Thai Journal of Mathematics Volume 7 (2009) Number 1 : 49–67

www.math.science.cmu.ac.th/thaijournal Online ISSN 1686-0209

Strong Convergence Theorems of Halpern's Type for Families of Nonexpansive Mappings in Hilbert Spaces

K. Nakajo, K. Shimoji and W. Takahashi

Abstract : Let C be a nonempty closed convex subset of a real Hilbert space and let $\{T_n\}$ be a family of nonexpansive mappings of C into itself such that the set of all common fixed points of $\{T_n\}$ is nonempty. We consider a sequence $\{x_n\}$ generated by $x_1 = x \in C$, $x_{n+1} = \alpha_n x + (1 - \alpha_n)T_n(\beta_n x + (1 - \beta_n)x_n)$ ($\forall n \in \mathbf{N}$), where $\{\alpha_n\} \subset [0, 1)$ and $\{\beta_n\} \subset [0, 1$). Then, we give the conditions of $\{\alpha_n\}, \{\beta_n\}$ and $\{T_n\}$ under which $\{x_n\}$ converges strongly to a common fixed point of $\{T_n\}$.

Keywords : Strong convergence; Nonexpansive; Proximal point algorithm; W-mapping; Nonexpansive semigroup; Splitting method; Variational inequality.
2000 Mathematics Subject Classification : 49M05, 47H05, 47H09, 47H20, 49M27.

1 Introduction

Throughout this paper, let H be a real Hilbert space with inner product (\cdot, \cdot) and norm $\|\cdot\|$ and let \mathbf{N} and \mathbf{R} be the set of all positive integers and the set of all real numbers, respectively. Let C be a nonempty closed convex subset of H and let $\{T_n\}$ be a family of nonexpansive mappings of C into itself with $F := \bigcap_{n=1}^{\infty} F(T_n) \neq \emptyset$, where $F(T_n)$ is the set of all fixed points of T_n . Halpern [7] considered the following iteration:

$$x_1 = x \in C, \ x_{n+1} = \alpha_n x + (1 - \alpha_n) T_n x_n \ (\forall n \in \mathbf{N}),$$

where $\{\alpha_n\} \subset [0, 1)$. Wittmann [37] proved a strong convergence theorem when $T_n = T$ ($\forall n \in \mathbf{N}$), $\lim_{n \to \infty} \alpha_n = 0$, $\sum_{n=1}^{\infty} \alpha_n = \infty$ and $\sum_{n=1}^{\infty} |\alpha_n - \alpha_{n+1}| < \infty$, where T is a nonexpansive mapping of C into itself with $F(T) \neq \emptyset$. Then, Bauschke

Copyright \bigodot 2009 by the Mathematical Association of Thailand. All rights reserved.

[2], Shimizu and Takahashi [24], Shioji and Takahashi [27], Kamimura and Takahashi [12] and Iiduka and Takahashi [9, 10, 11] studied the strong convergence by Halpern's type iteration in Hilbert spaces and Shioji and Takahashi [26, 28, 29, 30], Kamimura and Takahashi [13], Shimoji and Takahashi [25] and Takahashi, Tamura and Toyoda [36] studied the strong convergence by Halpern's type iteration in Banach spaces. Recently, Bauschke and Combettes [3] considered the following coherent condition: For every bounded sequence $\{z_n\} \subset C, \sum_{n=1}^{\infty} ||z_{n+1} - z_n||^2 < \infty$ and $\sum_{n=1}^{\infty} ||z_n - T_n z_n||^2 < \infty$ imply $\omega_w(z_n) \subset F$, where $\omega_w(z_n)$ is the set of all weak cluster points of $\{z_n\}$ and proved a weak convergence theorem and a strong convergence theorem by the hybrid Haugazeau's method.

Motivated by Halpern's type iteration and [3], in this paper, we consider the following iteration:

$$x_1 = x \in C, \ x_{n+1} = \alpha_n x + (1 - \alpha_n) T_n(\beta_n x + (1 - \beta_n) x_n) \ (\forall n \in \mathbf{N})$$
(1.1)

where $\{\alpha_n\} \subset [0,1)$ and $\{\beta_n\} \subset [0,1)$ satisfy $\lim_{n\to\infty} \alpha_n = \lim_{n\to\infty} \beta_n = 0$ and $\prod_{n=1}^{\infty} (1-\alpha_n)(1-\beta_n) = 0$. Further, we consider the following conditions:

- (I) There exists $\{a_n\} \subset [0,\infty)$ with $\sum_{n=1}^{\infty} a_n < \infty$ such that for every bounded subset *B* of *C*, there exists $M_B > 0$ such that $||T_n x T_{n+1} x|| \le a_n M_B$ holds for all $n \in \mathbf{N}$ and $x \in B$;
- (II) for each bounded sequence $\{z_n\} \subset C$, $\lim_{n\to\infty} ||z_n T_n z_n|| = 0$ implies $\omega_w(z_n) \subset F$;
- (III) for every bounded sequence $\{z_n\} \subset C$, $\lim_{n\to\infty} ||z_{n+1} T_n z_n|| = 0$ implies $\omega_w(z_n) \subset F$.

Then, we prove that if (i) $\{\alpha_n\}$ and $\{\beta_n\}$ satisfy $\sum_{n=1}^{\infty} (|\alpha_n - \alpha_{n+1}| + |\beta_n - \beta_{n+1}|) < \infty$ and (I) and (II) hold or (ii) (III) holds, $\{x_n\}$ converges strongly to $P_F x$, where P_F is the metric projection onto F. These results generalize the results of [9, 11, 12, 24, 37]. Further, we get a new result for splitting methods (see [22, 15, 18] and references therein) by using these results.

2 Preliminaries

We write $x_n \to x$ to indicate that a sequence $\{x_n\}$ converges weakly to x. Similarly, $x_n \to x$ will symbolize the strong convergence. We know that H satisfies Opial's condition [21], that is, for any sequence $\{x_n\} \subset H$ with $x_n \to x$, the inequality $\liminf_{n\to\infty} ||x_n - x|| < \liminf_{n\to\infty} ||x_n - y||$ holds for every $y \in H$ with $y \neq x$. Let C be a nonempty closed convex subset of H and let T be a mapping of C into itself. T is said to be firmly nonexpansive if $||Tx - Ty||^2 \le$ $||x - y||^2 - ||(I - T)x - (I - T)y||^2$ for every $x, y \in C$. T is said to be nonexpansive if $||Tx - Ty|| \le ||x - y||$ for each $x, y \in C$. If T is firmly nonexpansive, T is nonexpansive. We know that the metric projection P_C of H onto C is firmly nonexpansive and for $x \in H$ and $z \in C$, $z = P_C x$ is equivalent to $(x - z, z - u) \ge 0$ for all $u \in C$. It is known that F(T) is closed and convex if T is nonexpansive of C into itself. We have the following lemma by Opial's condition; see [5].

Lemma 2.1. Let C be a nonempty closed convex subset of H and let T be a nonexpansive mapping of C into itself such that $F(T) \neq \emptyset$. Then, $T_n = T$ ($\forall n \in \mathbb{N}$) satisfy the conditions (I) and (II) with $a_n = 0$ ($\forall n \in \mathbb{N}$).

Proof. By $T_n = T_{n+1}$ for every $n \in \mathbf{N}$, (I) holds. Let $\{z_n\}$ be a bounded sequence in C such that $\lim_{n\to\infty} ||z_n - Tz_n|| = 0$. Without loss of generality, let $z_n \to w$. Suppose that $w \neq Tw$. By Opial's condition,

$$\lim_{n \to \infty} \inf \|z_n - w\| < \liminf_{n \to \infty} \|z_n - Tw\| \le \liminf_{n \to \infty} (\|z_n - Tz_n\| + \|Tz_n - Tw\|) \\
\le \liminf_{n \to \infty} (\|z_n - Tz_n\| + \|z_n - w\|) = \liminf_{n \to \infty} \|z_n - w\|.$$

This is a contradiction. So, $\omega_w(z_n) \subset F(T)$.

An operator $A: H \longrightarrow 2^H$ is said to be monotone if $(x_1 - x_2, y_1 - y_2) \ge 0$ whenever $y_1 \in Ax_1$ and $y_2 \in Ax_2$. A monotone operator A is said to be maximal if the graph of A is not properly contained in the graph of any other monotone operator. It is known that a monotone operator A is maximal if and only if $R(I + \lambda A) = H$ for every $\lambda > 0$, where $R(I + \lambda A)$ is the range of $I + \lambda A$. We also know that a monotone operator A is maximal if and only if for $(u, v) \in H \times H$, $(x - u, y - v) \ge 0$ for every $(x, y) \in A$ implies $v \in Au$. And we have that for a maximal monotone operator, $A^{-1}0 = \{x \in H : 0 \in Ax\}$ is closed and convex. If A is monotone, then we can define, for each $\lambda > 0$, a mapping $J_{\lambda} : R(I + \lambda A) \longrightarrow$ D(A) by $J_{\lambda} = (I + \lambda A)^{-1}$, where D(A) is the domain of A. J_{λ} is called the resolvent of A. We also define the Yosida approximation A_{λ} by $A_{\lambda} = (I - J_{\lambda})/\lambda$. We know that $A^{-1}0 = F(J_{\lambda})$ holds and J_{λ} is firmly nonexpansive for every $\lambda > 0$. It is also known that for $\lambda > 0$, $||A_{\lambda}x - A_{\lambda}y|| \leq \frac{2}{\lambda}||x - y||$ for each $x, y \in R(I + \lambda A)$; see [33, 34] for more details. We have the following results.

Lemma 2.2. Let $A : H \longrightarrow 2^H$ be a maximal monotone operator such that $A^{-1}0 \neq \emptyset$. Then, the following hold:

- (i) $T_n = J_{\lambda_n} \ (\forall n \in \mathbf{N}) \ with \ \{\lambda_n\} \subset (0, \infty), \ \liminf_{n \to \infty} \lambda_n > 0 \ and \ \sum_{n=1}^{\infty} |\lambda_n \lambda_{n+1}| < \infty \ satisfy \ the \ conditions \ (I) \ and \ (II) \ with \ a_n = |\lambda_n \lambda_{n+1}| \ (\forall n \in \mathbf{N});$
- (ii) $T_n = J_{\lambda_n} \ (\forall n \in \mathbf{N}) \ with \ \{\lambda_n\} \subset (0, \infty) \ and \ \lim_{n \to \infty} \lambda_n = \infty \ satisfy \ the condition (III).$

Proof. (i). By [6, Lemma 2.1], we have

$$\|J_{\lambda_n}x - J_{\lambda_{n+1}}x\| \le \frac{|\lambda_n - \lambda_{n+1}|}{\lambda_n} \|x - J_{\lambda_n}x\| \le \frac{|\lambda_n - \lambda_{n+1}|}{c} \{2\|x - u\|\}$$

for every $n \in \mathbf{N}$ and $x \in H$, where $u \in A^{-1}0$ and $c = \inf_{n \in \mathbf{N}} \lambda_n (> 0)$. So, for each bounded subset B of H, there exists $M_B > \frac{2}{c} \sup_{x \in B} ||x - u||$ such that $||T_n x - T_{n+1} x|| \le a_n M_B$ for all $n \in \mathbf{N}$ and $x \in B$, where $a_n = |\lambda_n - \lambda_{n+1}|$ ($\forall n \in \mathbf{N}$). Next, let $\{z_n\}$ be a bounded sequence in H such that $\lim_{n\to\infty} ||z_n - J_{\lambda_n} z_n|| = 0$. Without loss of generality, let $z_n \rightharpoonup w$. Since A is monotone, we get

$$(J_{\lambda_n}z_n - u, -v) \ge \frac{1}{\lambda_n}(J_{\lambda_n}z_n - u, J_{\lambda_n}z_n - z_n) \ge -\frac{1}{c} \|J_{\lambda_n}z_n - u\| \cdot \|J_{\lambda_n}z_n - z_n\|$$

for every $(u, v) \in A$ and $n \in \mathbb{N}$. $J_{\lambda_n} z_n \rightharpoonup w$ and $\{J_{\lambda_n} z_n - u\}$ is bounded. So, we get $(w - u, -v) \ge 0$ for all $(u, v) \in A$ which implies $w \in A^{-1}0$ by maximality of A. Therefore, $\omega_w(z_n) \subset A^{-1}0 = \bigcap_{n=1}^{\infty} F(T_n)$.

(ii). Let $\{z_n\} \subset H$ be a bounded sequence such that $\lim_{n\to\infty} ||z_{n+1} - J_{\lambda_n} z_n|| = 0$. Let $m \in \mathbb{N}$. By [20, Corollary 3.4], we have

$$\begin{aligned} \|z_{n+1} - J_{\lambda_m} z_{n+1}\| &\leq \|z_{n+1} - J_{\lambda_n} z_n\| + \|J_{\lambda_n} z_n - J_{\lambda_m} J_{\lambda_n} z_n\| \\ &+ \|J_{\lambda_m} J_{\lambda_n} z_n - J_{\lambda_m} z_{n+1}\| \\ &\leq 2\|z_{n+1} - J_{\lambda_n} z_n\| + \frac{\lambda_m}{\lambda_n} \|z_n - J_{\lambda_n} z_n\| \\ &\leq 2\|z_{n+1} - J_{\lambda_n} z_n\| + \frac{\lambda_m}{\lambda_n} \{2\|z_n - u\| \} \end{aligned}$$

for every $n \in \mathbf{N}$, where $u \in A^{-1}0$. Since a sequence $\{z_n - u\}$ is bounded and $\lim_{n\to\infty} \lambda_n = \infty$, we have $\lim_{n\to\infty} ||z_n - J_{\lambda_m} z_n|| = 0$ and hence $\omega_w(z_n) \subset A^{-1}0 = \bigcap_{n=1}^{\infty} F(T_n)$ by Opial's condition.

Let $\alpha > 0$ and C be a nonempty closed convex subset of H. An operator $A: C \longrightarrow H$ is said to be α -inverse-strongly-monotone [4, 16, 18] if $(x - y, Ax - Ay) \ge \alpha ||Ax - Ay||^2$ for all $x, y \in C$. Let $A: H \longrightarrow H$ be an α -inverse-strongly-monotone operator and let $B: H \longrightarrow 2^H$ be a maximal monotone operator such that $(A + B)^{-1}0 \neq \emptyset$. Then, we know that A + B is maximal monotone and for every $\lambda > 0$, $(A + B)^{-1}0 = F(J_{\lambda}^B(I - \lambda A))$, where J_{λ}^B is the resolvent of B. It is also known that $J_{\lambda}^B(I - \lambda A)$ is nonexpansive of H into itself when $0 < \lambda \le 2\alpha$; see [18, 19]. We have the following result.

Lemma 2.3. Let $\alpha > 0$. Let $A : H \longrightarrow H$ be an α -inverse-strongly-monotone operator and let $B : H \longrightarrow 2^{H}$ be a maximal monotone operator such that $(A + B)^{-1}0 \neq \emptyset$. Then, $T_n = J^B_{\lambda_n}(I - \lambda_n A)$ ($\forall n \in \mathbf{N}$) with $\{\lambda_n\} \subset [a, 2\alpha]$ for some $a \in (0, 2\alpha)$ and $\sum_{n=1}^{\infty} |\lambda_n - \lambda_{n+1}| < \infty$ satisfy the conditions (I) and (II) with $a_n = |\lambda_n - \lambda_{n+1}|$ ($\forall n \in \mathbf{N}$).

Proof. Let $u \in (A + B)^{-1}0$ and $\lambda_n > 0$. Then we have $J^B_{\lambda_n}(I - \lambda_n A)u = u$. This implies $A^B_{\lambda_n}(I - \lambda_n A)u = -Au$ for all $n \in \mathbf{N}$, where $A^B_{\lambda_n}$ is the Yosida approximation of B. So, by [6, Lemma 2.1], we get

$$\begin{split} \|J_{\lambda_{n}}^{B}(I-\lambda_{n}A)x-J_{\lambda_{n+1}}^{B}(I-\lambda_{n+1}A)x\| \\ &\leq \|J_{\lambda_{n+1}}^{B}(I-\lambda_{n+1}A)x-J_{\lambda_{n}}^{B}(I-\lambda_{n+1}A)x\| \\ &+\|J_{\lambda_{n}}^{B}(I-\lambda_{n+1}A)x-J_{\lambda_{n}}^{B}(I-\lambda_{n}A)x\| \\ &\leq \frac{|\lambda_{n}-\lambda_{n+1}|}{\lambda_{n+1}}\|(I-\lambda_{n+1}A)x-J_{\lambda_{n+1}}^{B}(I-\lambda_{n+1}A)x\| + |\lambda_{n}-\lambda_{n+1}| \|Ax\| \\ &\leq |\lambda_{n}-\lambda_{n+1}|\|A_{\lambda_{n+1}}^{B}(I-\lambda_{n+1}A)x\| + |\lambda_{n}-\lambda_{n+1}| \left(\frac{1}{\alpha}\|x-u\| + \|Au\|\right) \\ &\leq |\lambda_{n}-\lambda_{n+1}|\{\|A_{\lambda_{n+1}}^{B}(I-\lambda_{n+1}A)x+Au\| + \|Au\|\} \\ &+|\lambda_{n}-\lambda_{n+1}| \left\{\frac{1}{\alpha}\|x-u\| + \|Au\|\right) \\ &= |\lambda_{n}-\lambda_{n+1}| \left\{\|A_{\lambda_{n+1}}^{B}(I-\lambda_{n+1}A)x-A_{\lambda_{n+1}}^{B}(I-\lambda_{n+1}A)u\| + \|Au\| \\ &+ \left(\frac{1}{\alpha}\|x-u\| + \|Au\|\right) \right\} \\ &\leq |\lambda_{n}-\lambda_{n+1}| \left\{\frac{2}{\lambda_{n+1}}\|(I-\lambda_{n+1}A)x-(I-\lambda_{n+1}A)u\| + \|Au\| \\ &+ \left(\frac{1}{\alpha}\|x-u\| + \|Au\|\right) \right\} \\ &\leq |\lambda_{n}-\lambda_{n+1}| \left\{\frac{2}{\lambda_{n+1}}(\|x-u\| + \lambda_{n+1}\|Ax-Au\|) + \|Au\| \\ &+ \left(\frac{1}{\alpha}\|x-u\| + \|Au\|\right) \right\} \\ &\leq |\lambda_{n}-\lambda_{n+1}| \left\{\frac{2}{a}\|x-u\| + \frac{2}{\alpha}\|x-u\| + \|Au\| + \left(\frac{1}{\alpha}\|x-u\| + \|Au\|\right) \right\} \\ &= |\lambda_{n}-\lambda_{n+1}| \left\{\left(\frac{2}{a}+\frac{3}{\alpha}\right)\|x-u\| + 2\|Au\| \right\} \end{split}$$

for each $n \in \mathbf{N}$ and $x \in H$. So, for every bounded subset B of H, there exists $M_B > \sup_{x \in B} \left\{ \left(\frac{2}{a} + \frac{3}{\alpha} \right) \|x - u\| + 2\|Au\| \right\}$ such that $\|T_n x - T_{n+1} x\| \le a_n M_B$ for all $n \in \mathbf{N}$ and $x \in B$, where $a_n = |\lambda_n - \lambda_{n+1}| \ (\forall n \in \mathbf{N})$. Next, let $\{z_n\}$ be a bounded sequence in H such that $\lim_{n \to \infty} \|z_n - J^B_{\lambda_n}(I - \lambda_n A)z_n\| = 0$. Without loss of generality, let $z_n \rightharpoonup w$. Let $v_n = J^B_{\lambda_n}(I - \lambda_n A)z_n$. Then, we obtain

$$\begin{aligned} (v_n - u, \frac{1}{\lambda_n} \{ (z_n - \lambda_n A z_n) - v_n \} + Au - v) &\geq 0 \text{ and hence} \\ (v_n - u, -v) &\geq \left(v_n - u, \frac{1}{\lambda_n} (v_n - z_n) + A z_n - Au \right) \\ &= \frac{1}{\lambda_n} (v_n - u, (I - \lambda_n A) v_n - (I - \lambda_n A) z_n) + (v_n - u, Av_n - Au) \\ &\geq -\frac{1}{a} \| v_n - u \| \cdot \| (I - \lambda_n A) v_n - (I - \lambda_n A) z_n \| \end{aligned}$$

for all $(u, v) \in A + B$ and $n \in \mathbb{N}$ since A and B are monotone.

$$\begin{aligned} \|(I - \lambda_n A)v_n - (I - \lambda_n A)z_n\|^2 &= \|v_n - z_n\|^2 - 2\lambda_n(v_n - z_n, Av_n - Az_n) \\ &+ \lambda_n^2 \|Av_n - Az_n\|^2 \\ &\leq \|v_n - z_n\|^2 + \lambda_n(\lambda_n - 2\alpha) \|Av_n - Az_n\|^2 \\ &\leq \|v_n - z_n\|^2 \end{aligned}$$

for each $n \in \mathbf{N}$, $v_n \rightharpoonup w$ and $\{v_n - u\}$ is bounded. So, we have $(w - u, -v) \ge 0$ for every $(u, v) \in A + B$ which implies $w \in (A + B)^{-1}0$ by maximality of A + B. Therefore, $\omega_w(z_n) \subset (A + B)^{-1}0 = \bigcap_{n=1}^{\infty} F(T_n)$.

Let C be a nonempty closed convex subset of H and let A be a mapping of C into H. Then, an element x in C is a solution of the variational inequality of A if $(y - x, Ax) \ge 0$ for all $y \in C$. It is known that for $\lambda > 0$, $x \in C$ is a solution of the variational inequality of A if and only if $x = P_C(I - \lambda A)x$. We denote by VI(C, A) the set of all solutions of the variational inequality of A. We know that VI(C, A) is a closed convex subset of C if A is monotone and continuous. We have the following two lemmas.

Lemma 2.4. Let $\alpha > 0$ and C be a nonempty closed convex subset of H. Let $A: C \longrightarrow H$ be an α -inverse-strongly-monotone operator with $VI(C, A) \neq \emptyset$. Then, for every $\lambda > 0$, $x \in C$ and $z \in VI(C, A)$, $||P_C(I - \lambda A)x - z||^2 \leq ||x - z||^2 - \frac{2\alpha - \lambda}{2\alpha} ||x - P_C(I - \lambda A)x||^2$.

Proof. Let $\lambda > 0$, $x \in C$ and $z \in VI(C, A)$. We have

$$\begin{split} \|P_{C}(I - \lambda A)x - z\|^{2} \\ &\leq \|(I - \lambda A)x - (I - \lambda A)z\|^{2} - \|(I - P_{C})(I - \lambda A)x - (I - P_{C})(I - \lambda A)z\|^{2} \\ &= \|(x - z) - \lambda (Ax - Az)\|^{2} - \|(x - P_{C}(I - \lambda A)x) - \lambda (Ax - Az)\|^{2} \\ &\leq \|x - z\|^{2} - 2\alpha\lambda\|Ax - Az\|^{2} + 2\lambda\|Ax - Az\| \cdot \|x - P_{C}(I - \lambda A)x\| \\ &- \|x - P_{C}(I - \lambda A)x\|^{2} \\ &= \|x - z\|^{2} - 2\alpha\lambda\Big\{\|Ax - Az\| - \frac{1}{2\alpha}\|x - P_{C}(I - \lambda A)x\|\Big\}^{2} \\ &- \frac{2\alpha - \lambda}{2\alpha}\|x - P_{C}(I - \lambda A)x\|^{2} \\ &\leq \|x - z\|^{2} - \frac{2\alpha - \lambda}{2\alpha}\|x - P_{C}(I - \lambda A)x\|^{2}. \end{split}$$

54

Lemma 2.5. Let $\alpha > 0$ and let C be a nonempty closed convex subset of H. Let A : $C \longrightarrow H$ be an α -inverse-strongly-monotone operator and let T be a nonexpansive mapping of C into itself with $F(T) \cap VI(C, A) \neq \emptyset$. Then the following hold:

- (i) $TP_C(I \lambda A)$ and $P_C(I \lambda A)T$ are nonexpansive of C into itself when $0 < \lambda \leq 2\alpha$;
- (ii) $T_n = TP_C(I \lambda_n A), \ 0 < a \le \lambda_n \le b < 2\alpha \ (\forall n \in \mathbf{N}) \ and \sum_{n=1}^{\infty} |\lambda_n \lambda_{n+1}| < \infty \ satisfy the conditions (I) and (II) with <math>a_n = |\lambda_n \lambda_{n+1}| \ (\forall n \in \mathbf{N}) \ and \cap_{n=1}^{\infty} F(T_n) = F(T) \cap VI(C, A);$
- (iii) $T_n = P_C(I \lambda_n A)T$, $0 < a \le \lambda_n \le b < 2\alpha$ ($\forall n \in \mathbf{N}$) and $\sum_{n=1}^{\infty} |\lambda_n \lambda_{n+1}| < \infty$ satisfy the conditions (I) and (II) with $a_n = |\lambda_n \lambda_{n+1}|$ ($\forall n \in \mathbf{N}$) and $\bigcap_{n=1}^{\infty} F(T_n) = F(T) \cap VI(C, A)$.

Proof. (i). We have

$$\begin{aligned} \|TP_{C}(I - \lambda A)x - TP_{C}(I - \lambda A)y\|^{2} &\leq \|P_{C}(I - \lambda A)x - P_{C}(I - \lambda A)y\|^{2} \\ &\leq \|(x - y) - \lambda(Ax - Ay)\|^{2} \\ &= \|x - y\|^{2} - 2\lambda(x - y, Ax - Ay) + \lambda^{2}\|Ax - Ay\|^{2} \\ &\leq \|x - y\|^{2} - \lambda(2\alpha - \lambda)\|Ax - Ay\|^{2} \\ &\leq \|x - y\|^{2} \end{aligned}$$

for every $x, y \in C$. So, $TP_C(I - \lambda A)$ is nonexpansive. Similarly, $P_C(I - \lambda A)T$ is nonexpansive.

(ii). Let $y \in C$. We have

$$\begin{aligned} \|TP_C(I - \lambda_n A)x - TP_C(I - \lambda_{n+1}A)x\| \\ &\leq \|P_C(I - \lambda_n A)x - P_C(I - \lambda_{n+1}A)x\| \leq |\lambda_n - \lambda_{n+1}| \cdot \|Ax\| \\ &\leq |\lambda_n - \lambda_{n+1}| \cdot \left(\frac{1}{\alpha} \|x - y\| + \|Ay\|\right) \end{aligned}$$

for every $n \in \mathbf{N}$ and $x \in C$. So, for each bounded subset B of C, there exists $M_B > \sup_{x \in B} \{\frac{1}{\alpha} ||x-y|| + ||Ay||\}$ such that $||T_n x - T_{n+1} x|| \le a_n M_B$ for all $n \in \mathbf{N}$ and $x \in B$, where $a_n = |\lambda_n - \lambda_{n+1}|$ ($\forall n \in \mathbf{N}$). Next, let $z \in F(T) \cap VI(C, A)$. We have $T_n z = TP_C(I - \lambda_n A)z = Tz = z$. So, $F(T) \cap VI(C, A) \subset F(T_n)$ for every $n \in \mathbf{N}$. Conversely, let $z \in F(T_n)$ and $u \in F(T) \cap VI(C, A)$. By Lemma 2.4, we get

$$||z - u||^{2} = ||TP_{C}(I - \lambda_{n}A)z - Tu||^{2} \le ||P_{C}(I - \lambda_{n}A)z - u||^{2} \le ||z - u||^{2} - \frac{2\alpha - \lambda_{n}}{2\alpha} ||z - P_{C}(I - \lambda_{n}A)z||^{2}$$

which implies $z = P_C(I - \lambda_n A)z$, that is, $z \in VI(C, A)$. Further, we obtain $Tz = TP_C(I - \lambda_n A)z = z$ and hence, $z \in F(T) \cap VI(C, A)$. So, $F(T_n) \subset F(T) \cap VI(C, A)$

for each $n \in \mathbf{N}$. Therefore, $F(T_n) = F(T) \cap VI(C, A)$ for all $n \in \mathbf{N}$. Let $\{z_n\}$ be a bounded sequence in C such that $\lim_{n\to\infty} ||z_n - TP_C(I - \lambda_n A)z_n|| = 0$. Without loss of generality, let $z_n \rightarrow w$. Let $z \in F(T) \cap VI(C, A)$. By Lemma 2.4, we have

$$\begin{aligned} \|z_n - z\|^2 &\leq \|z_n - TP_C(I - \lambda_n A)z_n\| (\|z_n - TP_C(I - \lambda_n A)z_n\| \\ &+ 2\|TP_C(I - \lambda_n A)z_n - z\|) + \|TP_C(I - \lambda_n A)z_n - z\|^2 \\ &\leq \|z_n - TP_C(I - \lambda_n A)z_n\| (\|z_n - TP_C(I - \lambda_n A)z_n\| + 2\|z_n - z\|) \\ &+ \|z_n - z\|^2 - \frac{2\alpha - \lambda_n}{2\alpha} \|z_n - P_C(I - \lambda_n A)z_n\|^2 \end{aligned}$$

for every $n \in \mathbf{N}$. So, we get $\lim_{n\to\infty} ||z_n - P_C(I - \lambda_n A)z_n|| = 0$. Let $v_n = P_C(I - \lambda_n A)z_n$. For all $u \in C$, we obtain $(z_n - \lambda_n A z_n - v_n, v_n - u) \ge 0$ and hence,

$$(Au, u - v_n) \geq (Av_n - Au, v_n - u) + \frac{1}{\lambda_n} ((I - \lambda_n A)v_n - (I - \lambda_n A)z_n, v_n - u)$$

$$\geq -\frac{1}{a} \| (I - \lambda_n A)v_n - (I - \lambda_n A)z_n \| \cdot \| v_n - u \|$$

for every $n \in \mathbf{N}$ since A is monotone. $\|(I - \lambda_n A)v_n - (I - \lambda_n A)z_n\|^2 \leq \|v_n - z_n\|^2 + \lambda_n(\lambda_n - 2\alpha)\|Av_n - Az_n\|^2 \leq \|v_n - z_n\|^2$ for each $n \in \mathbf{N}$, $v_n \rightharpoonup w$ and $\{v_n - u\}$ is bounded. So, we have $(Au, u - w) \geq 0$ for all $u \in C$. By continuity of A, $(Aw, u - w) \geq 0$ for every $u \in C$, that is, $w \in VI(C, A)$. Further, from $\|z_n - Tz_n\| \leq \|z_n - TP_C(I - \lambda_n A)z_n\| + \|P_C(I - \lambda_n A)z_n - z_n\|$ for each $n \in \mathbf{N}$, $\lim_{n \to \infty} \|z_n - Tz_n\| = 0$. By Opial's condition, $w \in F(T)$. Therefore, $\omega_w(z_n) \subset F(T) \cap VI(C, A) = \bigcap_{n=1}^{\infty} F(T_n)$.

(iii). Let $y \in C$. As in (ii), for every bounded subset B of C, there exists $M_B > \sup_{x \in B} \{\frac{1}{\alpha} \| x - y \| + \|ATy\|\}$ such that $\|T_n x - T_{n+1}x\| \leq a_n M_B$ for all $n \in \mathbb{N}$ and $x \in B$, where $a_n = |\lambda_n - \lambda_{n+1}|$ ($\forall n \in \mathbb{N}$). As in the proof of (ii), we have $F(T_n) = F(T) \cap VI(C, A)$ for each $n \in \mathbb{N}$. Let $\{z_n\}$ be a bounded sequence in C such that $\lim_{n \to \infty} \|z_n - P_C(I - \lambda_n A)Tz_n\| = 0$. Without loss of generality, let $z_n \rightarrow w$. As in (ii), we get $\lim_{n \to \infty} \|Tz_n - P_C(I - \lambda_n A)Tz_n\| = 0$. And hence, we obtain $\lim_{n \to \infty} \|z_n - Tz_n\| = \lim_{n \to \infty} \|z_n - P_C(I - \lambda_n A)z_n\| = 0$. So, $w \in F(T) \cap VI(C, A)$. Therefore, $\omega_w(z_n) \subset F(T) \cap VI(C, A) = \bigcap_{n=1}^{\infty} F(T_n)$.

Let C be a nonempty closed convex subset of H. Let S_1, S_2, \cdots be infinite nonexpansive mappings of C into itself and let β_1, β_2, \cdots be real numbers such that $0 \leq \beta_i \leq 1$ for every $i \in \mathbf{N}$. Then, for any $n \in \mathbf{N}$, Takahashi [25, 32, 34]

introduced a mapping W_n of C into itself as follows:

$$\begin{array}{rclrcl} U_{n.n+1} &=& I,\\ U_{n,n} &=& \beta_n S_n U_{n,n+1} + (1-\beta_n) I,\\ U_{n,n-1} &=& \beta_{n-1} S_{n-1} U_{n,n} + (1-\beta_{n-1}) I,\\ \vdots\\ U_{n,k} &=& \beta_k S_k U_{n,k+1} + (1-\beta_k) I,\\ \vdots\\ U_{n,2} &=& \beta_2 S_2 U_{n,3} + (1-\beta_2) I,\\ W_n &=& U_{n,1} &=& \beta_1 S_1 U_{n,2} + (1-\beta_1) I. \end{array}$$

Such a mapping W_n is called the *W*-mapping generated by S_n, S_{n-1}, \dots, S_1 and $\beta_n, \beta_{n-1}, \dots, \beta_1$. We know that if $\bigcap_{i=1}^n F(S_i) \neq \emptyset$ and $0 < \beta_i < 1$ for every $i = 2, 3, \dots, n$ and $0 < \beta_1 \leq 1$, $F(W_n) = \bigcap_{i=1}^n F(S_i)$; see [34, 35]. We also have that if $\bigcap_{n=1}^{\infty} F(S_n) \neq \emptyset$ and $0 < \beta_i \leq b < 1$ for every $i \in \mathbf{N}$ for some $b \in (0, 1)$, $\lim_{n\to\infty} U_{n,k}x$ exists for every $x \in C$ and $k \in \mathbf{N}$; see [25]. By this, we define a mapping W of C into itself as follows:

$$Wx = \lim_{n \to \infty} W_n x = \lim_{n \to \infty} U_{n,1} x$$

for every $x \in C$. Such a W is called the W-mapping generated by S_1, S_2, \cdots and β_1, β_2, \cdots . And we have that if $\bigcap_{i=1}^{\infty} F(S_i) \neq \emptyset$ and $0 < \beta_i \leq b < 1$ for every $i \in \mathbf{N}$ for some $b \in (0, 1)$, $F(W) = \bigcap_{i=1}^{\infty} F(S_i)$; see [25]. We know the following result.

Lemma 2.6. Let *C* be a nonempty closed convex subset of *H*. Let S_1, S_2, \cdots be infinite nonexpansive mappings of *C* into itself with $\bigcap_{n=1}^{\infty} F(S_n) \neq \emptyset$ and let β_1, β_2, \cdots be real numbers with $0 < \beta_i \leq b < 1$ for every $i \in \mathbf{N}$ for some $b \in (0, 1)$. Let W_n be the *W*-mapping generated by $S_n, S_{n-1}, \cdots, S_1$ and $\beta_n, \beta_{n-1}, \cdots, \beta_1$ for every $n \in \mathbf{N}$. Then, $T_n = W_n$ ($\forall n \in \mathbf{N}$) satisfy the conditions (I) and (II) with $a_n = b^{n+1}$ ($\forall n \in \mathbf{N}$).

Proof. Let $u \in \bigcap_{n=1}^{\infty} F(S_n)$. we have

$$\begin{aligned} \|W_n x - W_{n+1} x\| &= \|\beta_1 S_1 U_{n,2} x - \beta_1 S_1 U_{n+1,2} x\| \\ &\leq \beta_1 \|U_{n,2} x - U_{n+1,2} x\| \\ &= \beta_1 \|\beta_2 S_2 U_{n,3} x - \beta_2 S_2 U_{n+1,3} x\| \leq \beta_1 \beta_2 \|U_{n,3} x - U_{n+1,3} x\| \\ &\leq \cdots \leq \beta_1 \beta_2 \cdots \beta_n \beta_{n+1} \|x - S_{n+1} x\| \leq b^{n+1} \{2 \|x - u\| \} \end{aligned}$$

for every $n \in \mathbf{N}$ and $x \in C$. So, for each bounded subset B of C, there exists $M_B > 2 \cdot \sup_{x \in B} ||x - u||$ such that $||T_n x - T_{n+1} x|| \leq a_n M_B$ for all $n \in \mathbf{N}$ and $x \in B$, where $a_n = b^{n+1}$ ($\forall n \in \mathbf{N}$). From [14, Theorem 3.1], $\{T_n\}$ satisfies the condition (II).

Let S be a semigroup and let B(S) be the Banach space of all bounded real valued functions on S with supremum norm. Then, for every $s \in S$ and $f \in B(S)$, we can define $r_s f \in B(S)$ and $l_s f \in B(S)$ by $(r_s f)(t) = f(ts)$ and $(l_s f)(t) = f(st)$ for each $t \in S$, respectively. We also denote by r_s^* and l_s^* the conjugate operators of r_s and l_s , respectively. Let D be a subspace of B(S) containing constants and let μ be an element of D^* . A linear functional μ is called a mean on D if $\|\mu\| = \mu(1) = 1$. Let C be a nonempty closed convex subset of H. A family $S = \{T(s) : s \in S\}$ of mappings of C into itself is called a nonexpansive semigroup on C if it satisfies the following conditions:

- (i) T(st) = T(s)T(t) for all $s, t \in S$;
- (ii) $||T(s)x T(s)y|| \le ||x y||$ for every $s \in S$ and $x, y \in C$.

We denote by F(S) the set of all common fixed points of S, that is, $F(S) = \bigcap_{s \in S} F(T(s))$. It is known that F(S) is closed and convex. We have that if $F(S) \neq \emptyset$ and $(T(\cdot)x, y) \in D$ for every $x \in C$ and $y \in H$, there exists a unique element $T_{\mu}x$ in C such that $(T_{\mu}x, z) = \mu_s(T(s)x, z)$ for all $z \in H$ for any mean μ on D and $x \in C$; see [8, 31]. We also know that T_{μ} is a nonexpansive mapping of C into itself. Further, we have the following [1]: Let C be a nonempty bounded closed convex subset of H and let S be a semigroup. Let $S = \{T(s) : s \in S\}$ be a nonexpansive semigroup on C and let D be a subspace of B(S) containing constants and invariant under l_s for all $s \in S$. Suppose that for every $x \in C$ and $z \in H$, the function $t \mapsto (T(t)x, z)$ is in D. Let $\{\mu_n\}$ be a sequence of means on D such that $\lim_{n\to\infty} \|\mu_n - l_s^*\mu_n\| = 0$ for each $s \in S$. Then, $\lim_{n\to\infty} \sup_{x \in C} \|T_{\mu_n}x - T(t)T_{\mu_n}x\| = 0$ for all $t \in S$.

Lemma 2.7. Let *C* be a nonempty closed convex subset of *H* and let *S* be a semigroup. Let $S = \{T(s) : s \in S\}$ be a nonexpansive semigroup on *C* such that $F(S) \neq \emptyset$ and let *D* be a subspace of B(S) containing constants and invariant under l_s for all $s \in S$. Suppose that for every $x \in C$ and $z \in H$, the function $t \mapsto (T(t)x, z)$ is in *D*. Let $\{\mu_n\}$ be a sequence of means on *D* such that $\lim_{n\to\infty} ||\mu_n - l_s^*\mu_n|| = 0$ for each $s \in S$. Then, $T_n = T_{\mu_n}$ ($\forall n \in \mathbf{N}$) satisfy the condition (III) with $\bigcap_{n=1}^{\infty} F(T_n) = F(S)$.

Proof. $F(\mathcal{S}) \subset \bigcap_{n=1}^{\infty} F(T_n)$ is trivial. Let $u \in \bigcap_{n=1}^{\infty} F(T_n)$. We have $\lim_{n \to \infty} ||T_{\mu_n} u - T(t)T_{\mu_n}u|| = 0$ for every $t \in S$ and hence, $u \in F(\mathcal{S})$. So, we get $F(\mathcal{S}) = \bigcap_{n=1}^{\infty} F(T_n)$. Next, let $\{z_n\} \subset C$ be a bounded sequence such that $\lim_{n\to\infty} ||z_{n+1} - T_{\mu_n}z_n|| = 0$. We obtain

$$\begin{aligned} \|z_{n+1} - T(t)z_{n+1}\| &\leq \|z_{n+1} - T_{\mu_n}z_n\| + \|T_{\mu_n}z_n - T(t)T_{\mu_n}z_n\| \\ &+ \|T(t)T_{\mu_n}z_n - T(t)z_{n+1}\| \\ &\leq 2\|z_{n+1} - T_{\mu_n}z_n\| + \|T_{\mu_n}z_n - T(t)T_{\mu_n}z_n\| \end{aligned}$$

for every $t \in S$ and $n \in \mathbf{N}$. Since we have $\lim_{n\to\infty} ||T_{\mu_n}z_n - T(t)T_{\mu_n}z_n|| = 0$ for all $t \in S$, $\lim_{n\to\infty} ||z_n - T(t)z_n|| = 0$ for each $t \in S$. So, $\{T_n\}$ satisfies the condition (III) by Opial's condition.

58

Let C be a nonempty closed convex subset of H. A family $S = \{T(s) : 0 \le s < \infty\}$ of mappings of C into itself is called a one-parameter nonexpansive semigroup on C if it satisfies the following conditions:

- (i) T(0)x = x for all $x \in C$;
- (ii) T(s+t) = T(s)T(t) for every $s, t \ge 0$;
- (iii) $||T(s)x T(s)y|| \le ||x y||$ for each $s \ge 0$ and $x, y \in C$;
- (iv) for all $x \in C$, $s \mapsto T(s)x$ is continuous.

3 Main Results

Using an idea of [37] (see also [34, Theorem 5.1.2]), we have the following two theorems.

Theorem 3.1. Let C be a nonempty closed convex subset of H and let $\{T_n\}$ be a family of nonexpansive mappings of C into itself such that $F := \bigcap_{n=1}^{\infty} F(T_n) \neq \emptyset$ which satisfies the conditions (I) and (II). Let $\{x_n\}$ be a sequence generated by (1), where $\{\alpha_n\} \subset [0,1)$ and $\{\beta_n\} \subset [0,1)$ satisfy $\lim_{n\to\infty} \alpha_n = \lim_{n\to\infty} \beta_n = 0$, $\prod_{n=1}^{\infty} (1-\alpha_n)(1-\beta_n) = 0$ and $\sum_{n=1}^{\infty} (|\alpha_n - \alpha_{n+1}| + |\beta_n - \beta_{n+1}|) < \infty$. Then, $\{x_n\}$ converges strongly to $P_F x$, where P_F is the metric projection of H onto F.

Proof. Let $u \in F$. We have $||x_n - u|| \le ||x - u||$ for every $n \in \mathbb{N}$. In fact, suppose that $||x_n - u|| \le ||x - u||$ for some $n \in \mathbb{N}$. We get

$$\begin{aligned} \|x_{n+1} - u\| &= \|\alpha_n x + (1 - \alpha_n) T_n(\beta_n x + (1 - \beta_n) x_n) - u\| \\ &\leq \alpha_n \|x - u\| + (1 - \alpha_n) \{\beta_n \|x - u\| + (1 - \beta_n) \|x_n - u\| \} \\ &\leq \|x - u\|. \end{aligned}$$

So, $\{x_n\}$ is bounded. Next, we obtain

$$\begin{split} |x_{n+1} - x_n|| \\ &= \|\alpha_n x + (1 - \alpha_n) T_n(\beta_n x + (1 - \beta_n) x_n) - \alpha_{n-1} x \\ &- (1 - \alpha_{n-1}) T_{n-1}(\beta_{n-1} x + (1 - \beta_{n-1}) x_{n-1})\| \\ &= \|(\alpha_n - \alpha_{n-1}) x + (1 - \alpha_n) \{ T_n(\beta_n x + (1 - \beta_n) x_n) - T_{n-1}(\beta_n x + (1 - \beta_n) x_n) \} \\ &+ (1 - \alpha_n) \{ T_{n-1}(\beta_n x + (1 - \beta_n) x_n) - T_{n-1}(\beta_{n-1} x + (1 - \beta_{n-1}) x_{n-1}) \} \\ &+ (\alpha_{n-1} - \alpha_n) T_{n-1}(\beta_{n-1} x + (1 - \beta_{n-1}) x_{n-1})\| \\ &\leq |\alpha_n - \alpha_{n-1}| \cdot \| x - T_{n-1}(\beta_{n-1} x + (1 - \beta_{n-1}) x_{n-1}) \| \\ &+ (1 - \alpha_n) \| T_n(\beta_n x + (1 - \beta_n) x_n) - T_{n-1}(\beta_n x + (1 - \beta_n) x_n) \| \\ &+ (1 - \alpha_n) \| \{\beta_n x + (1 - \beta_n) x_n\} - \{\beta_{n-1} x + (1 - \beta_{n-1}) x_{n-1} \} \| \\ &\leq |\alpha_n - \alpha_{n-1}| \cdot M_1 + (1 - \alpha_n) \| T_n(\beta_n x + (1 - \beta_n) x_n) - T_{n-1}(\beta_n x + (1 - \beta_n) x_n) \| \\ &+ (1 - \alpha_n) \{ |\beta_n - \beta_{n-1}| \cdot (\| x \| + \| x_{n-1} \|) + (1 - \beta_n) \| x_n - x_{n-1} \| \} \end{split}$$

for each $n = 2, 3, \cdots$, where $M_1 = \sup_{n \in \mathbb{N} \setminus \{1\}} ||x - T_{n-1}(\beta_{n-1}x + (1 - \beta_{n-1})x_{n-1})||$. Since a sequence $\{\beta_n x + (1 - \beta_n)x_n\}$ is bounded, there exists $M_2 > 0$ such that

$$||T_n(\beta_n x + (1 - \beta_n)x_n) - T_{n-1}(\beta_n x + (1 - \beta_n)x_n)|| \le a_{n-1}M_2$$

for all $n = 2, 3, \cdots$ by the condition (I). Therefore, we get

$$\|x_{n+1} - x_n\| \leq (|\alpha_n - \alpha_{n-1}| + |\beta_n - \beta_{n-1}| + a_{n-1})M + (1 - \alpha_n)(1 - \beta_n)\|x_n - x_{n-1}\|$$
(3.1)

for every $n = 2, 3, \dots$, where $M = \max\{M_1, M_2, \sup_{n \in \mathbb{N} \setminus \{1\}} \{ \|x\| + \|x_{n-1}\| \} \}$. Let $m, n \in \mathbb{N}$. By (2), we obtain

$$\begin{split} \|x_{n+m+1} - x_{n+m}\| &\leq (|\alpha_{n+m} - \alpha_{n+m-1}| + |\beta_{n+m} - \beta_{n+m-1}| + a_{n+m-1})M \\ &+ (1 - \alpha_{n+m})(1 - \beta_{n+m})\|x_{n+m} - x_{n+m-1}\| \\ &\leq (|\alpha_{n+m} - \alpha_{n+m-1}| + |\beta_{n+m} - \beta_{n+m-1}| + a_{n+m-1})M \\ &+ (1 - \alpha_{n+m})(1 - \beta_{n+m})\{(|\alpha_{n+m-1} - \alpha_{n+m-2}| \\ &+ |\beta_{n+m-1} - \beta_{n+m-2}| + a_{n+m-2})M \\ &+ (1 - \alpha_{n+m-1})(1 - \beta_{n+m-1})\|x_{n+m-1} - x_{n+m-2}\| \} \\ &\leq \{(|\alpha_{n+m} - \alpha_{n+m-1}| + |\alpha_{n+m-1} - \alpha_{n+m-2}|) \\ &+ (|\beta_{n+m} - \beta_{n+m-1}| + |\beta_{n+m-1} - \beta_{n+m-2}|) + (a_{n+m-1} + a_{n+m-2})\}M \\ &+ (1 - \alpha_{n+m})(1 - \beta_{n+m})(1 - \alpha_{n+m-1})(1 - \beta_{n+m-1})\|x_{n+m-1} - x_{n+m-2}\| \\ &\leq \cdots \\ &\leq M \cdot \sum_{k=m}^{n+m-1} (|\alpha_{k+1} - \alpha_k| + |\beta_{k+1} - \beta_k| + a_k) \\ &+ \|x_{m+1} - x_m\| \cdot \prod_{k=m+1}^{n+m} (1 - \alpha_k)(1 - \beta_k). \end{split}$$

So, we have

$$\lim_{n \to \infty} \sup_{n \to \infty} \|x_{n+1} - x_n\| = \lim_{n \to \infty} \sup_{n \to \infty} \|x_{n+m+1} - x_{n+m}\|$$

$$\leq M \cdot \sum_{k=m}^{\infty} (|\alpha_{k+1} - \alpha_k| + |\beta_{k+1} - \beta_k| + a_k)$$

for each $m \in \mathbf{N}$. Therefore, we get $\lim_{n\to\infty} ||x_{n+1} - x_n|| = 0$. It follows from

$$\begin{aligned} \|x_n - T_n x_n\| &\leq \|x_n - T_n (\beta_n x + (1 - \beta_n) x_n)\| + \|T_n (\beta_n x + (1 - \beta_n) x_n) - T_n x_n\| \\ &\leq \|x_{n+1} - x_n\| + \alpha_n \|x - T_n (\beta_n x + (1 - \beta_n) x_n)\| + \beta_n \|x - x_n\| \end{aligned}$$

for all $n \in \mathbf{N}$ that $\lim_{n\to\infty} ||x_n - T_n x_n|| = 0$. By the condition (II), we get $\omega_w(x_n) \subset F$. From $\lim_{n\to\infty} ||x_n - T_n(\beta_n x + (1 - \beta_n)x_n)|| = 0$,

$$\limsup_{n \to \infty} (x - P_F x, T_n(\beta_n x + (1 - \beta_n) x_n) - P_F x) = \limsup_{n \to \infty} (x - P_F x, x_n - P_F x).$$

60

There exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\limsup_{n\to\infty} (x - P_F x, x_n - P_F x) = \lim_{k\to\infty} (x - P_F x, x_{n_k} - P_F x)$. Since $\{x_{n_k}\}$ is bounded, we may assume that $x_{n_k} \rightharpoonup z \in F$. So, we obtain

$$\limsup_{n \to \infty} (x - P_F x, x_n - P_F x) = (x - P_F x, z - P_F x) \le 0.$$

Let $\varepsilon > 0$. There exists $m_0 \in \mathbf{N}$ such that $\alpha_n ||x - P_F x||^2 < \frac{\varepsilon}{2}, \beta_n ||x - P_F x||^2 < \frac{\varepsilon}{2}, (x - P_F x, T_n(\beta_n x + (1 - \beta_n)x_n) - P_F x) < \frac{\varepsilon}{4}$ and $(x - P_F x, x_n - P_F x) < \frac{\varepsilon}{4}$ for every $n \ge m_0$. So, we have

$$\begin{split} \|x_{n+1} - P_F x\|^2 &= \|\alpha_n (x - P_F x) + (1 - \alpha_n) \{T_n (\beta_n x + (1 - \beta_n) x_n) - P_F x\} \|^2 \\ &= \alpha_n^2 \|x - P_F x\|^2 + (1 - \alpha_n)^2 \|T_n (\beta_n x + (1 - \beta_n) x_n) - P_F x\|^2 \\ &+ 2\alpha_n (1 - \alpha_n) (x - P_F x, T_n (\beta_n x + (1 - \beta_n) x_n) - P_F x) \\ &\leq \alpha_n^2 \|x - P_F x\|^2 + (1 - \alpha_n)^2 \{\beta_n^2 \|x - P_F x\|^2 + (1 - \beta_n)^2 \|x_n - P_F x\|^2 \\ &+ 2\beta_n (1 - \beta_n) (x - P_F x, x_n - P_F x) \} \\ &+ 2\alpha_n (1 - \alpha_n) (x - P_F x, T_n (\beta_n x + (1 - \beta_n) x_n) - P_F x) \\ &= \{\alpha_n^2 + \beta_n^2 (1 - \alpha_n)^2\} \|x - P_F x\|^2 + 2(1 - \alpha_n)^2 \beta_n (1 - \beta_n) (x - P_F x, x_n - P_F x) \\ &+ 2\alpha_n (1 - \alpha_n) (x - P_F x, T_n (\beta_n x + (1 - \beta_n) x_n) - P_F x) \\ &+ (1 - \alpha_n)^2 (1 - \beta_n)^2 \|x_n - P_F x\|^2 \\ &\leq \{\alpha_n + \beta_n (1 - \alpha_n)^2 + \beta_n (1 - \beta_n) (1 - \alpha_n)^2 + \alpha_n (1 - \alpha_n) \} \frac{\varepsilon}{2} \\ &+ (1 - \alpha_n) (1 - \beta_n) \|x_n - P_F x\|^2 \\ &\leq \{\alpha_n + \beta_n (1 - \alpha_n) + \beta_n (1 - \alpha_n) + \alpha_n\} \frac{\varepsilon}{2} + (1 - \alpha_n) (1 - \beta_n) \|x_n - P_F x\|^2 \\ &= \{1 - (1 - \alpha_n) (1 - \beta_n) \} \varepsilon + (1 - \alpha_n) (1 - \beta_n) \|x_n - P_F x\|^2 \end{split}$$

for each $n \ge m_0$. Therefore, we get

$$||x_{n+1} - P_F x||^2 \leq \{1 - \prod_{k=m_0}^n (1 - \alpha_k)(1 - \beta_k)\}\varepsilon + ||x_{m_0} - P_F x||^2 \prod_{k=m_0}^n (1 - \alpha_k)(1 - \beta_k)$$

for all $n \ge m_0$. So, we obtain $\limsup_{n \to \infty} ||x_{n+1} - P_F x||^2 \le \varepsilon$. Since ε is arbitrary, we have $x_n \to P_F x$.

Theorem 3.2. Let C be a nonempty closed convex subset of H and let $\{T_n\}$ be a family of nonexpansive mappings of C into itself such that $F := \bigcap_{n=1}^{\infty} F(T_n) \neq \emptyset$ which satisfies the condition (III). Let $\{x_n\}$ be a sequence generated by (1), where $\{\alpha_n\} \subset [0,1)$ and $\{\beta_n\} \subset [0,1)$ satisfy $\lim_{n\to\infty} \alpha_n = \lim_{n\to\infty} \beta_n = 0$ and $\prod_{n=1}^{\infty} (1-\alpha_n)(1-\beta_n) = 0$. Then, $\{x_n\}$ converges strongly to P_Fx . *Proof.* As in the proof of Theorem 3.1, we have $\{x_n\}$ is bounded. And it follows from

$$\begin{aligned} \|x_{n+1} - T_n x_n\| &\leq \|x_{n+1} - T_n (\beta_n x + (1 - \beta_n) x_n)\| \\ &+ \|T_n (\beta_n x + (1 - \beta_n) x_n) - T_n x_n\| \\ &\leq \alpha_n \|x - T_n (\beta_n x + (1 - \beta_n) x_n)\| + \beta_n \|x - x_n\| \end{aligned}$$

for all $n \in \mathbf{N}$ that $\lim_{n\to\infty} ||x_{n+1} - T_n x_n|| = 0$. By the condition (III), we get $\omega_w(x_n) \subset F$. Since $\lim_{n\to\infty} ||x_{n+1} - T_n(\beta_n x + (1 - \beta_n)x_n)|| = 0$, we have $\limsup_{n\to\infty} (x - P_F x, T_n(\beta_n x + (1 - \beta_n)x_n) - P_F x) = \limsup_{n\to\infty} (x - P_F x, x_n - P_F x)$. As in the proof of Theorem 3.1, we obtain $x_n \to P_F x$.

4 Applications

In this section, using Theorems 3.1 and 3.2, we improve well-known strong convergence theorems. We first have the following theorem which generalizes the result of [37] by Lemma 2.1 and Theorem 3.1.

Theorem 4.1. Let *C* be a nonempty closed convex subset of *H* and let *T* be a nonexpansive mapping of *C* into itself such that $F(T) \neq \emptyset$. Let $\{x_n\}$ be a sequence generated by $x_1 = x \in C$, $x_{n+1} = \alpha_n x + (1 - \alpha_n)T(\beta_n x + (1 - \beta_n)x_n)$ ($\forall n \in \mathbb{N}$), where $\{\alpha_n\} \subset [0,1)$ and $\{\beta_n\} \subset [0,1)$ satisfy $\lim_{n\to\infty} \alpha_n = \lim_{n\to\infty} \beta_n = 0$, $\prod_{n=1}^{\infty} (1 - \alpha_n)(1 - \beta_n) = 0$ and $\sum_{n=1}^{\infty} (|\alpha_n - \alpha_{n+1}| + |\beta_n - \beta_{n+1}|) < \infty$. Then, $\{x_n\}$ converges strongly to $P_{F(T)}x$.

We get the following theorem for proximal point algorithms (see [23, 12]) by Lemma 2.2 (i) and Theorem 3.1 (see also [17, 38]).

Theorem 4.2. Let $A : H \longrightarrow 2^H$ be a maximal monotone operator such that $A^{-1}0 \neq \emptyset$. Let $\{x_n\}$ be a sequence generated by $x_1 = x \in H$, $x_{n+1} = \alpha_n x + (1 - \alpha_n)J_{\lambda_n}(\beta_n x + (1 - \beta_n)x_n)$ ($\forall n \in \mathbb{N}$), where $\{\alpha_n\} \subset [0,1)$ and $\{\beta_n\} \subset [0,1)$ satisfy $\lim_{n\to\infty} \alpha_n = \lim_{n\to\infty} \beta_n = 0$, $\prod_{n=1}^{\infty} (1 - \alpha_n)(1 - \beta_n) = 0$ and $\sum_{n=1}^{\infty} (|\alpha_n - \alpha_{n+1}| + |\beta_n - \beta_{n+1}|) < \infty$ and $\{\lambda_n\} \subset (0,\infty)$ satisfies $\liminf_{n\to\infty} \lambda_n > 0$ and $\sum_{n=1}^{\infty} |\lambda_n - \lambda_{n+1}| < \infty$. Then, $\{x_n\}$ converges strongly to $P_{A^{-1}0}x$.

We get the following theorem for proximal point algorithms which generalizes the result of [12] by Lemma 2.2 (ii) and Theorem 3.2.

Theorem 4.3. Let $A : H \longrightarrow 2^{H}$ be a maximal monotone operator such that $A^{-1}0 \neq \emptyset$. Let $\{x_n\}$ be a sequence generated by $x_1 = x \in H$, $x_{n+1} = \alpha_n x + (1 - \alpha_n)J_{\lambda_n}(\beta_n x + (1 - \beta_n)x_n)$ ($\forall n \in \mathbb{N}$), where $\{\alpha_n\} \subset [0, 1)$ and $\{\beta_n\} \subset [0, 1)$ satisfy $\lim_{n\to\infty} \alpha_n = \lim_{n\to\infty} \beta_n = 0$ and $\prod_{n=1}^{\infty} (1 - \alpha_n)(1 - \beta_n) = 0$ and $\{\lambda_n\} \subset (0, \infty)$ satisfies $\lim_{n\to\infty} \lambda_n = \infty$. Then, $\{x_n\}$ converges strongly to $P_{A^{-1}0}x$.

We have the new theorem for splitting methods by Lemma 2.3 and Theorem 3.1.

Theorem 4.4. Let $\alpha > 0$. Let $A : H \longrightarrow H$ be an α -inverse-strongly-monotone operator and let $B : H \longrightarrow 2^{H}$ be a maximal monotone operator such that $(A + B)^{-1}0 \neq \emptyset$. Let $\{x_n\}$ be a sequence generated by $x_1 = x \in H$, $x_{n+1} = \alpha_n x + (1 - \alpha_n)J^B_{\lambda_n}(I - \lambda_n A)(\beta_n x + (1 - \beta_n)x_n) \ (\forall n \in \mathbf{N})$, where $\{\alpha_n\} \subset [0, 1)$ and $\{\beta_n\} \subset [0, 1)$ satisfy $\lim_{n\to\infty} \alpha_n = \lim_{n\to\infty} \beta_n = 0$, $\prod_{n=1}^{\infty} (1 - \alpha_n)(1 - \beta_n) = 0$ and $\sum_{n=1}^{\infty} (|\alpha_n - \alpha_{n+1}| + |\beta_n - \beta_{n+1}|) < \infty$ and $\{\lambda_n\} \subset [a, 2\alpha]$ for some $a \in (0, 2\alpha)$ satisfies $\sum_{n=1}^{\infty} |\lambda_n - \lambda_{n+1}| < \infty$. Then, $\{x_n\}$ converges strongly to $P_{(A+B)^{-1}0x}$.

We get the following theorem which generalizes the result of [9] by Lemma 2.5 (i), (ii) and Theorem 3.1.

Theorem 4.5. Let $\alpha > 0$ and let C be a nonempty closed convex subset of H. Let $A : C \longrightarrow H$ be an α -inverse-strongly-monotone operator and let T be a nonexpansive mapping of C into itself with $F(T) \cap VI(C, A) \neq \emptyset$. Let $\{x_n\}$ be a sequence generated by $x_1 = x \in C$, $x_{n+1} = \alpha_n x + (1 - \alpha_n)TP_C(I - \lambda_n A)(\beta_n x + (1 - \beta_n)x_n)$ ($\forall n \in \mathbf{N}$), where $\{\alpha_n\} \subset [0, 1)$ and $\{\beta_n\} \subset [0, 1)$ satisfy $\lim_{n\to\infty} \alpha_n = \lim_{n\to\infty} \beta_n = 0$, $\prod_{n=1}^{\infty} (1 - \alpha_n)(1 - \beta_n) = 0$ and $\sum_{n=1}^{\infty} (|\alpha_n - \alpha_{n+1}| + |\beta_n - \beta_{n+1}|) < \infty$ and $\{\lambda_n\} \subset [a, b]$ for some $a, b \in (0, 2\alpha)$ with $a \leq b$ satisfies $\sum_{n=1}^{\infty} |\lambda_n - \lambda_{n+1}| < \infty$. Then, $\{x_n\}$ converges strongly to $P_{F(T) \cap VI(C,A)}x$.

We also have the following theorem which generalizes the result of [11] by Lemma 2.5 (i), (iii) and Theorem 3.1.

Theorem 4.6. Let $\alpha > 0$ and let C be a nonempty closed convex subset of H. Let $A : C \longrightarrow H$ be an α -inverse-strongly-monotone operator and let T be a nonexpansive mapping of C into itself with $F(T) \cap VI(C, A) \neq \emptyset$. Let $\{x_n\}$ be a sequence generated by $x_1 = x \in C$, $x_{n+1} = \alpha_n x + (1 - \alpha_n) P_C(I - \lambda_n A) T(\beta_n x + (1 - \beta_n) x_n)$ ($\forall n \in \mathbf{N}$), where $\{\alpha_n\} \subset [0, 1)$ and $\{\beta_n\} \subset [0, 1)$ satisfy $\lim_{n\to\infty} \alpha_n = \lim_{n\to\infty} \beta_n = 0$, $\prod_{n=1}^{\infty} (1 - \alpha_n)(1 - \beta_n) = 0$ and $\sum_{n=1}^{\infty} (|\alpha_n - \alpha_{n+1}| + |\beta_n - \beta_{n+1}|) < \infty$ and $\{\lambda_n\} \subset [a, b]$ for some $a, b \in (0, 2\alpha)$ with $a \leq b$ satisfies $\sum_{n=1}^{\infty} |\lambda_n - \lambda_{n+1}| < \infty$. Then, $\{x_n\}$ converges strongly to $P_{F(T) \cap VI(C,A)}x$.

We have the following theorem for the W-mapping by Lemma 2.6 and Theorem 3.1 (see also [25]).

Theorem 4.7. Let *C* be a nonempty closed convex subset of *H*. Let S_1, S_2, \cdots be infinite nonexpansive mappings of *C* into itself with $\bigcap_{n=1}^{\infty} F(S_n) \neq \emptyset$ and let β_1, β_2, \cdots be real numbers with $0 < \beta_i \leq b < 1$ for every $i \in \mathbf{N}$ for some $b \in (0, 1)$. Let W_n be the *W*-mapping generated by $S_n, S_{n-1}, \cdots, S_1$ and $\beta_n, \beta_{n-1}, \cdots, \beta_1$. Let $\{x_n\}$ be a sequence generated by $x_1 = x \in C$, $x_{n+1} = \alpha_n x + (1 - \alpha_n) W_n(\gamma_n x + (1 - \gamma_n) x_n)$ ($\forall n \in \mathbf{N}$), where $\{\alpha_n\} \subset [0, 1)$ and $\{\gamma_n\} \subset [0, 1)$ satisfy $\lim_{n \to \infty} \alpha_n = \lim_{n \to \infty} \gamma_n = 0$, $\prod_{n=1}^{\infty} (1 - \alpha_n)(1 - \gamma_n) = 0$ and $\sum_{n=1}^{\infty} (|\alpha_n - \alpha_{n+1}| + |\gamma_n - \gamma_{n+1}|) < \infty$. Then, $\{x_n\}$ converges strongly to $P_{\bigcap_{n=1}^{\infty} F(S_n) x$.

We have the following theorem for nonexpansive semigroups by Lemma 2.7 and Theorem 3.2 (see also [27]).

Theorem 4.8. Let *C* be a nonempty closed convex subset of *H* and let *S* be a semigroup. Let $S = \{T(s) : s \in S\}$ be a nonexpansive semigroup on *C* such that $F(S) \neq \emptyset$ and let *D* be a subspace of B(S) containing constants and invariant under l_s for all $s \in S$. Suppose that for every $x \in C$ and $z \in H$, the function $t \mapsto (T(t)x, z)$ is in *D*. Let $\{\mu_n\}$ be a sequence of means on *D* such that $\lim_{n\to\infty} ||\mu_n - l_s^*\mu_n|| = 0$ for each $s \in S$. Let $\{x_n\}$ be a sequence generated by $x_1 = x \in C$, $x_{n+1} = \alpha_n x + (1 - \alpha_n)T_{\mu_n}(\beta_n x + (1 - \beta_n)x_n)$ ($\forall n \in \mathbf{N}$), where $\{\alpha_n\} \subset [0, 1)$ and $\{\beta_n\} \subset [0, 1)$ satisfy $\lim_{n\to\infty} \alpha_n = \lim_{n\to\infty} \beta_n = 0$ and $\prod_{n=1}^{\infty} (1 - \alpha_n)(1 - \beta_n) = 0$. Then, $\{x_n\}$ converges strongly to $P_{F(S)}x$.

From Theorem 4.8, we get the following theorems.

Theorem 4.9. ([24]) Let C be a nonempty closed convex subset of H and let T_1, T_2 be nonexpansive mappings of C into itself such that $T_1T_2 = T_2T_1$ and $F(T_1) \cap F(T_2) \neq \emptyset$. Let $\{x_n\}$ be a sequence generated by $x_1 = x \in C$, $x_{n+1} = \alpha_n x + (1 - \alpha_n) \frac{2}{(n+1)(n+2)} \sum_{k=0}^n \sum_{i+j=k} T_1^i T_2^j x_n \ (\forall n \in \mathbf{N})$, where $\{\alpha_n\} \subset [0, 1)$ satisfies $\lim_{n\to\infty} \alpha_n = 0$ and $\sum_{n=0}^{\infty} \alpha_n = \infty$. Then, $\{x_n\}$ converges strongly to $P_{F(T_1)\cap F(T_2)} x$.

Proof. Let $S = \{0, 1, 2, \dots\} \times \{0, 1, 2, \dots\}$, $S = \{T_1^i T_2^j : (i, j) \in S\}$, D = B(S)and $\mu_n(f) = \frac{2}{(n+1)(n+2)} \sum_{k=0}^n \sum_{i+j=k} f(i,j)$ for every $n \in \mathbb{N}$ and $f \in D$. Then, as in [1, Corollary 3.7], $\{\mu_n\}$ is a sequence of means on D and $\lim_{n \to \infty} \|\mu_n - \mu_n\|_{\infty}$

as in [1, Corollary 3.7], $\{\mu_n\}$ is a sequence of means on D and $\lim_{n\to\infty} \|\mu_n - l_{(l,m)}^*\mu_n\| = 0$ for each $(l,m) \in S$. By Theorem 4.8, we get Theorem 4.9.

Theorem 4.10. ([24]) Let C be a nonempty closed convex subset of H and let $S = \{T(s) : 0 \le s < \infty\}$ be a one-parameter nonexpansive semigroup on C such that $F(S) \neq \emptyset$. Let $\{x_n\}$ be a sequence generated by $x_1 = x \in C$, $x_{n+1} = \alpha_n x + (1 - \alpha_n) \frac{1}{t_n} \int_0^{t_n} T(s) x_n ds$ ($\forall n \in \mathbf{N}$), where $\{\alpha_n\} \subset [0, 1)$ satisfies $\lim_{n\to\infty} \alpha_n = 0$ and $\sum_{n=0}^{\infty} \alpha_n = \infty$ and $\{t_n\} \subset (0, \infty)$ with $\lim_{n\to\infty} t_n = \infty$. Then, $\{x_n\}$ converges strongly to $P_{F(S)}x$.

Proof. Let $S = \{s \in \mathbf{R} : 0 \leq s\}$, $S = \{T(s) : s \in S\}$ and let D be the Banach space C(S) of all bounded continuous functions on S with supremum norm. Let $\lambda_s(f) = \frac{1}{s} \int_0^s f(t) dt$ for every s > 0 and $f \in D$. Then, $\lim_{s \to \infty} \|\lambda_s - l_k^* \lambda_s\| = 0$ for each $k \in (0, \infty)$ from [1, Corollary 3.8]. We also have $T_{\lambda_s} x = \frac{1}{s} \int_0^s T(t) x dt$ for every $x \in C$. By Theorem 4.8, we get Theorem 4.10.

References

 S. Atsushiba and W. Takahashi, Approximating common fixed points of nonexpansive semigroups by the Mann iteration process, Ann. Univ. Mariae Curie-Sklodowska, 51(1997), 1-16.

- [2] H. H. Bauschke, The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space, J. Math. Anal. Appl., 202(1996), 150-159.
- [3] H. H. Bauschke and P. L. Combettes, A weak-to-strong convergence principle for fejér-monotone methods in Hilbert spaces, Math. Oper. Res., 26(2001), 248-264.
- [4] F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl., 20(1967), 197-228.
- [5] F. E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Sympos. Pure Math., 100(2), Amer. Math. Soc. Providence, R. I. (1976).
- [6] K. Eshita and W. Takahashi, Approximating zero points of accretive operators in general Banach spaces, JP J. Fixed Point Theory Appl., 2(2007), 105-116.
- [7] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 73(1967), 957-961.
- [8] N. Hirano, K. Kido and W. Takahashi, Nonexpansive retractions and nonlinear ergodic theorems in Banach spaces, Nonlinear Anal., 12(1988), 1269-1281.
- [9] H. Iiduka and W. Takahashi, Strong convergence theorems for nonexpansive mappings and inverse- strongly-monotone mappings, Nonlinear Anal., 61(2005), 341-350.
- [10] H. Iiduka and W. Takahashi, Strong convergence theorems for nonexpansive nonself-mappings and inverse-strongly-monotone mappings, J. Convex Anal., 11(2004), 69-79.
- [11] H. Iiduka and W. Takahashi, Strong and weak convergence theorems by a hybrid steepest descent method in a Hilbert space, in Nonlinear Analysis and Convex Analysis (W. Takahashi and T. Tanaka Eds), Yokohama Publishers, Yokohama, 115-130, 2004.
- [12] S. Kamimura and W. Takahashi, Approximating solutions of maximal monotone operators in Hilbert spaces, J. Approx. Theory, 106(2000), 226-240.
- [13] S. Kamimura and W. Takahashi, Weak and strong convergence of solutions to accretive operator inclusions and applications, Set-Valued Anal., 8(2000), 361-374.
- [14] M. Kikkawa and W. Takahashi, Approximating fixed points of infinite nonexpansive mappings by the hybrid method, J. Optim. Theory Appl., 117(2003), 93-101.
- [15] P. L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16(1979), 964-979.
- [16] F. Liu and M. Z. Nashed, Regularization of nonlinear ill-posed variational inequalities and convergence rates, Set-Valued Anal., 6(1998), 313-344.

- [17] K. Nakajo, Strong convergence to zeros of accretive operators in Banach spaces, J. Nonlinear Convex Anal., 7(2006), 71-81.
- [18] K. Nakajo and W. Takahashi, Strong and weak convergence theorems by an improved splitting method, Comm. Appl. Nonlinear Anal., 9(2002), 99-107.
- [19] K. Nakajo and W. Takahashi, Approximation of a zero of maximal monotone operators in Hilbert spaces, in Nonlinear Analysis and Convex Analysis (W. Takahashi and T. Tanaka Eds.), Yokohama Publishers, Yokohama, 303-314, 2003.
- [20] K. Nakajo, K. Shimoji and W.Takahashi, A weak convergence theorem by products of mappings in Hilbert spaces, in Nonlinear Analysis and Convex Analysis (W. Takahashi and T. Tanaka Eds.), Yokohama Publishers, Yokohama, 381-390, 2004.
- [21] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73(1967), 591-597.
- [22] G. B. Passty, Ergodic convergence to a zero of the sum of monotone operators in Hilbert space, J. Math. Anal. Appl., 72(1979), 383-390.
- [23] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14(1976), 877-898.
- [24] T. Shimizu and W. Takahashi, Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl., 211(1997), 71-83.
- [25] K. Shimoji and W. Takahashi, Strong convergence to common fixed points of infinite nonexpansive mappings and applications, Taiwanese J. Math., 5(2001), 387-404.
- [26] N. Shioji and W. Takahashi, Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc., 125(1997), 3641-3645.
- [27] N. Shioji and W. Takahashi, Strong convergence theorems for asymptotically nonexpansive semigroups in Hilbert spaces, Nonlinear Anal., 34(1998), 87-99.
- [28] N. Shioji and W. Takahashi, A strong convergence theorem for asymptotically nonexpansive mappings in Banach spaces, Arch. Math., 72(1999), 354-359.
- [29] N. Shioji and W. Takahashi, Strong convergence theorems for continuous semigroups in Banach spaces, Math. Japonica, 50(1999), 57-66.
- [30] N. Shioji and W. Takahashi, Strong convergence theorems for asymptotically nonexpansive semigroups in Banach spaces, J. Nonlinear Convex Anal., 1(2000), 73-87.
- [31] W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc., 81(1981), 253-256.

- [32] W. Takahashi, Weak and strong convergence theorems for families of nonexpansive mappings and their applications, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 51(1997), 277-292.
- [33] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
- [34] W. Takahashi, *Convex Analysis and Approximation of Fixed Points*, Yokohama Publishers, Yokohama, 2000(Japanese).
- [35] W. Takahashi and K. Shimoji, Convergence theorems for nonexpansive mappings and feasibility problems, Math. Comput. Modelling, 32(2000), 1463-1471.
- [36] W. Takahashi, T. Tamura and M. Toyoda, Approximation of common fixed points of a family of finite nonexpansive mappings in Banach spaces, Sci. Math., 56(2002), 475-480.
- [37] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math., 58(1992), 486-491.
- [38] H. K. Xu, Strong convergence of an iterative method for nonexpansive and accretive operators, J. Math. Anal. Appl., 314(2006), 631-643.

(Received 25 May 2008)

Kazuhide Nakajo Faculty of Engineering, Tamagawa University, Tamagawa-Gakuen, Machida-shi, Tokyo, 194-8610, Japan. e-mail: nakajo@eng.tamagawa.ac.jp

Kazuya Shimoji Department of Mathematical Sciences, Faculty of Science, University of the Ryukyus, Nishihara-cho, Okinawa, 903-0213, Japan. e-mail: shimoji@math.u-ryukyu.ac.jp

Wataru Takahashi Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo, 152-8552, Japan. e-mail: wataru@is.titech.ac.jp