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1. Introduction

As the Banach contraction principle is a powerful tool for solving many problems in
applied mathematics and sciences, it has been improved and extended in many ways.
In particular, Geraghty proved in [1] an interesting generalization of Banach contraction
principle which had a lot of applications. Kadelburg et al. [2] proved some common
coupled fixed point theorems for Geraghty-type contraction mappings by using monotone
and G−monotone property instead of mixed monotone and G−mixed monotone property.
For more details one can consult ([3–17]).

In this paper, we establish a fixed point theorem for G-non-decreasing mappings under
Geraghty-type contraction on partially ordered metric spaces. With the help of the obtain
results, we construct a coupled fixed point result and achieve the solution for periodic
boundary value problems. We also give an example to validate our results. Our results
modify and sharpen the results of Kadelburg et al. [2] and various well-known results in
the recent literature.
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2. Main Results

In the sequel, X is a non-empty set. Given n ∈ N where n ≥ 2, let Xn be the nth
Cartesian product X × X × ... × X (n times). Let G : X → X be a mapping. For
simplicity, we denote G(x) by Gx where x ∈ X.

Definition 2.1. Let X be a non-empty set. A fixed point of a mapping F : X → X is a
point x ∈ X such that x = Fx.

Definition 2.2. ([18, 19]). A coincidence point of two mappings F, G : X → X is a
point x ∈ X such that Fx = Gx.

Definition 2.3. ([15]). A partially ordered metric space (X, d, �) is a metric space (X,
d) provided with a partial order � .

Definition 2.4. ([15]). An ordered metric space (X, d, �) is said to be non-decreasing-
regular (respectively, non-increasing-regular) if for every sequence {xn} ⊆ X such that
{xn} → x and xn � xn+1 (respectively, xn � xn+1) for all n ≥ 0, we have that xn � x
(respectively, xn � x) for all n ≥ 0. (X, d, �) is said to be regular if it is both non-
decreasing-regular and non-increasing-regular.

Definition 2.5. ([15]). Let (X, �) be a partially ordered set and let F, G : X → X be
two mappings. We say that F is (G, �)-non-decreasing if Fx � Fy for all x, y ∈ X such
that Gx � Gy. If G is the identity mapping on X, we say that F is �-non-decreasing. If
F is (G, �)-non-decreasing and Gx = Gy, then Fx = Fy. It follows that

Gx = Gy ⇒
{
Gx � Gy,
Gy � Gx

}
⇒
{
Fx � Fy,
Fy � Fx

}
⇒ Fx = Fy.

Definition 2.6. ([20]). Two self-mappings F and G of a non-empty set X are said to be
commutative if FGx = GFx for all x ∈ X.

Definition 2.7. ([21]). Let (X, d, �) be a partially ordered metric space. Two mappings
F, G : X → X are said to be compatible if

lim
n→∞

d(GFxn, FGxn) = 0,

provided that {xn} is a sequence in X such that

lim
n→∞

Fxn = lim
n→∞

Gxn ∈ X.

Definition 2.8. ([22]). Two self-mappings G and F of a non-empty set X are said to be
weakly compatible if they commute at their coincidence points, that is, if Gx = Fx for
some x ∈ X, then GFx = FGx.

In [2], Kadelburg et al. introduced the class Θ of all functions θ : [0, +∞) → [0, 1)
satisfying that for any sequence {sn} of non-negative real numbers θ(sn)→ 1 implies that
sn → 0.

The following are examples of some functions belonging to Θ.
(1) θ(s) = k for all s ≥ 0, where k ∈ [0, 1).

(2) θ(s) =

{
ln(1 + s)

s
s > 0,

r ∈ [0, 1), s = 0.
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(3) θ(s) =

{
ln(1 + ks)

ks
s > 0,

r ∈ [0, 1), s = 0,
where k ∈ [0, 1).

Theorem 2.9. Let (X, d, �) be a partially ordered metric space and let F, G : X → X
be two mappings such that F is (G, �)-non-decreasing, F (X) ⊆ G(X) and there exists
θ ∈ Θ such that

d(Fx, Fy) ≤ θ(d(Gx, Gy))d(Gx, Gy), (2.1)

for all x, y ∈ X where Gx � Gy. There exists x0 ∈ X such that Gx0 � Fx0. Also assume
that one of the following conditions holds.

(a) (X, d) is complete, F and G are continuous and the pair (F, G) is compatible,
(b) (G(X), d) is complete and (X, d, �) is non-decreasing-regular,
(c) (X, d) is complete, G is continuous and monotone non-decreasing, the pair (F, G)

is compatible and (X, d, �) is non-decreasing-regular.
Then F and G have a coincidence point. Furthermore, if for every x, y ∈ X there

exists u ∈ X such that Fu is comparable to Fx and Fy and the pair (F, G) is weakly
compatible. Then F and G have a unique common fixed point.

Proof. Let x0 ∈ X be arbitrary. Since F (X) ⊆ G(X), therefore there exists x1 ∈ X
such that Fx0 = Gx1, then Gx0 � Fx0 = Gx1. As F is (G, �)-non-decreasing and so
Fx0 � Fx1. Repeating this procedure, we get a sequence {xn}n≥0 such that {Gxn} is
�-non-decreasing, Gxn+1 = Fxn � Fxn+1 = Gxn+2 and

Gxn+1 = Fxn, for all n ≥ 0. (2.2)

Let ζn = d(Gxn, Gxn+1), for all n ≥ 0. By using contractive condition (2.1), we have

d(Gxn+1, Gxn+2) = d(Fxn, Fxn+1) ≤ θ(d(Gxn, Gxn+1))d(Gxn, Gxn+1),

(2.3)

which, by the fact that θ < 1, implies

d(Gxn+1, Gxn+2) < d(Gxn, Gxn+1), that is, ζn+1 < ζn for all n ≥ 0.

Thus the sequence {ζn}n≥0 is decreasing. Hence there exists an ζ ≥ 0 such that

lim
n→∞

ζn = lim
n→∞

d(Gxn, Gxn+1) = ζ. (2.4)

We claim that ζ = 0. If possible, suppose ζ > 0. Then from (2.3), we obtain

ζn+1

ζn
≤ θ(ζn) < 1.

On taking limit as n→∞, we get

θ(ζn)→ 1 as n→∞.
Using the properties of function θ, we have

ζn = d(Gxn, Gxn+1)→ 0 as n→∞,
which contradicts the assumption that ζ > 0. Hence, by (2.4), we get

lim
n→∞

ζn = lim
n→∞

d(Gxn, Gxn+1) = 0. (2.5)

We now claim that {Gxn}n≥0 is a Cauchy sequence in (X, d). Suppose, to the contrary,
that the sequence {Gxn}n≥0 is not a Cauchy sequence. Then there exists an ε > 0 for
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which we can find subsequences {xn(k)}, {xm(k)} of {xn}n≥0
with n(k) > m(k) ≥ k such

that

d(Gxn(k), Gxm(k)) ≥ ε. (2.6)

Let n(k) be the smallest positive integer satisfying (2.6). Then

d(Gxn(k)−1, Gxm(k)) < ε. (2.7)

By using (2.6), (2.7) and triangle inequality, we have

ε ≤ rk = d(Gxn(k), Gxm(k))

≤ d(Gxn(k), Gxn(k)−1) + d(Gxn(k)−1, Gxm(k))

< d(Gxn(k), Gxn(k)−1) + ε.

Letting k →∞ in the above inequality and using (2.5), we get

lim
k→∞

rk = lim
k→∞

d(Gxn(k), Gxm(k)) = ε. (2.8)

By the triangle inequality, we have

rk = d(Gxn(k), Gxm(k))

≤ d(Gxn(k), Gxn(k)+1) + d(Gxn(k)+1, Gxm(k)+1) + d(Gxm(k)+1, Gxm(k))

≤ δn(k) + δm(k) + d(Fxn(k), Fxm(k))

≤ δn(k) + δm(k) + θ(d(Gxn(k), Gxm(k)))d(Gxn(k), Gxm(k))

≤ δn(k) + δm(k) + rk.

This shows that

rk ≤ δn(k) + δm(k) + θ(rk)rk ≤ δn(k) + δm(k) + rk.

On taking limit as n→∞ in the above inequality, by using (2.5) and (2.8), we get

θ(rk)→ 1.

Using the properties of function θ, we obtain

rk = d(Gxn(k), Gxm(k))→ 0 as k →∞,
which implies

lim
k→∞

rk = lim
k→∞

d(Gxn(k), Gxm(k)) = 0,

which contradicts the fact that ε > 0. Consequently {Gxn}n≥0 is a Cauchy sequence in
X. We claim that F and G have a coincidence point between cases (a)− (c).

Suppose (a) holds, that is, (X, d) is complete, F and G are continuous and the pair
(F, G) is compatible. Since (X, d) is complete, therefore there exists z ∈ X such that
{Gxn} → z. It follows, from (2.2), that {Fxn} → z. Since F and G are continuous,
therefore {FGxn} → Fz and {GGxn} → Gz. As the pair (F, G) is compatible and so we
conclude that

d(Gz, Fz) = lim
n→∞

d(GGxn+1, FGxn) = lim
n→∞

d(GFxn, FGxn) = 0,

that is, z is a coincidence point of F and G.
Suppose now (b) holds, that is, (G(X), d) is complete and (X, d, �) is non-decreasing-

regular. As {Gxn}n≥0 is a Cauchy sequence in the complete space (G(X), d) and so
there exists y ∈ G(X) such that {Gxn} → y. Let z ∈ X be any point such that y = Gz,
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then {Gxn} → Gz. Also, since (X, d, �) is non-decreasing-regular and {Gxn} is �-non-
decreasing which converging to Gz, therefore we get Gxn � Gz for all n ≥ 0. Applying
the contractive condition (2.1), we have

d(Gxn+1, F z) = d(Fxn, F z) ≤ θ(d(Gxn, Gz))d(Gxn, Gz),

which, by the fact θ < 1, implies

d(Gxn+1, F z) ≤ d(Gxn, Gz).

Letting n → ∞ in the above inequality and using limn→∞Gxn = Gz, we get d(Gz,
Fz) = 0, that is, z is a coincidence point of F and G.

Suppose now that (c) holds, that is, (X, d) is complete, G is continuous and monotone
non-decreasing, the pair (F, G) is compatible and (X, d, �) is non-decreasing-regular. As
(X, d) is complete and so there exists z ∈ X such that {Gxn} → z. It follows, from (2.2),
that {Fxn} → z. Since G is continuous, therefore {GGxn} → Gz. Also, since the pair (F,
G) is compatible, it means that {FGxn} → Gz.

As (X, d, �) is non-decreasing-regular and {Gxn} is �-non-decreasing which converg-
ing to z, we obtain that Gxn � z, which, by the monotonicity of G, implies GGxn � Gz.
Applying the contractive condition (2.1), we get

d(FGxn, F z) ≤ θ(d(GGxn, Gz))d(GGxn, Gz),

which, by the fact θ < 1, implies

d(FGxn, F z) ≤ d(GGxn, Gz).

On taking n→∞, by using {GGxn} → Gz and {FGxn} → Gz as n→∞, we get d(Gz,
Fz) = 0, that is, z is a coincidence point of F and G.

It is obvious that the set of coincidence points of F and G is non-empty. Suppose
x and y are coincidence points of F and G, that is, Gx = Fx and Gy = Fy. Now, we
show Gx = Gy. By the assumption, there exists u ∈ X such that Fu is comparable
with Fx and Fy. Put u0 = u and choose u1 ∈ X so that Gu0 = Fu1. Then, we can
inductively define sequence {Gun} where Gun+1 = Fun for all n ≥ 0. Hence Fx = Gx
and Fu = Fu0 = Gu1 are comparable. Suppose that Gu1 � Gx (the proof is similar to
that in the other case). We claim that Gun � Gx for each n ∈ N. In fact, we will use
mathematical induction. Since Gu1 � Gx, our claim is true for n = 1.

Assume that Gun � Gx holds for some n > 1. Since F is G-nondecreasing with respect
to �, we get Gun+1 = Fun � Fx = Gx and this proves our claim.

Let ξn = d(Gun, Gx) for all n ≥ 0. Since Gun � Gx, therefore by using contractive
condition (2.1), we have

d(Gun+1, Gx) = d(Fun, Fx) ≤ θ(d(Gun, Gx))d(Gun, Gx), (2.9)

which, by the fact θ < 1, implies

d(Gun+1, Gx) < d(Gun, Gx), that is, ξn+1 < ξn for all n ≥ 0.

Thus the sequence {ξn}n≥0 is decreasing. Hence there exists an ξ ≥ 0 such that

lim
n→∞

ξn = lim
n→∞

d(Gun, Gx) = ξ. (2.10)

Now, we show that ξ = 0. Suppose that ξ > 0. Then, from (2.9), we obtain that

ξn+1

ξn
≤ θ(ξn) < 1.
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On taking limit as n→∞, we get

θ(ξn)→ 1 as n→∞.

Using the properties of function θ, we have

ξn = d(Gun, Gx)→ 0 as n→∞.

which contradicts the assumption that ξ > 0. Hence, by (2.10), we get

lim
n→∞

ξn = lim
n→∞

d(Gun, Gx) = 0. (2.11)

Similarly, we show that

lim
n→∞

d(Gun, Gy) = 0. (2.12)

Hence, by (2.11) and (2.12), we get

Gx = Gy. (2.13)

As Gx = Fx and so by weak compatibility of G and F, we have GGx = GFx = FGx.
Let z = Gx, then Gz = Fz, that is, z is a coincidence point of G and F. Then by using
(2.13) with y = z, we get Gx = Gz, that is, z = Gz = Fz. Therefore, z is a common fixed
point of G and F. To prove the uniqueness, suppose w is another common fixed point of
G and F. Then by (2.13) we have w = Gw = Gz = z. Hence the common fixed point of
G and F is unique.

Taking θ(s) = k with k ∈ [0, 1) for all s ≥ 0 in Theorem 2.9, we obtain the following
corollary.

Corollary 2.10. Let (X, d, �) be a partially ordered metric space and let F, G : X → X
be two mappings such that F is (G, �)-non-decreasing, F (X) ⊆ G(X) and there exists
k ∈ [0, 1) such that

d(Fx, Fy) ≤ kd(Gx, Gy),

for all x, y ∈ X where Gx � Gy. There exists x0 ∈ X such that Gx0 � Fx0. Also
assume that one of the conditions (a)− (c) of Theorem 2.9 holds. Then F and G have a
coincidence point. Furthermore, if for every x, y ∈ X there exists u ∈ X such that Fu is
comparable to Fx and Fy and the pair (F, G) is weakly compatible. Then F and G have
a unique common fixed point.

Put G = I (the identity mapping) in Corollary 2.10, we obtain the following corollary:

Corollary 2.11. Let (X, d, �) be a partially ordered complete metric space and let
F : X → X be a �-non-decreasing mapping such that

d(Fx, Fy) ≤ kd(x, y),

for all x, y ∈ X where x � y and k ∈ [0, 1). There exists x0 ∈ X such that x0 � Fx0.
Suppose that

(a) F is continuous or,
(b) (X, d, �) is regular.
Then F has a fixed point.
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Example 2.12. Suppose that X = R, equipped with the usual metric d : X ×X → [0,
+∞) with the natural ordering of real numbers ≤ . Let F, G : X → X be defined as

Fx = ln
(
1 + x2

)
and Gx = x2, for all x ∈ X.

Define θ : [0, +∞)→ [0, 1) as follows

θ(s) =

{
ln(1 + s)

s
, s > 0,

0, s = 0.

Firstly, we shall show that the contractive condition of Theorem 2.9 should satisfy by the
mappings F and G. Let x, y ∈ X such that Gx � Gy, we have

d(Fx, Fy) = |Fx− Fy|
=

∣∣ln (1 + x2
)
− ln

(
1 + y2

)∣∣
=

∣∣∣∣ln 1 + x2

1 + y2

∣∣∣∣
=

∣∣∣∣ln(1 +
(x2 − y2)

1 + y2

)∣∣∣∣
≤ ln

(
1 +

∣∣x2 − y2∣∣)
≤ ln(1 + |Gx−Gy|)
≤ ln(1 + d(Gx, Gy))

≤ ln(1 + d(Gx, Gy))

d(Gx, Gy)
× d(Gx, Gy)

≤ θ(d(Gx, Gy))d(Gx, Gy).

Thus the contractive condition of Theorem 2.9 is satisfied for all x, y ∈ X. Furthermore,
all the other conditions of Theorem 2.9 are satisfied and z = 0 is a unique common fixed
point of F and G.

3. Two Dimensional Results

Consider the partially ordered metric space (X2, δ, v), if (X, d, �) is a partially
ordered metric space, then δ : X2 ×X2 → [0, +∞) defined as follows

δ((x, y), (u, v)) = max{d(x, u), d(y, v)}, for all (x, y), (u, v) ∈ X2.

Then δ is metric on X2 and (X, d) is complete if and only if (X2, δ) is complete. Also v
partial order on X2 defined by

(u, v) v (x, y)⇔ x � u and y � v, for all (u, v), (x, y) ∈ X2.

Define the mappings TF , TG : X2 → X2, for all (x, y) ∈ X2, by

TF (x, y) = (F (x, y), F (y, x)) and TG(x, y) = (Gx, Gy).

Definition 3.1. ([23]). Let F : X2 → X be a given mapping. An element (x, y) ∈ X2

is called a coupled fixed point of F if

F (x, y) = x and F (y, x) = y.
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Definition 3.2. ([24]). Let (X, �) be a partially ordered set. Suppose F : X2 → X be
a given mapping. We say that F has the mixed monotone property if for all x, y ∈ X, we
have

x1, x2 ∈ X, x1 � x2 =⇒ F (x1, y) � F (x2, y),

and

y1, y2 ∈ X, y1 � y2 =⇒ F (x, y1) � F (x, y2).

Definition 3.3. ([25]). Let F : X2 → X and g : X → X be given mappings. An element
(x, y) ∈ X2 is called a coupled coincidence point of the mappings F and g if

F (x, y) = gx and F (y, x) = gy.

Definition 3.4. ([25]). Let F : X2 → X and g : X → X be given mappings. An element
(x, y) ∈ X2 is called a common coupled fixed point of the mappings F and g if

x = F (x, y) = gx and y = F (y, x) = gy.

Definition 3.5. ([25]). Let (X, �) be a partially ordered set. Suppose F : X2 → X and
g : X → X are given mappings. We say that F has the mixed g−monotone property if
for all x, y ∈ X, we have

x1, x2 ∈ X, gx1 � gx2 =⇒ F (x1, y) � F (x2, y),

and

y1, y2 ∈ X, gy1 � gy2 =⇒ F (x, y1) � F (x, y2).

If g is the identity mapping on X, then F satisfies the mixed monotone property.

Definition 3.6. ([25]). Let X be a nonempty set. The mappings F : X2 → X and
g : X → X are said to be commutative if

gF (x, y) = F (gx, gy), for all (x, y) ∈ X2.

Definition 3.7. ([26]). Let (X, d) be a metric space. The mappings F : X2 → X and
g : X → X are said to be compatible if

lim
n→∞

d(gF (xn, yn), F (gxn, gyn)) = 0,

lim
n→∞

d(gF (yn, xn), F (gyn, gxn)) = 0,

whenever {xn} and {yn} are sequences in X such that

lim
n→∞

F (xn, yn) = lim
n→∞

gxn = x,

lim
n→∞

F (yn, xn) = lim
n→∞

gyn = y, for some x, y ∈ X.

Definition 3.8. ([20]). Let X be a nonempty set. The mappings F : X2 → X and
g : X → X are said to be weakly compatible if they commute at their coupled coincidence
points, that is, F (x, y) = gx and y = F (y, x) = gy for some (x, y) ∈ X2, then gF (x,
y) = F (gx, gy).

Lemma 3.9. ([4]). Let (X, d, �) be a partially ordered metric space and let F : X2 → X
and G : X → X be two mappings. Then

(1) (X, d) is complete if and only if (X2, δ) is complete.
(2) If (X, d, �) is regular, then (X2, δ, v) is also regular.
(3) If F is d-continuous, then TF is δ-continuous.
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(4) F has the mixed monotone property with respect to � if and only if TF is v −non-
decreasing.

(5) F has the mixed G−monotone property with respect to � if and only if TF is (TG,
v)-non-decreasing.

(6) If there exist two elements x0, y0 ∈ X with Gx0 � F (x0, y0) and Gy0 � F (y0, x0),
then there exists a point (x0, y0) ∈ X2 such that TG(x0, y0) v TF (x0, y0).

(7) If F (X2) ⊆ G(X), then TF (X2) ⊆ TG(X2).
(8) If F and G are commuting in (X, d, �), then TF and TG are also commuting in

(X2, δ, v).
(9) If F and G are compatible in (X, d, �), then TF and TG are also compatible in

(X2, δ, v).
(10) If F and G are weak compatible in (X, d, �), then TF and TG are also weak

compatible in (X2, δ, v).
(11) A point (x, y) ∈ X2 is a coupled coincidence point of F and G if and only if it is

a coincidence point of TF and TG.
(12) (x, y) ∈ X2 is a coupled fixed point of F if and only if it is a fixed point of TF .

Theorem 3.10. Let (X, �) be a partially ordered set such that there exists a complete
metric d on X. Assume F : X2 → X and G : X → X are two mappings such that F
has the mixed G−monotone property with respect to � on X for which there exists θ ∈ Θ
such that

d(F (x, y), F (u, v)) (3.1)

≤ θ(max{d(Gx, Gu), d(Gy, Gv)}) max{d(Gx, Gu), d(Gy, Gv)},

for all x, y, u, v ∈ X, with Gx � Gu and Gy � Gv. Suppose that F (X2) ⊆ G(X), G is
continuous and monotone non-decreasing and the pair {F, G} is compatible. Also suppose
that either

(a) F is continuous or
(b) (X, d, �) is regular.
If there exist two elements x0, y0 ∈ X with

Gx0 � F (x0, y0) and Gy0 � F (y0, x0).

Then F and G have a coupled coincidence point. Furthermore, suppose that for every
(x, y), (x∗, y∗) ∈ X2 there exists (u, v) ∈ X2 such that (F (u, v), F (v, u)) is comparable
to (F (x, y), F (y, x)) and (F (x∗, y∗), F (y∗, x∗)), and also the pair (F, G) is weakly
compatible. Then F and G have a unique coupled common fixed point, that is, there
exists a unique (x, y) ∈ X2 such that x = Gx = F (x, y) and y = Gy = F (y, x).

Proof. Let x, y, u, v ∈ X be such that Gx � Gu and Gy � Gv. Then by using (3.1), we
have

d(F (x, y), F (u, v))

≤ θ(max{d(Gx, Gu), d(Gy, Gv)}) max{d(Gx, Gu), d(Gy, Gv)}.

Furthermore Gy � Gv and Gx � Gu, the contractive condition (3.1) also guarantees that

d(F (y, x), F (v, u))

≤ θ(max{d(Gx, Gu), d(Gy, Gv)}) max{d(Gx, Gu), d(Gy, Gv)}.
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Combining them, we get

max{d(F (x, y), F (u, v)), d(F (y, x), F (v, u))} (3.2)

≤ θ(max{d(Gx, Gu), d(Gy, Gv)}) max{d(Gx, Gu), d(Gy, Gv)}.

Thus, by using (3.2), we get

δ(TF (x, y), TF (u, v)))

= δ((F (x, y), F (y, x)), (F (u, v), F (v, u)))

= max{d(F (x, y), F (u, v)), d(F (y, x), F (v, u))}
≤ θ(max{d(Gx, Gu), d(Gy, Gv)}) max{d(Gx, Gu), d(Gy, Gv)}
≤ θ(δ(FG(x, y), FG(u, v)))δ(FG(x, y), FG(u, v)).

It is only require to use Theorem 2.9 to the mappings F = TF and G = TG in the partially
ordered metric space (X2, δ, v) with the help of Lemma 3.9.

Corollary 3.11. Let (X, �) be a partially ordered set such that there exists a complete
metric d on X. Assume F : X2 → X has mixed monotone property with respect to � and
there exists θ ∈ Θ such that

d(F (x, y), F (u, v)) ≤ θ(max{d(x, u), d(y, v)}) max{d(x, u), d(y, v)},

for all x, y, u, v ∈ X, with x � u and y � v. Also suppose that either
(a) F is continuous or
(b) (X, d, �) is regular.
If there exist two elements x0, y0 ∈ X with

x0 � F (x0, y0) and y0 � F (y0, x0).

Then F has a coupled fixed point.

Put θ(s) = k with k ∈ [0, 1) for all s ≥ 0 in Corollary 3.11, we obtain the following
corollary:

Corollary 3.12. Let (X, �) be a partially ordered set such that there exists a complete
metric d on X. Assume F : X2 → X has mixed monotone property with respect to � and
there exists k ∈ [0, 1) such that

d(F (x, y), F (u, v)) ≤ kmax{d(x, u), d(y, v)},

for all x, y, u, v ∈ X with x � u and y � v. Also suppose that either
(a) F is continuous or
(b) (X, d, �) is regular.
If there exist two elements x0, y0 ∈ X with

x0 � F (x0, y0) and y0 � F (y0, x0).

Then F has a coupled fixed point.
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4. Application to Ordinary Differential Equations

In this fragment, we first study the existence of a solution for the following first-order
periodic problem:{

u′(t) = f(t, u(t)), t ∈ [0, T ],
u(0) = u(T ),

(4.1)

where T > 0 and f : I × R→ R is a continuous function.
Considered the space X = C(I, R) (I = [0, T ]) of all continuous functions from I to

R. It is visible that X is a complete metric space with respect to the sup metric

d(x, y) = sup
t∈I
|x(t)− y(t)| , for all x, y ∈ X.

Also X can be furnished with a partial order given by

x � y ⇐⇒ x(t) ≤ y(t), for all x, y ∈ X and t ∈ I. (4.2)

Definition 4.1. A lower solution for (4.1) is a function α ∈ C1(I, R) such that

α′(t) ≤ f(t, α(t)) for t ∈ I, α(0) = α(T ) = 0.

Theorem 4.2. Consider problem (4.1) with f : I × R → R continuous and for x, y, u,
v ∈ X with x � y,

0 ≤ f(t, x) + λx− f(t, y)− λy ≤ λ

2
x− y).

Then the existence of a coupled upper-lower solution of (4.1) provides the existence of a
solution of (4.1).

Proof. Problem (4.1) is equivalent to the integral equation

u(t) =

T∫
0

G(t, s)[f(s, u(s)) + λu(s)]ds,

where G(t, s) is the Green function given by

G(t, s) =

{
eλ(T+s−t)

eλT−1 , 0 ≤ s < t ≤ T,
eλ(s−t)

eλT−1 , 0 ≤ t < s ≤ T,

Define the mapping F : X → X by

F (x)(t) =

T∫
0

G(t, s)[f(s, x(s)) + λx(s)]ds.

If x1 � x2, then by using our assumption, we have

f(t, x1) + λx1 ≥ f(t, x2) + λx2.

It follows from G(t, s) > 0 for t ∈ I, that

F (x1)(t) =

T∫
0

G(t, s)[f(s, x1(s)) + λx1(s)]ds
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≥
T∫

0

G(t, s)[f(s, x2(s)) + λx2(s)]ds = F (x2)(t).

Thus the mapping F is non-decreasing. Now, for all x � y, we have

d(Fx, Fy)

= sup
t∈I
|F (x)(t)− F (y)(t)|

= sup
t∈I

∣∣∣∣∣∣
T∫

0

G(t, s)[f(s, x(s)) + λx(s)− f(s, y(s))− λy(s)]ds

∣∣∣∣∣∣
≤ sup

t∈I

∣∣∣∣∣∣
T∫

0

G(t, s) · λ
2

((x(s)− y(s))ds

∣∣∣∣∣∣
≤ λ

2
d(x, y) sup

t∈I

∣∣∣∣∣∣
T∫

0

G(t, s)ds

∣∣∣∣∣∣
≤ λ

2
d(x, y)

∣∣∣∣∣∣
t∫

0

eλ(T+s−t)

eλT − 1
ds+

T∫
t

eλ(s−t)

eλT − 1
ds

∣∣∣∣∣∣
≤ 1

2
d(x, y).

Thus

d(Fx, Fy) ≤ 1

2
d(x, y).

Thus the contractive condition of Corollary 2.11 satisfied with k = 1/2 < 1. Finally, let
α ∈ X be a lower solution of (4.1), then

α′(s) + λα(s) ≤ f(s, α(s)) + λα(s), for t ∈ I.

Multiplying by G(t, s), we get

T∫
0

α′(s)G(t, s)ds+ λ

T∫
0

α(s)G(t, s)ds ≤ F (α)(t), for t ∈ I.

Then, for all t ∈ I, we have

t∫
0

α′(s)
eλ(T+s−t)

eλT − 1
ds+

T∫
t

α′(s)
eλ(s−t)

eλT − 1
ds+ λ

T∫
0

α(s)G(t, s)ds ≤ F (α)(t).

Using integration by parts and since α(0) = α(T ) = 0 for all t ∈ I, we get

α(t) ≤ F (α)(t).

It follows that α � Fα. Hence all the hypothesis of Corollary 2.11 are satisfied. Con-
sequently, F has a fixed point x ∈ X which is the solution to (4.1) in X = C(I, R).
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Now, we apply our main results to study the existence and uniqueness of solution to
the two-point boundary value problem.{

−x′′(t) = f(t, x(t), x(t)), x ∈ (0, +∞), t ∈ [0, 1],
x(0) = x(1) = 0.

(4.3)

where f : [0, 1] × R × R → R is a continuous function and X = C(I, R) (I = [0, 1])
denote the space of all continuous functions from I to R. It is crystal clear that X is a
regular complete partial ordered metric space with respect to the sup metric

d(x, y) = sup
t∈I
|x(t)− y(t)| , for all x, y ∈ X,

where partial order is given by (4.2).

Theorem 4.3. Under the assumptions
(a) f : [0, 1]× R× R→ R is continuous.
(b) Suppose that there exists 0 ≤ γ ≤ 8 such that for all t ∈ I, x � u and y � v,

0 ≤ f(t, x, y)− f(t, u, v) ≤ γ

2
(g(x− u) + g(y − v)),

where g(t) : [0, +∞) → [0, +∞) is a right upper semi-continuous and non-decreasing
function with g(0) = 0, g(t) ≤ ln(1 + t), for all t > 0.

(c) There exists (α, β) ∈ C2(I, R)× C2(I, R) solution to −α
′′(t) ≤ f(t, α(t), β(t)), t ∈ [0, 1],

−β′′(t) ≥ f(t, β(t), α(t)), t ∈ [0, 1],
α(0) = α(1) = β(0) = β(1) = 0.

(4.4)

Problem (4.3) has one and only one solution in C2(I, R).

Proof. It is clear that the solution (in C2(I, R)) of problem (4.3) is equivalent to the
solution (in C(I, R)) of the following Hammerstein integral equation:

x(t) =

1∫
0

G(t, s)f(s, x(s), x(s))ds for t ∈ [0, 1],

where G(t, s) is the Green function of differential operator − d2

dt2 with Dirichlet boundary
condition x(0) = x(1) = 0, that is,

G(t, s) =

{
t(1− s), 0 ≤ t ≤ s ≤ 1,
s(1− t), 0 ≤ s ≤ t ≤ 1.

(4.5)

Define θ : [0, +∞)→ [0, 1) as follows

θ(s) =

{
ln(1+s)

s , s > 0,
0, s = 0.

and F : X2 → X is define by

F (x, y)(t) =

1∫
0

G(t, s)f(s, x(s), y(s))ds, t ∈ [0, 1] and x, y ∈ X.
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From (b), it is clear that F has the mixed monotone property with respect to the partial
order � in X. Let x, y, u, v ∈ X such that x � u and y � v. From (b), we have

d(F (x, y), F (u, v))

= sup
t∈I
|F (x, y)(t)− F (u, v)(t)|

= sup
t∈I

1∫
0

G(t, s)[f(s, x(s), y(s))− f(s, u(s), v(s))]ds

≤ γ

2
sup
t∈I

1∫
0

G(t, s) · (g(x(s)− u(s)) + g(y(s)− v(s)))ds

≤ γ

(
g(d(x, u)) + g(d(y, v))

2

)
sup
t∈I

1∫
0

G(t, s)ds.

Now, since g is non-decreasing, we have

g(d(x, u)) ≤ g(max{d(x, u), d(y, v)}),
g(d(y, v)) ≤ g(max{d(x, u), d(y, v)}),

which implies

g(d(x, u)) + g(d(y, v))

2
≤ g(max{d(x, u), d(y, v)}).

Thus

d(F (x, y), F (u, v)) ≤ γ(g(max{d(x, u), d(y, v)})) sup
t∈I

1∫
0

G(t, s)ds. (4.6)

Clearly

1∫
0

G(t, s)ds = − t
2

2
+
t

2
and sup

t∈[0, 1]

1∫
0

G(t, s)ds =
1

8
.

Thus, the inequality (4.6) and the hypothesis 0 < γ ≤ 8 implies

d(F (x, y), F (u, v)) ≤ γ

8
(g(max{d(x, u), d(y, v)}))

≤ g(max{d(x, u), d(y, v)})
≤ ln(1 + max{d(x, u), d(y, v)}).

Thus

d(F (x, y), F (u, v))

≤ ln(1 + max{d(x, u), d(y, v)})

≤ ln(1 + max{d(x, u), d(y, v)})
max{d(x, u), d(y, v)}

×max{d(x, u), d(y, v)}

≤ θ(max{d(x, u), d(y, v)}) max{d(x, u), d(y, v)}),
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which is the contractive condition of Corollary 3.11. Again, let (α, β) ∈ C2(I, R)×C2(I,
R) be a solution to (4.3). Then

−α′′(s) ≤ f(s, α(s), β(s)), s ∈ [0, 1].

Multiplying by G(t, s), we get

1∫
0

−α′′(s)G(t, s)ds ≤ F (α, β)(t), t ∈ [0, 1].

Then, for all t ∈ [0, 1], we have

−(1− t)
t∫

0

sα′′(s)ds− t
1∫
t

(1− s)α′′(s)ds ≤ F (α, β)(t).

Using integration by parts and since α(0) = α(1) = 0 for all t ∈ [0, 1], we get

−(1− t)(tα′(t)− α(t))− t(−(1− t)α′(t)− α(t)) ≤ F (α, β)(t).

Thus, we have

α(t) � F (α, β)(t), for t ∈ [0, 1].

It follows that α � F (α, β). Similarly, one can easily prove that β � F (β, α). Hence all
the hypothesis of Corollary 3.11 are satisfied. Consequently, F has a coupled fixed point
(x, y) ∈ X2 which is the solution to (4.3) in X = C(I, R).

References

[1] M. Geraghty, On contractive mappings, Proc. Amer. Math. Soc. 40 (1973) 604–608.

[2] Z. Kadelburg, P. Kumam, S. Radenovic, W. Sintunavarat, Common coupled fixed
point theorems for Geraghty-type contraction mappings using monotone property,
Fixed Point Theory Appl. 2015 (2015) Article no. 27.

[3] S.A. Al-Mezel, H. Alsulami, E. Karapinar, A. Roldan, Discussion on multidimen-
sional coincidence points via recent publications, Abstr. Appl. Anal. 2014 (2014)
Article ID 287492.

[4] B. Deshpande, A. Handa, Coincidence point results for weak ψ − ϕ contraction
on partially ordered metric spaces with application, Facta Universitatis Ser. Math.
Inform. 30 (5) (2015) 623–648.

[5] B. Deshpande, A. Handa, On coincidence point theorem for new contractive condition
with application, Facta Universitatis Ser. Math. Inform. 32 (2) (2017) 209–229.

[6] B. Deshpande, A. Handa, Multidimensional coincidence point results for generalized
(ψ, θ, ϕ)-contraction on ordered metric spaces, J. Nonlinear Anal. Appl. 2017 (2)
(2017) 132–143.

[7] B. Deshpande, A. Handa, Utilizing isotone mappings under Geraghty-type contrac-
tion to prove multidimensional fixed point theorems with application, J. Korean Soc.
Math. Educ. Ser. B: Pure Appl. Math. 25 (4) (2018) 279–295.



216 Thai J. Math. Vol. 21 (2023) /A. Handa

[8] B. Deshpande, A. Handa, C. Kothari, Coincidence point theorem under Mizoguchi-
Takahashi contraction on ordered metric spaces with application, IJMAA 3 (4-A)
(2015) 75–94.

[9] B. Deshpande, A. Handa, C. Kothari, Existence of coincidence point under general-
ized nonlinear contraction on partially ordered metric spaces, J. Korean Soc. Math.
Educ. Ser. B: Pure Appl. Math. 23 (1) (2016) 35–51.

[10] B. Deshpande, V.N. Mishra, A. Handa, L.N. Mishra, Coincidence point results for
generalized (ψ, θ, ϕ)−contraction on partially ordered metric spaces, Thai J. Math.
19 (1) (2021) 93–112.

[11] A. Handa, Multidimensional coincidence point results for contraction mapping prin-
ciple, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 26 (4) (2019) 277–288.

[12] A. Handa, Utilizing isotone mappings under Mizoguchi-Takahashi contraction to
prove multidimensional fixed point theorems with application, J. Korean Soc. Math.
Educ. Ser. B: Pure Appl. Math. 26 (4) (2019) 289–303.

[13] A. Handa, Existence of coincidence point under generalized Geraghty-type contrac-
tion with application, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 27 (3)
(2020) 109–124.

[14] A. Handa, Multidimensional fixed point results for contraction mapping principle
with application, Facta Universitatis Ser. Math. Inform. 35 (4) (2020) 919–928.

[15] I.M. Erhan, E. Karapinar, A. Roldan, N. Shahzad, Remarks on coupled coincidence
point results for a generalized compatible pair with applications, Fixed Point Theory
Appl. 2014 (2014) Article no. 207.

[16] B. Samet, E. Karapinar, H. Aydi, V.C. Rajic, Discussion on some coupled fixed point
theorems, Fixed Point Theory Appl. 2013 (2013) Article no. 50.

[17] F. Shaddad, M.S.M. Noorani, S.M. Alsulami, H. Akhadkulov, Coupled point results
in partially ordered metric spaces without compatibility, Fixed Point Theory Appl.
2014 (2014) Article no. 204.

[18] R.P. Agarwal, R.K. Bisht, N. Shahzad, A comparison of various noncommuting con-
ditions in metric fixed point theory and their applications, Fixed Point Theory Appl.
2014 (2014) Article no. 38.

[19] K. Goebel, A coincidence theorem, Bull. Acad. Pol. Sci., Ser. Sci. Math. Astron.
Phys. 16 (1968) 733–735.

[20] B.S. Choudhury, N. Metiya, M. Postolache, A generalized weak contraction principle
with applications to coupled coincidence point problems, Fixed Point Theory Appl.
2013 (2013) Article no. 152.

[21] G. Jungck, compatible mappings and common fixed points, Internat. J. Math. &
Math. Sci. 9 (4) (1986) 771–779.

[22] G. Jungck, B.E. Rhoades, Fixed point for set-valued functions without continuity,
Indian J. Pure Appl. Math. 29 (3) (1998) 227–238.

[23] D. Guo, V. Lakshmikantham, Coupled fixed points of nonlinear operators with ap-
plications, Nonlinear Anal. 11 (5) (1097) 623–632.

[24] T.G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric
spaces and applications, Nonlinear Anal. 65 (7) (2006) 1379–1393.



Applicability of Fixed Point Results in Boundary Value Problems ... 217

[25] V. Lakshmikantham, L. Ciric, Coupled fixed point theorems for nonlinear contrac-
tions in partially ordered metric spaces, Nonlinear Anal. 70 (12) (2009) 4341–4349.

[26] B.S. Choudhury, A. Kundu, A coupled coincidence point results in partially ordered
metric spaces for compatible mappings, Nonlinear Anal. 73 (2010) 2524–2531.


	Introduction
	Main Results
	Two Dimensional Results
	Application to Ordinary Differential Equations

