ η(x, y)− ϕ(ρ(x, y)) + ϕ(dist(D1, D2)),∀x ∈ D1, y ∈ D2,

where ϕ : [0,∞)→ [0,∞) is a strictly increasing map.

Definition 1.13. ([9], Definition 2.1). Let D1 and D2 be nonempty subsets of a metric
space (X, η). Suppose that ϕ : [0,∞)→ [0,∞) is a strictly increasing map. A cyclic map
T : D1 ∪D2 → D1 ∪D2 is said to be a generalized cyclic weak ϕ-contraction, if for any
x ∈ D1, y ∈ D2

η(Tx, Ty) ≤ m(x, y)− ϕ(m(x, y)) + ϕ(dist(D1, D2)) (1.2)
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where m(x, y) = max{η(x, y), η(x, Tx), η(y, Ty), 12 [η(x, Ty) + η(y, Tx)]}.

Definition 1.14. ([5], Definition 2.1). Let D1 and D2 be nonempty subsets of a metric
space(X, η). Suppose that ϕ,ψ : [0,∞) → [0,∞) and ϕ is a strictly increasing map.
A cyclic map T : D1

⋃
D2 → D1

⋃
D2 is called a generalized cyclic weak (F,ψ, ϕ)-

contraction, if for any x ∈ D1 and y ∈ D2,

ψ(η(Tx, Ty)) ≤ F
(
ψ(m(x, y))− ψ(dist(D1, D2)),

ϕ(m(x, y))− ϕ(dist(D1, D2))
)

+ ψ(dist(D1, D2)),
(1.3)

where F ∈ C, ψ ∈ Ψ with ψ(s+ t) ≤ ψ(s) + ψ(t), ϕ ∈ Ψu and

m(x, y) = max{η(x, y), η(x, Tx), ρ(y, Ty),
1

2
[η(x, Ty) + η(y, Tx)]}.

Remark 1.15. If we take F (s, t) = s− t and ψ(t) = t in Definition 1.14, the we obtain
Definition 1.13 that mentioned above.

2. p-Cyclic Sequences and p-Cyclic Complete Metric Spaces

Throughout this article, let N0 = N ∪ {0}. In [22], Karapinar et al. introduced the
notion of p-cyclic sequence as follows:

Definition 2.1 ([22]). For a nonempty set X, suppose η : X ×X → R+ forms a metric
and D1, D2, . . . , Dp, (p ≥ 2) are nonempty subsets of X.

1 . A sequence {xn}∞n=1 ⊂ ∪
p
i=1Di is called a p-cyclic sequence if xpn+i ∈ Di, for

all n ∈ N0 and i = 1, 2, . . . , p.
2 . We say that {xn}∞n=1 is a p-cyclic Cauchy sequence, if for given ε > 0 there
exists an N0 ∈ N such that for some i ∈ {1, 2, . . . , p}, we have

η(xpn+i, xpm+i+1) < dist(Di, Di+1) + ε,∀m,n ≥ N0. (2.1)

3 . A p-cyclic sequence {xn}∞n=1 in ∪pi=1Di is said to be p-cyclic bounded, if
{xpn+i}∞n=1 is bounded in Di for some i ∈ {1, 2, ..., p}.
4 . Let {xn}∞n=1 be a p-cyclic sequence in ∪pi=1Di. If for some j ∈ {1, 2, ..., p}
the subsequence {xpn+j} of {xn}∞n=1 converges in Dj , then we say that {xn}∞n=1

is p-cyclic convergent.
5 . Under the assumption that D1, D2, . . . , Dp, (p ≥ 2) are nonempty closed
subsets of a metric space (X, η), we say that ∪pi=1Di is p-cyclic complete if every
p-cyclic Cauchy sequence in ∪pi=1Di is p-cyclic convergent.
6 . If there are subsets D1, D2, . . . , Dp, (p ≥ 2) of (X, η) such that X = ∪pi=1Di

and ∪pi=1Di is p-cyclic complete, then we call (X, η) to be p-cyclic complete.

Remark 2.2. Note that a p-cyclic sequence which is a Cauchy sequence in the usual
sense is a p-cyclic Cauchy sequence. On the other hand, p-cyclic Cauchy sequences need
not be Cauchy sequences in the usual sense, even if dist(Di, Di+1) = 0, ∀i ∈ {1, 2, ..., p}.

An example which illustrates the notion of p-cyclic sequence and p-cyclic Cauchy se-
quence can be found in ([22], Example 1 and 2). And a complete metric space need not
be p-cyclic complete, (see [22], Remark 2, for example).

The following proposition shows that a p-cyclic Cauchy sequence is p-cyclic bounded.
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Proposition 2.3 ([22]). For a nonempty set X, suppose η : X×X → R+ forms a metric
and D1, D2, . . . , Dp, (p ≥ 2) are nonempty subsets of X. Then, every p-cyclic Cauchy
sequence in ∪pi=1Di is p-cyclic bounded.

The following proposition is an example of two-cyclic complete metric space.

Proposition 2.4 ([22]). Let D1 and D2 be subsets of a uniformly convex Banach space X,
which are nonempty and closed. If either D1 or D2 is convex, then D1 ∪D2 is two-cyclic
complete.

3. p-Cyclic Strict Contraction Maps

In [22], Karapinar et. al. introduced a notion of p-cyclic strict contraction, which is a
generalization of strict contraction in the usual sense.

Definition 3.1 ([22]). For a nonempty set X, suppose η : X ×X → R+ forms a metric
and D1, D2, . . . , Dp, (p ≥ 2) are nonempty subsets of X. A p-cyclic map T is said to be
p-cyclic strict contraction if, for all x ∈ Di, y ∈ Di+1, 1 ≤ i ≤ p:

(i) η(x, y) > dist(Di, Di+1)⇒ η(Tx, Ty) < η(x, y); and
(ii) η(x, y) = dist(Di, Di+1)⇒ η(Tx, Ty) = η(x, y).

Remark 3.2. Note that, if Di = A, for all i = 1, 2, . . . , p, then p-cyclic strict contraction
is a strict contraction in the usual sense. It is clear that the p-cyclic strict contraction
also forms a p-cyclic nonexpansive map.

The following proposition proves an important property of p-cyclic strict contraction
map

Proposition 3.3 ([22]). For a nonempty set M , suppose η : X×X → R+ forms a metric
and D1, D2, . . . , Dp, (p ≥ 2) are nonempty subsets of X. Let x ∈ Di(1 ≤ i ≤ p). Suppose
that T : ∪pi=1Di → ∪pi=1Di is a p-cyclic strict contraction map and if for all ε > 0, there
exists an n0 ∈ N such that

η(T pnx, T pm+1x) < dist(Di, Di+1) + ε, n,m ≥ n0, (3.1)

then for a given ε > 0, there exists an n1 ∈ N such that

η(T pn+kx, T pm+k+1x) < dist(Di+k, Di+k+1) + ε, n,m ≥ n1, k ∈ {1, 2, . . . , p}.

In [22], Karapinar et al. introduced the notion of p-cyclic maps with various contractive
conditions and possed some common properties. They also introduced a notion of class
Ω, a certain class of mappings.

Definition 3.4 ([22]). For a nonempty setX, suppose η : X×X → R+ forms a metric and
D1, D2, . . . , Dp, (p ≥ 2) are nonempty subsets of X. A p-cyclic map T : ∪pi=1Di → ∪pi=1Di

is said to belong to the class Ω if

(1) T is p-cyclic strict contraction.
(2) If x, y ∈ Di, then lim

n→∞
η(T pnx, T pn+1y) = dist(Di, Di+1), 1 ≤ i ≤ p.

In this manuscript, we list some p-cyclic maps different from those given in [22] which
belong to the class Ω. First, we prove that a p-cyclic contraction map, which is defined
via the notion of C-class functions, belongs to the class Ω. We give the following new
definition via C-class functions.
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Definition 3.5. Let D1, D2, . . . , Dp be nonempty subsets of a metric space (X, η). Let
T : ∪pi=1Di → ∪pi=1Di is called a p-cyclic (F,ψ, ϕ)-contraction map, if it satisfies

ψ
(
η(Tx, Ty)

)
≤ F

(
ψ(η(x, y))− ψ(dist(Di, Di+1)), ϕ(η(x, y))− ϕ(dist(Di, Di+1))

)
,

+ ψ(dist(Di, Di+1)),

for all i ∈ {1, 2, . . . , p}, where F ∈ C, ψ ∈ Ψ and ϕ : [0,∞)→ [0,∞) is a strictly increasing
map.

We note that such a p-cyclic (F,ψ, ϕ)-contraction map T belongs to the class Ω (See
[24]).

Remark 3.6. If we take F (s, t) = s − t, ψ(t) = t and p = 2 in Definion 3.5, then we
obtain Definition 1.12 (Definition 2.1, defined in [3]).

Remark 3.7. Karapinar et al.[22] showed that the p-cyclic Meir-Keeler map (p-cyclic
MK-map) introduced in [17] belongs to the class Ω. See Example 4 in [22].

Next, we give a result on p-cyclic map satisfying a contraction condition of Geraghtys
type [7] and show that it belongs to the class Ω. Here, we use the notion of C-class
functions introduced in [4] combining with a class of functions S introduced by Geraghty
[7], where, if S is the class of all functions ϑ : [0,∞) → [0, 1) that satisfies ϑ(tn) → 1,
then tn → 0, tn ∈ [0,∞) for n ∈ N.

Theorem 3.8. For a nonempty set X, suppose η : X × X → R+ forms a metric and
D1, D2, . . . , Dp, (p ≥ 2) are nonempty subsets of X. Let T : ∪pi=1Di → ∪pi=1Di be a
p-cyclic (F,ψ, ϕ, ϑ)-map such that

η(Tx, Ty) ≤ F
(
ψ(ϑ(η(x, y)))η(x, y)− ψ(ϑ(η(x, y)))dist(Di, Di+1),

ϕ
(
ϑ(η(x, y))η(x, y)

)
− ϕ

(
ϑ(η(x, y))dist(Di, Di+1)

))
+ψ
(
ϑ(η(x, y))

)
dist(Di, Di+1),

for all i ∈ {1, 2, . . . , p}, where F ∈ C, ψ ∈ Ψ where ψ(t) < t and ϑ ∈ S. Then

(a) T is a p-cyclic strict contraction.
(b) lim

n→∞
η(T pnx, T pn+1y) = dist(Di, Di+1), x ∈ Di, y ∈ Di+1.

Proof. (a) Let x ∈ Di, y ∈ Di+1.
Case (1): If η(x, y) > dist(Di, Di+1), we have

η(Tx, Ty) ≤F
(
ψ(ϑ(η(x, y)))ρ(x, y)− ψ(ϑ(η(x, y)))dist(Di, Di+1),

ϕ
(
ϑ(η(x, y))ρ(x, y)

)
− ϕ(ϑ(η(x, y))dist(Di, Di+1))

)
,

+ ψ(ϑ(η(x, y)))dist(Di, Di+1)

≤ ψ(ϑ(η(x, y))
[
η(x, y)− dist(Di, Di+1) + dist(Di, Di+1)

]
(∗)

≤ ψ(ϑ(η(x, y))η(x, y).

Therefore

η(Tx, Ty) < η(x, y).

Case (2): If η(x, y) = dist(Di, Di+1), then from (*), we have η(Tx, Ty) ≤ η(x, y). By
equation (1.1),

η(x, y) = dist(Di, Di+1) = dist(Di+1, Di+2) ≤ η(Tx, Ty) ≤ η(x, y),
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therefore
η(Tx, Ty) = η(x, y).

Hence, T is p-cyclic strict contraction.
(b) Let x, y ∈ Di. Since T is p-cyclic nonexpansive, {η(T pnx, T pn+1y)} is a decreasing

sequence and is bounded below by dist(Di, Di+1). Therefore,

η(T pnx, T pn+1y)→ r as n→∞ and r ≥ dist(Di, Di+1),

where r = infn≥1 η(T pnx, T pn+1y).
Claim: r = dist(Di, Di+1).
If η(T pnx, T pn+1y) = dist(Di, Di+1) for some n, then by the p-cyclic non-expansiveness

of T ,

η(T pn+kx, T pn+k+1y) = η(T pnx, T pn+1y), k = 1, 2, . . . .

Hence, we have

η(T pnx, T pn+1y)→ dist(Di, Di+1) as n→∞.
Let us assume that η(T pnx, T pn+1y) > dist(Di, Di+1), n ∈ N. Suppose that r >
dist(Di, Di+1). Since T is p-cyclic non expansive,

η(T p(n+1)x, T p(n+1)+1y) ≤ η(T pn+1x, T pn+2y)

≤ F
(
ψ
(
ϑ(η(T pnx, T pn+1y))

)
η(T pnx, T pn+1y)− ψ(ϑ(η(T pnx, T pn+1y)))dist(Di, Di+1)

)
,

ϕ
(
ϑ(η(T pnx, T pn+1y))

)
η(T pnx, T pn+1y)− ϕ

(
ϑ(η(T pnx, T pn+1y)))dist(Di, Di+1)

))
+ ψ(ϑ(η(T pnx, T pn+1y)))dist(Di, Di+1)

≤ ψ(ϑ(η(T pnx, T pn+1y))
[
η(T pnx, T pn+1y)− dist(Di, Di+1) + dist(Di, Di+1)

]
.

Then

η(T p(n+1)x,T p(n+1)+1y)

≤ ψ(ϑ(η(T pnx, T pn+1y))
[
η(T pnx, T pn+1y)

]
.

Since ϑ ∈ S and ψ(t) < t,

η(T p(n+1)x, T p(n+1)+1y)

η(T pnx, T pn+1y)
≤ ϑ(η(T pnx, T pn+1y)) < 1. (3.2)

Since r = lim
n→∞

η((T p(n+1)x, T p(n+1)+1y)) > dist(Di, Di+1) by our assumption, letting

n→∞ in equation (3.2), we get

1 ≤ lim
n→

ϑ(η(T pnx, T pn+1y)) ≤ 1,

that is,

lim
n→∞

ϑ(η(T pnx, T pn+1y)) = 1.

However, lim
n→∞

η(T pnx, T pn+1y) = r > 0, which contradicts ϑ ∈ S. Hence,

r = dist(Di, Di+1).

This proves (b). From (a) and (b) we conclude that T belongs to Ω.

Remark 3.9. For some more interesting results on best proximity point theorems in
p-cyclic metric spaces, we refer readers to [24].
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The purpose of this manuscript is to extend the generalized cyclic weak (F,ψ, ϕ)-
contraction introduced in [5] to a generalized p-cyclic weak (F,ψ, ϕ)-contraction,
where p ≥ 2. Our results extends and generalizes the results in [5] and some other related
results in the literature.

4. Best Proximity Point Results for Generalized p-Cyclic Weak
(F, ψ, ϕ)-Contractins

We introduce the following definition via C-class functions.

Definition 4.1. Let D1, D2, . . . , Dp, (p ≥ 2) be nonempty subsets of a p-cyclic metric
space(X, η). Suppose that ϕ,ψ : [0,∞) → [0,∞) and ϕ is a strictly increasing map.
A cyclic map T : ∪piDi → ∪piDi is called a generalized p-cyclic weak (F,ψ, ϕ)-
contraction, if for any x ∈ Di and y ∈ Di+1,

ψ(η(Tx, Ty)) ≤F
(
ψ(M(x, y))− ψ(dist(Di, Di+1)),

ϕ(M(x, y))− ϕ(dist(Di, Di+1))
)

+ ψ(dist(Di, Di+1)),
(4.1)

where F ∈ C, ψ ∈ Ψ with ψ(s+ t) ≤ ψ(s) + ψ(t), ϕ ∈ Ψu and

M(x, y) = max{η(x, y), d(x, Tx), η(y, Ty),
1

2
[η(x, Ty) + η(y, Tx)]}.

We prove the following result.

Lemma 4.2. Let D1, D2, . . . , Dp be nonempty subsets of a metric space (X, η). Let
T : ∪pi=1Di → ∪pi=1Di is a p-cyclic (F,ψ, ϕ)-contraction map (4.1). Then, T ∈ Ω.

Proof. We first show that p-cyclic strict contraction. Because the the map T is a p-cyclic
(F,ψ, ϕ)- contraction, we have

ψ
(
η(Tx, Ty)

)
≤F
(
ψ(M(x, y))− ψ(dist(Di, Di+1)),

ϕ(M(x, y))− ϕ(dist(Di, Di+1))
)

+ ψ(dist(Di, Di+1)),

for all i ∈ {1, 2, . . . , p}, where F ∈ C, ψ ∈ Ψ, ϕ ∈ Ψu. Taking F (s, t) = s− t , we have

ψ
(
η(Tx, Ty)

)
≤ ψ(M(x, y))− ϕ(M(x, y)) + ϕ(dist(Di, Di+1)).

If η(x, y) =M(x, y) = dist(Di, Di+1), we have

η(Tx, Ty) ≤ η(x, y).

Since η(x, y) = dist(Di, Di+1) ≤ η(Tx, Ty), we then have

η(Tx, Ty) = η(x, y).

In addition, if η(x, y) =M(x, y) > dist(Di, Di+1), then

ψ
(
η(Tx, Ty)

)
≤ F

(
ψ(M(x, y))− ψ(dist(Di, Di+1)),

ϕ(M(x, y))− ϕ(dist(Di, Di+1))
)

+ ψ(dist(Di, Di+1))

≤ ψ(M(x, y))− ϕ(M(x, y)) + ϕ(dist(Di, Di+1))

< ψ(η(x, y))− ϕ(η(x, y)) + ϕ(η(x, y)).
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Therefore
η(Tx, Ty) < η(x, y).

Therefore, T is a p-cyclic strict contraction. The second condition of Definition 3.4 follows
from Lemma 3.3 in [18]. Hence, T ∈ Ω.

Theorem 4.3. For a nonempty set X, suppose η : X × X → [0,∞) forms a metric
and D1, D2, . . . , Dp, (p ≥ 2) are nonempty subsets of X. Let T : ∪pi=1Di → ∪pi=1Di be
a p-cyclic maps satisfying a generalized p-cyclic weak (F,ψ, ϕ)-contraction (4.1).
Assume for some k ∈ N and x ∈ Di, (1 ≤ i, k ≤ p), {T pn+kx} converges to ν ∈ Di+k.
Then, ν is a best proximity point of T in Di+k.

Proof. Let x ∈ Di. By equation (1.1), for each n ∈ N , we have,

dist(Di+k, Di+k+1) = dist(Di+k−1, Di+k)

≤ η(T pn+k−1x, ν)

≤ η(T pn+k−1x, T pn+kx) + η(T pn+kx, ν).

By Lemma 4.2, T ∈ Ω, so

lim
n→∞

(η(T pn+k−1x, T pn+kx) + η(T pn+kx, ν)) = dist(Di+k−1, Di+k).

Therefore,

lim
n→∞

η(T pn+k−1x, ν) = dist(Di+k−1, Bi+k) = dist(Di+k, Di+k+1). (4.2)

Now,

dist(Di+k, Di+k+1) ≤ η(ν, Tν)

= lim
n→∞

η(T pn+kx, Tν)

≤ lim
n→∞

η(T pn+k−1x, ν)

= dist(Di+k, Di+k+1), (by equation(4.2)).

Hence, η(ν, Tν) = dist(Di+k, Di+k+1).

Theorem 4.4. For a nonempty set X, suppose η : X × X → [0,∞) forms a metric
and D1, D2, . . . , Dp, (p ≥ 2) are nonempty subsets of X. Suppose that X = ∪pi=1Di and
∪pi=1Di is p-cyclic complete. Let T : ∪pi=1Di → ∪pi=1Di be a p-cyclic mapping which
satisties a generalized p-cyclic weak (F,ψ, ϕ)-contraction (4.1). Then, there exists
a best proximity point of T in Dj for some j ∈ {1, 2, . . . , p}.

Proof. Let x ∈ Di, 1 ≤ i ≤ p. Define a sequence {xn}∞n=1 in (X, η) by

xn := Tnx for n ∈ N.
Claim: {Tnx}∞n=1 is a p-cyclic Cauchy sequence.
Let m,n ∈ N be such that m > n,

η(T pmx, T pn+1x) = η(T p(n+r)x, T pn+1x), where m = n+ r, r ∈ N
= η(T pny, T pn+1x), where y = T prx ∈ Di

→ dist(Di, Di+1), as n→∞ (because T ∈ Ω).

This implies that, for all ε > 0, there exists an n0 ∈ N such that

η(T pmx, T pn+1x) < ε+ dist(Di, Di+1),m, n ≥ n0.



The Existence of Best Proximity Points ... 247

By Proposition 3.3, for a given ε > 0, there exists an n1 ∈ N such that

η(T pm+kx, T pn+k+1x) < ε+ dist(Di+k, Di+k+1),m, n ≥ n1, k ∈ {1, 2, . . . , p}.

Therefore, the sequence {Tnx} is a p-cyclic Cauchy sequence in (X, η). Since (X, η)
is p-cyclic complete, there exists a k ∈ {1, 2, . . . , p} such that {T pn+kx} converges to
x∗ ∈ Di+k. By Theorem 4.3, x∗ is best proximity point of T in Dj , where j = i+ k.

Theorem 4.5. Let D1, D2, . . . , Dp, (p ≥ 2) be nonempty subsets of a p-cyclic metric
space (X, η). Suppose that T : ∪piDi → ∪piDi is a generalized p-cyclic weak (F,ψ, ϕ)-
contraction (4.1) and there exists y0 ∈ Di. Define yn+1 = Tyn for any n ∈ N . Then
η(yn, yn+1)→ dist(Di, Di+1), as n→∞.

Proof. Let dn = η(yn, yn+1). First we claim that the sequence {dn} is nonincreasing. By
the assumption, we have

ψ(dn+1) = ψ(η(yn+1, yn+2))

= ψ(η(Tyn, Tyn+1))

≤ F
(
ψ(M(yn, yn+1))− ψ(dist(Di, Di+1)),

ϕ(M(yn, yn+1))− ϕ(dist(Di, Di+1))
)

+ ψ(dist(Di, Di+1)),

(4.3)

where

M(yn, yn+1) = max{η(yn, yn+1), ρ(yn, Tyn), η(yn+1, T yn+1),

1

2
[η(yn, Tyn+1) + η(yn+1, T yn)]}

= max{η(yn, yn+1), η(yn+1, yn+2)}.

Assume that there exists n0 ∈ N such that M(yn0
, yn0+1) = η(yn0+1, yn0+2). From

η(yn0+1, yn0+2) > η(yn0
, yn0+1), we have

ψ(η(yn0+1,yn0+2))

≤ F
(
ψ(η(yn0+1, yn0+2))− ψ(dist(Di, Di+1)),

ϕ(η(yn0+1, yn0+2))− ϕ(dist(Di, Di+1))
)

+ ψ(dist(Di, Di+1))

≤ ψ(η(yn0+1, yn0+2)).

This implies that

ψ(η(yn0+1, yn0+2))− ψ(dist(Di, Di+1)) = 0

or

ϕ(η(yn0+1, yn0+2))− ϕ(dist(Di, Di+1)) = 0,

which is a contradiction. Hence, for ∀n ∈ N

M(yn, yn+1) = η(yn, yn+1).
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Then the expression (4.3) turns into

ψ(η(yn+1, yn+2)) ≤ F
(
ψ(η(yn, yn+1))− ψ(dist(Di, Di+1)),

ϕ(η(yn, yn+1))− ϕ(dist(Di, Di+1))
)

+ ψ(dist(Di, Di+1))

≤ ψ(η(yn, yn+1)).

(4.4)

Therefore,

η(yn+1, yn+2) ≤ η(yn, yn+1).

That is, the sequence {dn} is nonincreasing and bounded below, it is obvious that
limn→∞ dn exists.

If dn0
= 0, for some n0 ∈ N , obviously, dn → 0 and dist(Di, Di+1) = 0, that is,

dn → dist(Di, Di+1).
If dn 6= 0, for ∀n ∈ N . Put dn → γ, thus γ ≥ dist(Di, Di+1). Since ϕ is a strictly

increasing map, we have ϕ(γ) ≥ ϕ(dist(Di, Di+1)). From the expression (4.4), we get
that

ψ(η(yn, yn+1)) ≤ F
(
ψ(η(yn−1, yn))− ψ(dist(Di, Di+1)),

ϕ(η(yn−1, yn))− ϕ(dist(Di, Di+1))
)

+ ψ(dist(Di, Di+1)),

from which it follows that

ψ(γ) ≤ F
(
ψ(γ)− ψ(dist(Di, Di+1)), ϕ(γ)− ϕ(dist(Di, Di+1))

)
+ ψ(dist(Di, Di+1))

≤ ψ(γ).

This implies that

ψ(γ)− ψ(dist(Di, Di+1)) = 0

or

ϕ(γ)− ϕ(dist(Di, Di+1)) = 0.

Therefore, γ = dist(Di, Di+1). That is, dn → dist(Di, Di+1). The proof is complete.

We give the following example in support of our main result.

Example 4.6. Consier the Euclidean plane X =: R2 with the usual Euclidean metric.
Suppose

D1 = {(0, 1 + x) : 0 ≤ x ≤ 1}, D2 = {(1 + x, 0) : 0 ≤ x ≤ 1},
D3 = {(0,−(1 + x)) : 0 ≤ x ≤ 1} and D4 = {−(1 + x, 0) : 0 ≤ x ≤ 1}.

Let ϕ(t) = 1
5 t, ψ(t) = t, ∀t ≥ 0 and F (s, t) = s− t, s, t ≥ 0.

Define T : ∪4i=1Di → ∪4i=1Di by

T (0, 1 + x) = (1 +
x

10
, 0)

T (1 + x, 0) = (0,−(1 +
x

10
))

T (0,−(1 + x)) = (−(1 +
x

10
), 0)
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T (−(1 + x), 0) = (0, 1 +
x

10
).

Clearly dist(D1, D2) = dist(D2, D3) = dist(D3, D4) = dist(D4, D1) =
√

2. Since
T (D1) ⊆ D2, T (D2) ⊆ D3, T (D3) ⊆ D4 and T (D4) ⊆ D1, obviously T is a 4-cyclic
map. It is not hard to see that, if x ∈ Di, y ∈ Di + 1, i = 1, 2, 3, 4, we have

F
(
ψ(M(x, y))− ψ(dist(Di, Di+1)), ϕ(M(x, y))− ϕ(dist(Di, Di+1))

)
+ ψ(dist(Di, Di+1))− ψ(η(Tx, Ty))

= ψ(M(x, y))− ϕ(M(x, y)) + ϕ(dist(Di, Di+1))
)
− ψ(η(Tx, Ty))

=M(x, y))− ϕ(M(x, y)) + ϕ(dist(Di, Di+1))
)
− η(Tx, Ty)

=
4

5
M(x, y) +

√
2

5
−
√

(1 +
x

10
)2 + ((1 +

y

10
)2) ≥ 0,

for all x ∈ Di, y ∈ Di+1, where

M(x, y) = max{η(x, y), η(x, Tx), η(y, Ty),
1

2
[η(x, Ty) + η(y, Tx)]}.

Hence,

ψ(η(Tx, Ty)) ≤ F
(
ψ(M(x, y))− ψ(dist(Di, Di+1)), ϕ(M(x, y))− ϕ(dist(Di, Di+1))

)
+ ψ(dist(Di, Di+1)),

for all x ∈ Di, y ∈ Di+1, where

M(x, y) = max{η(x, y), η(x, Tx), η(y, Ty),
1

2
[η(x, Ty) + η(y, Tx)]}.

Therefore, T is a generalized p-cyclic weak (F,ψ, ϕ)-contraction (4.1), where p = 4.
All the conditions of Theorem 4.5 hold true, and T has the best proximity point. Here
(0, 1), (1, 0), (0,−1) and (−1, 0) are unique best proximity point of T in D1, D2, D3 and
D4 respectively.
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