Thai Journal of Mathematics
Volume 7 (2009) Number 1 : 49-67

www.math.science.cmu.ac.th/thaijournal
Online ISSN 1686-0209

Strong Convergence Theorems of Halpern’s
Type for Families of Nonexpansive Mappings
in Hilbert Spaces

K. Nakajo, K. Shimoji and W. Takahashi

Abstract : Let C' be a nonempty closed convex subset of a real Hilbert space
and let {T},} be a family of nonexpansive mappings of C into itself such that the
set of all common fixed points of {7}, } is nonempty. We consider a sequence {x,}
generated by 1 =2 € C, zpy1 = apz+ (1 — ap)Tn(Bnz + (1 — Br)x,) (Yn € N),
where {a,,} C [0,1) and {6,} C [0,1). Then, we give the conditions of {ay,}, {Gn}
and {7}, } under which {z,} converges strongly to a common fixed point of {T},}.
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1 Introduction

Throughout this paper, let H be a real Hilbert space with inner product (-, -)
and norm || - || and let N and R be the set of all positive integers and the set
of all real numbers, respectively. Let C' be a nonempty closed convex subset
of H and let {T,,} be a family of nonexpansive mappings of C into itself with
F =N F(T,) # 0, where F(T),,) is the set of all fixed points of T,,. Halpern [7]
considered the following iteration:

1 =2 €C, tnt1 =anzr+ (1 —an)Thz, (Vn € N),
where {a,} C [0,1). Wittmann [37] proved a strong convergence theorem when

T, =T (Vn € N), lim, ooy, =0, Y00 ay =00 and >_o—, ay, — @pg1| < 00,
where T is a nonexpansive mapping of C into itself with F'(T) # (. Then, Bauschke
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[2], Shimizu and Takahashi [24], Shioji and Takahashi [27], Kamimura and Taka-
hashi [12] and Tiduka and Takahashi [9, 10, 11] studied the strong convergence by
Halpern’s type iteration in Hilbert spaces and Shioji and Takahashi [26, 28, 29, 30],
Kamimura and Takahashi [13], Shimoji and Takahashi [25] and Takahashi, Tamura
and Toyoda [36] studied the strong convergence by Halpern’s type iteration in Ba-
nach spaces. Recently, Bauschke and Combettes [3] considered the following co-
herent condition: For every bounded sequence {z,} C C, > 07| [|znt1 — 20> < 0
and Y07 [lzn — Thznl|? < oo imply wy(z,) C F, where wy,(2,) is the set of all
weak cluster points of {z,} and proved a weak convergence theorem and a strong
convergence theorem by the hybrid Haugazeau’s method.

Motivated by Halpern’s type iteration and [3], in this paper, we consider the fol-
lowing iteration:

21 =2€C, tp1=0anz+ (1 —an)Th(Bnz+ (1 — Bn)zyn) (Yn € N) (1.1)
where {a,} C [0,1) and {B,} C [0,1) satisfy lim,, 0o @y = limy, 00 B, = 0 and
[12,(1—an)(1 = B,) = 0. Further, we consider the following conditions:

(I) There exists {a,} C [0,00) with Y~ | a, < co such that for every bounded
subset B of C, there exists Mp > 0 such that |1,z — T}, 112| < a, Mp holds
for all n € N and x € B;

(IT) for each bounded sequence {z,} C C, lim, o0 [|2n — Thzn| = 0 implies
ww(zn) C F

(III) for every bounded sequence {z,} C C, lim, o0 ||2n+1 — Thzn|| = 0 implies
ww(zn) C F.

Then, we prove that if (i) {a,} and {8,} satisfy > 7 (Jan — ant1] + |8 —
Bn+1]) < oo and (I) and (II) hold or (ii) (III) holds, {z,} converges strongly
to Prx, where Pr is the metric projection onto F'. These results generalize the
results of [0, 11, 12, 24, 37]. Further, we get a new result for splitting methods
(see [22, 15, 18] and references therein) by using these results.
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2 Preliminaries

We write z,, — z to indicate that a sequence {x,} converges weakly to x.
Similarly, z,, — = will symbolize the strong convergence. We know that H satisfies
Opial’s condition [21], that is, for any sequence {z,} C H with z,, — =z, the
inequality liminf, .o ||z, — 2| < liminf,, . ||z, — y|| holds for every y € H
with y # 2. Let C' be a nonempty closed convex subset of H and let T be a
mapping of C into itself. T is said to be firmly nonexpansive if | T2 — Ty||? <
lz—yl|? = |(I =T)x — (I —T)y||? for every x,y € C. T is said to be nonexpansive
it [Tz — Tyl < ||z — y|| for each z,y € C. If T is firmly nonexpansive, T is
nonexpansive. We know that the metric projection Po of H onto C is firmly
nonexpansive and for © € H and z € C, z = Pox is equivalent to (z —z,z—u) > 0
for all w € C. It is known that F'(T) is closed and convex if T' is nonexpansive of
C into itself. We have the following lemma by Opial’s condition; see [5].

Lemma 2.1. Let C' be a nonempty closed convexr subset of H and let T be a
nonexpansive mapping of C into itself such that F(T) # 0. Then, T,, =T (Vn €
N) satisfy the conditions (I) and (II) with a, =0 (¥Yn € N).

Proof. By T, = T),+1 for every n € N, (I) holds. Let {z,} be a bounded sequence
in C such that lim,_, ||2n — T2, || = 0. Without loss of generality, let z, — w.
Suppose that w # Tw. By Opial’s condition,

liminf ||z, —w| < liminf|z, —Tw| < Uminf(||z, — Tzu|| + |72 — Tw||)
n—oo n—oo n—oo

< liminf(||zn — Tzn| + |20 — w||) = liminf ||z, — w]|.
n— oo n—oo

This is a contradiction. So, wy,(z,) C F(T). O

An operator A : H — 2 is said to be monotone if (z; — 22,91 — y2) > 0
whenever y; € Ax; and yo € Axs. A monotone operator A is said to be maximal
if the graph of A is not properly contained in the graph of any other monotone
operator. It is known that a monotone operator A is maximal if and only if
R(I+ XA) = H for every A > 0, where R(I + AA) is the range of I + AA. We also
know that a monotone operator A is maximal if and only if for (u,v) € H x H,
(x —u,y —v) > 0 for every (z,y) € A implies v € Au. And we have that for a
maximal monotone operator, A=10 = {x € H : 0 € Ax} is closed and convex. If
A is monotone, then we can define, for each A > 0, a mapping Jy : R(I + AA) —
D(A) by Jy = (I + AA)~!, where D(A) is the domain of A. J, is called the
resolvent of A. We also define the Yosida approximation Ay by Ay = (I — Jx)/A.
We know that A=10 = F(Jy) holds and .Jy is firmly nonexpansive for every A > 0.
It is also known that for A > 0, |[Axz— Ay < 3[|z—y| for each z,y € R(I+AA);
see [33, 34] for more details. We have the following results.

Lemma 2.2. Let A : H — 27 be a mazimal monotone operator such that
A0 #£ 0. Then, the following hold:
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(i) T, = Jx, (Yn € N) with {\,} C (0,00), iminf, oo A >0 and Y.~ [N —
Ant1| < 00 satisfy the conditions (I) and (II) with a, = |A\y, — Ant1| (Vn €

N);

(1) T,, = Jy, (Vn € N) with {\,} C (0,00) and lim,,_c A, = 00 satisfy the
condition (III).

Proof. (i). By [6, Lemma 2.1], we have

[An

— )‘n+1|
[T, = Ix, 2l < =2l — )}

An — An
Do~ 2ol g, ) <

n

for every n € N and 2 € H, where u € A70 and ¢ = inf,en Ay (> 0). So,
for each bounded subset B of H, there exists Mp > 2 sup,cp ||z — u/| such that
I Thz—Th+12|| < a,Mpforalln € Nand z € B, where a,, = [A\,—Ant1] (Yn € N).
Next, let {z,,} be a bounded sequence in H such that lim, . ||z — Jx, 20| = 0.

Without loss of generality, let z,, — w. Since A is monotone, we get
1 1

(Sn,2n —u,—v) > T(J/\nzn =, Jx, 20 — 2n) 2 _E”Jknzn —ufl - [[Ix, 20 — 2znl|
n

for every (u,v) € Aand n € N. Jy z, — w and {Jx,z, — u} is bounded. So, we
get (w —u,—v) > 0 for all (u,v) € A which implies w € A7'0 by maximality of
A. Therefore, wy,(z,) C A7'0 = NS F(T),).

(ii). Let {z,} C H be a bounded sequence such that lim, . ||zn+1 — Jx, zn| = 0.
Let m € N. By [20, Corollary 3.4], we have

T N R TR T PP
HlInm Irn 20 = I, 2o |l
A
< 2||Zn+1 - J)\nZnH + Aﬂ‘lzn - JAnZ"”
n
Am
< 2llzpgr — Iy, 20l + )\7{2”?«% —ull}
n

for every n € N, where u € A~'0. Since a sequence {2, — u} is bounded and
lim,, o0 A\ = 00, we have lim,, .o ||2n — J»,, 2n|| = 0 and hence wy,(2,) C A710 =
NS, F(T,,) by Opial’s condition. O

Let @ > 0 and C be a nonempty closed convex subset of H. An operator
A: C — H is said to be a-inverse-strongly-monotone [1, 16, 18] if (x — y, Az —
Ay) > al|Az — Ay||? for all 2,y € C. Let A: H — H be an a-inverse-strongly-
monotone operator and let B : H — 2 be a maximal monotone operator such
that (A + B)710 # 0. Then, we know that A + B is maximal monotone and for
every A > 0, (A+ B)710 = F(JZ(I — AA)), where J? is the resolvent of B. It is
also known that JZ(I — AA) is nonexpansive of H into itself when 0 < A < 2aq;
see [18, 19]. We have the following result.
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Lemma 2.3. Let o« > 0. Let A: H — H be an a-inverse-strongly-monotone
operator and let B : H — 2% be a mazimal monotone operator such that (A +
B)7'0 # 0. Then, T,, = J2 (I — M\yA) (Vn € N) with {\,} C [a,20] for some
a € (0,2a) and 3°0° | [An — Ang1| < oo satisfy the conditions (I) and (II) with
an = |An — Ant1| (Vn € N).

Proof. Let u € (A+ B)~'0 and A\, > 0. Then we have J{ (I — A\,A)u = w.
This implies AY (I — A,A)u = —Au for all n € N, where A is the Yosida
approximation of B. So, by [6, Lemma 2.1], we get

1IE (I = A A)x — I (I = Apyr A)z|
< IR (T =M1 A)z = I3 (T = A Az

+||J)J\5:L (I - )\n+1A).’E - J)\B,L (I - /\nA)xH

< Pty e I = A el + D = vl 4]
< Do AentllAE L 0= A Al 4 = Al (e =l 4+ Au])
< Do Aeal{1A8 (= Ar A+ Auf + | Au}
P = Al (Sl =l + 14w
= = Al 145 (= Asa )z = AT (T = Xosa Apu] + | Au]
(Sl = |+ l14ul)}
< P = At {5 I = A ) = (T = Ana Al + [ Au]
(Sl = ull + 1 4ul))}
< D= A {5l = ull + A Az = Aul) + 4u]
(2=l + 1 4w]) }
< D= Aestl{ 2l = ull+ 2l — ull + Al + (<o — ul + 1 4u]) }

= Do Al { (24 2w~ ull + 20140}

for each n € N and = € H. So, for every bounded subset B of H, there exists
Mg > supmeB{ (2 + %) lo — ul| + 2|\Au||} such that || T2 — Thy12| < a,Mp for

all n € N and z € B, where a,, = [\, — Apt1] (Vn € N). Next, let {z,} be a
bounded sequence in H such that lim, .o ||z, — J2 (I — X\pA)zy|| = 0. Without

loss of generality, let z, — w. Let v, = an (I — M\yA)z,. Then, we obtain
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(vn — u, ﬁ{(zn — MAzy) — vp} + Au—v) > 0 and hence

1
o > o _ _
(vp, — u, —v) (vn u, N (n — zn) + Az, Au)

= )\i(vn —u, (I = Ay A)v, — (I — A\A)zn) + (v — u, Av,, — Au)

1
*anvn —ull - [[(I = AnA)vn — (I = A A)zn ||

v

for all (u,v) € A+ B and n € N since A and B are monotone.

(I = XA, — (I — )\,LA)an2 | — anQ — 2\, (Vn — 2, Av, — Azy)
+/\Z\|Avn - A,zn||2
v — 2nll? + A (A — 20)||Av, — Az, |)?

|vn — anQ

<
<

for each n € N, v, = w and {v, — u} is bounded. So, we have (w —u,—v) >0
for every (u,v) € A+ B which implies w € (A + B)~'0 by maximality of A + B.
Therefore, wy,(2,) C (A+ B)~10 = N, F(T,,). O

Let C be a nonempty closed convex subset of H and let A be a mapping of C
into H. Then, an element = in C' is a solution of the variational inequality of A
if (y—x,Az) > 0 for all y € C. It is known that for A > 0, € C' is a solution
of the variational inequality of A if and only if x = Po(I — AA)x. We denote by
VI(C, A) the set of all solutions of the variational inequality of A. We know that
VI(C, A) is a closed convex subset of C'if A is monotone and continuous. We have
the following two lemmas.

Lemma 2.4. Let o« > 0 and C' be a nonempty closed conver subset of H. Let
A : C — H be an a-inverse-strongly-monotone operator with VI(C,A) # 0.
Then, for every X > 0, x € C and z € VI(C, A), |[Pc(I — M)z — 2|]? < || —
z||? — %Hx — Po(I — M)z

Proof. Let A\ >0, 2 € C and z € VI(C, A). We have

[Po(I = M)z — 2|2

< (I =AA)z — (I = XA)z|]> — |(I = Po)(I — M)z — (I — Po)(I — MA)z||?
= [l(z—2) = AAz — A2)|]> — [[(z — Po(I — AA)z) — A(Az — Az)|]?
<l = 2|2 = 2aM||Ax — Az||]* + 2)\|| Az — Az|| - ||z — Po(I — AA)z||

—|lz = Po(I — \A)z|?

1 2
— 2 j— — —_ j— j—
|z — 2| 204)\{||A33 Az|| 20[”96 Po(T )\A)x||}

2 _
QA Po(l = AA)a|?

2«
200 — A
2

IN

lw — 2|1* — lw = Po (I — AA)a||*.
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O

Lemma 2.5. Let a > 0 and let C be a nonempty closed convex subset of H. Let A :
C — H be an a-inverse-strongly-monotone operator and let T be a nonerpansive
mapping of C into itself with F(T)NVI(C,A) # 0. Then the following hold:

(i) TPc(I — AA) and Po(I — MA)T are nonexpansive of C into itself when
0< <2

(it) T, = TPco(I — MA), 0 <a <X, <b<2x(Vn € N)and > ;||\ —
Ant1| < 00 satisfy the conditions (I) and (II) with a, = |A\p — Apt1| (Vn €
N) and N2, F(T,,) = F(T) N VI(C, A);
(iii) Ty, = Po(I — \A)T, 0 < a < X\, <b<2x(Vn e N)and > oo, |\ —
An+1] < 0o satisfy the conditions (I) and (II) with a, = |\ — Apt1| (Vn €
N) and N2, F(T,) = F(T)NVI(C,A).
Proof. (i). We have

|TPo(I — AA)x — TPo(I — MA)y|*> < ||Po(I — M)z — Po(I — MA)y||?
< iz —y) = MAz — Ay)|1?

lz = ylI> = 2A(z — y, Az — Ay) + \*|[ Az — Ayl

Iz =yl = A(2a — N)|| Az — Ay]|?

= yl|?

INIA

for every x,y € C. So, TPc(I — AA) is nonexpansive. Similarly, Po(I — AA)T is
nonexpansive.
(ii). Let y € C. We have

||TPO(I — /\nA)x — Tpc(I — )\n+1A).Z‘||
< P = AA)z — Po(I = A1 A)z|| < [An — Ay | - [|[Az|

1
< Do = Al (S lle =yl + 14y])

for every n € N and x € C. So, for each bounded subset B of C, there exists
Mg > sup,ep{Lllz —yll+ | Ay||} such that | T, — Tpj1z|| < a,Mp for alln € N
and x € B, where a, = |\, — Apy1| (Vn € N). Next, let z € F(T)NVI(C,A). We
have T,z = TPc(I — A\yA)z =Tz = z. So, F(T)NVI(C,A) C F(T,) for every
n € N. Conversely, let z € F(T},) and u € F(T)NVI(C,A). By Lemma 2.4, we
get

lz=ull® = |TPc(I —AA)z = Tul* < |Pe(l = A\pA)z — ulf?
2 - 200 =\,
2c0

IN

|z —u ||szo(If)\nA)zH2

which implies z = Po(I — A\, A)z, that is, z € VI(C, A). Further, we obtain Tz =
TPc(I-M,A)z = zand hence, z € F(T)NVI(C, A). So, F(T,) C F(T)NVI(C, A)
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for each n € N. Therefore, F(T,,) = F(T)NVI(C,A) for all n € N. Let {z,} be a
bounded sequence in C such that lim, . ||zn, — TPo(I — Ay A)z,|| = 0. Without
loss of generality, let z, — w. Let z € F(T)NVI(C, A). By Lemma 2.4, we have

lzn = 21> < ll2n = TPo(I = AaA)za||([2n = TPe(I = A A)z|
12| TPc(I — MyA) 2z — 2||) + | TPo(I — MpA)z, — 2|2
< lzn = TPe(I = A A)zn||([l2n = TPc(I — AnA) 2y + 2||2n — 2])
200 — A\,
+ N2 = 22 = =520 = Poll = AnA)z?
for every n € N. So, we get lim,,_,o ||z, — Pc(I — A\yA)z,|| = 0. Let v, =

Po(I — M, A)z,. For all u € C, we obtain (z, — A, Az, — vy, v, —u) > 0 and hence,

(Au,u — vy,)

Y

1
(Av, — Au,v, —u) + )\—((I — A, — (I = MNyA)zp, v — )

n

Y

1
_gH(I - )‘nA)Un - (I - )‘nA)ZnH : ||Un - u”

for every n € N since A is monotone. |[(I — X\, A)v, — (I — M\ A)zp||? < |lon —
2nll? + An(An — 20)||Av, — Az, |2 < |lvn — 24]|? for each n € N, v, — w and
{vn, — u} is bounded. So, we have (Au,u —w) > 0 for all w € C. By continuity
of A, (Aw,u — w) > 0 for every u € C, that is, w € VI(C,A). Further, from
lzn — Tzl < |[2n — TPc(I — MA)zn|| + |Pc(I — AnA)2z, — 2, for each n € N,
lim,, 00 ||2n, — Tz, || = 0. By Opial’s condition, w € F(T). Therefore, wy,(z,) C
F(T)NVI(C,A) =N, F(T,).

(iii). Let y € C. As in (ii), for every bounded subset B of C, there exists
Mp > sup,ep{illz — yl| + [|ATy||} such that | T,z — Thi12| < a,Mp for all
n € N and z € B, where a, = [\, — Apy1| (Vo € N). As in the proof of (ii), we
have F(T,) = F(T)NVI(C,A) for each n € N. Let {z,} be a bounded sequence
in C such that lim, . ||zn — Po(I — A\ A)Tz,|| = 0. Without loss of generality,
let z, — w. As in (i), we get lim, oo |72 — Po(I — \yA)Tz,|| = 0. And
hence, we obtain lim, . ||2zn — T2pn| = limy— o ||2n — Po(I — A A)z,|| = 0. So,
w e F(T)NVI(C,A). Therefore, wy(z,) C F(T)NVI(C,A) =N, F(T,). O

n=1

Let C' be a nonempty closed convex subset of H. Let Si,S5,--- be infinite
nonexpansive mappings of C' into itself and let 31,32, -+ be real numbers such
that 0 < 3; < 1 for every ¢ € N. Then, for any n € N, Takahashi [25, 32, 31]
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introduced a mapping W,, of C into itself as follows:

Un‘n+1 - I7
Un,n = ﬂnSnUn,n+1 + (1 - ﬂn)Ia
Un,n—l - ﬁn—lsn—lUn,n + (1 - ﬁn—l)Iv
Unk = BeScUngsr + (1= Br)l,

Un2 = [25Uns+ (1—062)I,
Wy =Un1 = B1S1Unz2 + (1 —G1)l.

Such a mapping W, is called the W-mapping generated by S,,, S,—1,---,S1 and
By Bn—1,"-+, 1. We know that if N2, F(S;) # 0 and 0 < B; < 1 for every

i=2,3,---,nand 0 < 1 <1, F(W,) = NI F(S;); see [34, 35]. We also have
that if NS, F(Sy,) # 0 and 0 < 8; < b < 1 for every i € N for some b € (0,1),
lim,, o0 Uy, i exists for every € C and k € N; see [25]. By this, we define a

mapping W of C' into itself as follows:

Wz = lim Wyx = lim U,z

n—oo n—oo

for every z € C. Such a W is called the W-mapping generated by 51,5, -+ and
B1, B2, +. And we have that if N2, F(S;) #0and 0 < 3; <b < 1foreveryi € N
for some b € (0,1), F(W) = N2, F(S;); see [25]. We know the following result.

Lemma 2.6. Let C' be a nonempty closed conver subset of H. Let S1,S9, -
be infinite nonexpansive mappings of C into itself with N2 F(S,) # 0 and let
B1, B2, -+ be real numbers with 0 < B; < b < 1 for every i € N for some b € (0,1).
Let W,, be the W-mapping generated by Sy, Spn—1,-- ,51 and Bpn, Bn-1,"-+ , 1 for
every n € N. Then, T,, = W,, (V¥n € N) satisfy the conditions (I) and (II) with
a, =b"*1 (Vn € N).

Proof. Let u € NS>, F(S,). we have

[Winx — Wygrz| = [|8151Un 27 — B151Uny1 27|

< Bil|Un2r — Upyr oz
B1|8252Un 32 — $252Up 41 3| < B152||Un 32 — Upyr 32|
< <P Babarille = Spprzll < 0VTH2|le — ull}

for every n € N and z € C. So, for each bounded subset B of C, there exists
Mp > 2 -sup,cp ||z — ul| such that ||T,z — Thi12| < a,Mp for all n € N and
xr € B, where a,, = b"*! (Vn € N). From [14, Theorem 3.1], {T},} satisfies the
condition (II). O
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Let S be a semigroup and let B(S) be the Banach space of all bounded real
valued functions on S with supremum norm. Then, for every s € S and f € B(S),
we can define ry f € B(S) and I, f € B(S) by (rsf)(t) = f(ts) and (I, f)(t) = f(st)
for each t € S, respectively. We also denote by 7} and [} the conjugate operators of
rs and I, respectively. Let D be a subspace of B(S) containing constants and let y
be an element of D*. A linear functional p is called a mean on D if ||u|| = (1) = 1.
Let C be a nonempty closed convex subset of H. A family S = {T'(s) : s € S}
of mappings of C' into itself is called a nonexpansive semigroup on C' if it satisfies
the following conditions:

(i) T'(st) =T(s)T'(t) for all s,t € S,
(ii) | T(s)x —T(s)yll < |lz — y|| for every s € S and x,y € C.

We denote by F(S) the set of all common fixed points of S, that is, F(S) =
NsesF(T(s)). It is known that F(S) is closed and convex. We have that if
F(S) # 0 and (T(-)z,y) € D for every x € C and y € H, there exists a unique
element T,z in C such that (T,x,z) = ps(T(s)z, z) for all z € H for any mean p
on D and z € C; see [8, 31]. We also know that T, is a nonexpansive mapping of
C into itself. Further, we have the following [1]: Let C' be a nonempty bounded
closed convex subset of H and let S be a semigroup. Let S = {T'(s) : s € S}
be a nonexpansive semigroup on C and let D be a subspace of B(S) containing
constants and invariant under [, for all s € S. Suppose that for every z € C and
z € H, the function t — (T'(t)x, z) is in D. Let {u,} be a sequence of means on D
such that lim,, . || ptn — U5 s || = 0 for each s € S. Then, lim,, o sup,cc | Ty, = —
T(t)T,, x| =0foralltesS.

Lemma 2.7. Let C' be a nonempty closed convexr subset of H and let S be a
semigroup. Let S = {T(s) : s € S} be a nonexpansive semigroup on C such that
F(S) # 0 and let D be a subspace of B(S) containing constants and invariant
under lg for all s € S. Suppose that for every x € C and z € H, the function t —
(T(t)x,2) isin D. Let {p,} be a sequence of means on D such that lim,_ o ||pn —
Uipnl| = 0 for each s € S. Then, T,, = T),, (Vn € N) satisfy the condition (III)
with N2, F(T,,) = F(S).

Proof. F(S) C NS, F(T),)is trivial. Let u € N3, F(T},). We have lim,_, o || T}, u—
T(t)T,,ul| = 0 for every t € S and hence, u € F(S). So, we get F(S) =
NS, F(T,). Next, let {z,} C C be a bounded sequence such that lim, o ||2n+1—
Ty, 20|l = 0. We obtain

IN

l2n+1 — Tp, 2nll + [T, 20 — T@) Ty, 20|
+HT(t)Tunzn —T(t)zns1l
< 2llzng1 — Tunan + HTunzn - T(t)TunZn”

1znt1 = T(@) 2n |

for every t € S and n € N. Since we have lim,, o ||T),,, 2n —T(t)T, 2n|| = 0 for all
t €S, lim, o0 ||2n — T(t)z,]] = 0 for each t € S. So, {T,} satisfies the condition
(III) by Opial’s condition. O
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Let C be a nonempty closed convex subset of H. A family S = {T(s) :
0 < s < oo} of mappings of C' into itself is called a one-parameter nonexpansive
semigroup on C' if it satisfies the following conditions:

(i) T(0)z = x for all z € C;
(ii) T(s+1t) =T(s)T(t) for every s,t > 0;
(iii)
)

(iv) for all z € C, s — T'(s)x is continuous.

IT(s)x —T(s)yll < ||z —y|| for each s > 0 and z,y € C;

3 Main Results

Using an idea of [37] (see also [34, Theorem 5.1.2]), we have the following two
theorems.

Theorem 3.1. Let C be a nonempty closed convex subset of H and let {T,} be a
family of nonexpansive mappings of C into itself such that F := N2 F(Ty,) # 0
which satisfies the conditions (I) and (II). Let {x,} be a sequence generated by
(1), where {a,} C [0,1) and {B,} C [0,1) satisfy lim,—co @, = limy 00 B = 0,
[ (1 —an)1=B,) =0 and 377 (| — 1| + [Bn — Bnsal) < co. Then,
{zn} converges strongly to Prpx, where Pr is the metric projection of H onto F.

Proof. Let u € F. We have ||z, — u|| < ||z — ul| for every n € N. In fact, suppose
that ||z, — u|| < ||z — ul| for some n € N. We get

Hxn-&-l - UH = ||O‘nx + (1 - O‘n)Tn(ﬂnx + (1 - ﬂn)xn) - UH
< allr —ull+ (1 = ap){Bulle — ull + (1 = Bn)l|7n — ull}
< ol

So, {x,} is bounded. Next, we obtain

[
= |lanr+ (1 = an)Tn(Bnz + (1 = Bn)zn) — an_1x
(1= an1)Tph1(Bno12+ (1 = Bn1)Tn1)|l
= |an —an-1)z + (1 = apn{Tu(Bnz + (1 = Bp)zn) — Tn-1(Bnx + (1 = Br)Tn) }
+ (1 = an){Th-1(Bpz + (1 = Bn)wn) — Tn—1(Bp—12 + (1 = Bu—1)Tn—1)}
+ (ap—1 — an)Th—1(Bn12 + (1 = Bn_1)Tn-1)|l

< an —ap—a| |z = Th1(Ba1z 4+ (1 = Br-1)zn—1)||
+ (1 = an) |70 (Brz + (1 = Bn)xn) — Tn—1(Bpz + (1 = Bn)zy) ||
+ (= an)[{Bnz + (1 = Bp)2n}t — {Baor2 + (1 = Ba—t)Tn—1}|
< an —an—1f - M+ (1= an) | Tn(Buz + (1 = Bn)zn) — Tn-1(Baz + (1 = Bp)zn)||

+ (L= an){|Bn = Bnal - (]l + [[enall) + (1 = Bn)ll2n — 2asl}
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foreachn = 2,3, -+, where M1 = sup,,en {1} le—Th—1(Bn—124+(1=LBn_1)Tn-1)|
Since a sequence {8,z + (1 — B,,)x, } is bounded, there exists My > 0 such that

||Tn(ﬁnx + (1 - ﬁn)xn) - Tn—l(ﬁnx + (1 - ﬂn)xn)” < an_1M>
for all n =2,3,--- by the condition (I). Therefore, we get

||$n+1 - xn” < (|an - an71| + |Bn - ﬁn71| + anfl)M
+(1 = an)( = Bn)llzn — znll (3.1)
for every n = 2,3, - -, where M = max{ My, M2, sup, en f13{l|[| + [[zn—1[}}. Let
m,n € N. By (2), we obtain
[Tntmt1 = Tnimll
< (lantm — angm-1] + [Batm — Botm—1| + anym—1)M
+(1 = antm) (1 = Batm) [Tntm — Tngm—1|
< (lantm — angpm—1] + [Batm — Botm—1| + @nym—1)M
+ (1 = g ) (1 = Brgm ) { (|n4m—1 — Cngm—2|
HBntm—1 = Brtm—2| + @ntm—2)M
+ (1 - O‘nerfl)(l - 5n+m71)||$n+mfl - xn+mf2”}

< Alantm = angm—1] + |@ntm—1 — @nim—2|)

+ (1Bnsm = Brnym—1| + |Bntm—1 — Bntm—2|) + (@nym—1 + @Gnym—2)} M

+ (1 - an+m)(1 - ﬁn-‘rm)(l - an-‘rm—l)(l - ﬁn-‘rm—l)”xn-i-m—l - $n+m—2”
<

n+m—1
< M- Z (lak+1 — okl + [Be1 — Bl + ax)
k=m
n+m
Ham —zml - [ (01— ar)(1 =5
k=m+1
So, we have
limsup ||2p41 — zn]| = lmsup||Zntm+1 — Trntml]
n—oo n—oo

< M- (Jans — ol + Brr — Bel + ax)

k=m
for each m € N. Therefore, we get lim, oo ||Tn+1 — n|| = 0. It follows from
|Zn = Toznl < |lzn = Tu(Bar + (1 = Bo)wn) || + [ Tn(Baz + (1 = Bn)zn) — Ty
< zngr — 2ol + anllz = Tu(Buz + (1 = Bu)zn)ll + Ballz — zn|
for all n € N that lim,_ |2, — Thzys| = 0. By the condition (II), we get
ww(Tn) C F. From lim, o ||2n — T (Bnx + (1 = Br)xn)|| = 0,
limsup(x — Prz, T,,(Bnz + (1 — Bpn)zy) — Prz) = limsup(x — Ppz, x, — Prx).

n— o0 n—oo
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There exists a subsequence {z,, } of {x,} such that limsup,,_, . (x — Prx,x, —

Prz) = limg_, oo (¢ — Prx, 2, — Ppa). Since {z,,} is bounded, we may assume

that z,, — z € F. So, we obtain

limsup(z — Prpz, 2, — Prz) = (x — Ppz,z — Prpx) < 0.
n—oo

€
€ € 2’

(x = Pre, Ty, (Bnx + (1 — Bn)xn) — Prx) < 1 and (z — Ppz,z, — Prz) < 1 for

every n > mg. S0, we have

Let € > 0. There exists mo € N such that o, |z — Ppz|]* < %, Bullx — Przx|* <

ns1 — Pral® = lan(z — Pra) + (1 — an){Ta(Buz + (1 fu)n) — Pra}?
= alllz = Prx|?* + (1 — an)?|Ta(Bnz + (1 = Bn)an) — Prx|?
+ 20, (1 — ap)(x — Ppa, Ty, (Brx + (1 — By)x,) — Prx)

< aplle = Pez|® + (1 — an){Bi||lz — Prz|” + (1 = 8n)? |20 — Prz||?
+26,(1 = B,)(x — Ppx,x,, — Prx)}
+2a, (1 — an)(x — Prpx, Tp,(Brnz + (1 — B)xy) — Prx)
= {ah +62(1 = an)?}Hlz — Pra|? +2(1 — an)?B.(1 = Ba) (¢ — Pra, x, — Pri)
+ 20, (1 — ap)(z — Ppa, T,,(Bnx + (1 — Bn)xn) — Pra)
+(1 = an)*(1 = Bn)?||2n — Prz|?
< an 4 Bu(l— ) + Bu(l = B) (1 — o) + (1 — an)}g
(1= an)(1 = o)z — P
< {an + Bu(l = an) + Bull = an) + an}5 + (1= an)(1 = Bl — Pral®

= {1-(1—-an)d =08+ (1 —an)(l—06n)lzn — PF$||2

for each n > mg. Therefore, we get

n

|zn1 = Pral® < {1— T (0 —an)(@ - B)}e

k:mo
n

H@m, — Prx)® T (1= ox)(1 = 5i)

k:mo

for all n > myg. So, we obtain limsup,,_, . ||*nt+1 — Prz|? < €. Since ¢ is arbitrary,
we have x,, — Prx. O

Theorem 3.2. Let C be a nonempty closed convex subset of H and let {T,,} be
a family of nonexpansive mappings of C into itself such that F := N2 F(T,) #
() which satisfies the condition (III). Let {x,} be a sequence generated by (1),
where {a,} C [0,1) and {Bn} C [0,1) satisfy limy,_ oo @y = limy 00 B = 0 and
102, (1 —ay)(1—B,) =0. Then, {z,} converges strongly to Ppu.
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Proof. As in the proof of Theorem 3.1, we have {z,} is bounded. And it follows
from

||33n+1 - Tnxn” < ||33n+1 - Tn(ﬁnx + (1 - ﬁn)xn)n
T (Brnz + (1 = Br)zn) — Ty
< apllr = To(Baz + (1 = Bn)zn) || + Bullz — n|l
for all n € N that lim, o [|[Znt1 — TnZal| = 0. By the condition (III), we

get wy(x,) C F. Since limy,— oo [|Tnt1 — Tn(Brx + (1 — Bp)z,)|| = 0, we have
limsup,,_, . (x — Prx, T,,(Bnx + (1 — Bn)xn) — Pra) = limsup,,_, . (x — Prx, z, —
Prpz). As in the proof of Theorem 3.1, we obtain z, — Ppx. O

4 Applications

In this section, using Theorems 3.1 and 3.2, we improve well-known strong conver-
gence theorems. We first have the following theorem which generalizes the result
of [37] by Lemma 2.1 and Theorem 3.1.

Theorem 4.1. Let C' be a nonempty closed convex subset of H and let T be a
nonezpansive mapping of C into itself such that F(T) # 0. Let {x,} be a sequence
generated by x1 =z € C, Tpi1 = apz + (1 — )T (Brz + (1 — Br)zy) (Vn € N),
where {an} C [0,1) and {B,} C [0,1) satisfy lim,_ 0o ap = limy—oo B = 0,
[ (1= an)(1=B,) =0 and 3207 (| — 1| + [Bn — Busal) < 0o. Then,
{xn} converges strongly to Pp()x.

We get the following theorem for proximal point algorithms (see [23, 12]) by
Lemma 2.2 (i) and Theorem 3.1 (see also [17, 38]).

Theorem 4.2. Let A : H — 2H be a mazimal monotone operator such that
A0 # 0. Let {x,} be a sequence generated by x1 = v € H, Tpi1 = anx +
(1= an)dr, (Bnz + (1 — Bn)zn) (VR € N), where {a,} C [0,1) and {5,} C [0,1)
satisfy imy, oo @y = limy oo B = 0, [[ro (1 —ayn)(1—8,) =0 and Y00 (Jay, —
ant1| + |80 — Bnri1l) < o0 and {A,} C (0,00) satisfies liminf, oo Ay, > 0 and
S 1A = Ant1| < 00. Then, {zn} converges strongly to Pa-1qx.

We get the following theorem for proximal point algorithms which generalizes
the result of [12] by Lemma 2.2 (ii) and Theorem 3.2.

Theorem 4.3. Let A : H — 27 be a mazximal monotone operator such that
A0 # 0. Let {x,} be a sequence generated by x1 = x € H, xp11 = apx + (1 —
an) Iz, (Bnx+ (1= Bn)xys) (Vn € N), where {a,} C [0,1) and {B,} C [0,1) satisfy
limy, o0 @, = limy oo B, = 0 and T[]0 (1 — ay,)(1 = B,) = 0 and {\,} C (0,00)
satisfies limy, oo Ay, = 00. Then, {x,} converges strongly to Py-1qx.

We have the new theorem for splitting methods by Lemma 2.3 and Theorem
3.1.
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Theorem 4.4. Let a« > 0. Let A: H — H be an a-inverse-strongly-monotone
operator and let B : H — 25 be a mazimal monotone operator such that (A +
B)7'0 # 0. Let {x,} be a sequence generated by x1 = x € H, xp11 = apx +
(1 = an)J2 (I = XA)(Bnz + (1 — Bn)zn) (Yn € N), where {a,} C [0,1) and
{Bn} € [0,1) satisfy lim,, 0ot = limy oo B = 0, [[7— 1 (1—n)(1—B,) = 0 and
S0 (lan — ang1| + Bn = Brs1]) < 00 and {\,} C [a,2a] for some a € (0,2a)
satisfies Y "1 [An — Anq1| < 0o. Then, {x,} converges strongly to P ayp)-102.

We get the following theorem which generalizes the result of [9] by Lemma 2.5
(i), (ii) and Theorem 3.1.

Theorem 4.5. Let a > 0 and let C be a nonempty closed convex subset of H.
Let A : C — H be an a-inverse-strongly-monotone operator and let T be a
nonezpansive mapping of C into itself with F(T)NVI(C,A) # 0. Let {x,} be a
sequence generated by x1 = x € C, Tpy1 = apx + (1 — o) TPo(I — A A)(Brnx +
(1=Bn)zn) (Vn € N), where {ay,} C [0,1) and {B,} C [0,1) satisfy lim, oo p, =
lim, o Bn =0, H:ozl(l_an)ﬂ_ﬁn) =0and 220:1“0%_an+1|+|ﬁn_ﬁn+l‘) <
oo and {\,} C [a,b] for some a,b € (0,2c) with a < b satisfies > o) [Ap—Ant1] <
oo. Then, {z,} converges strongly to Pp(rynvi(c,a)®-

We also have the following theorem which generalizes the result of [11] by
Lemma 2.5 (i), (iii) and Theorem 3.1.

Theorem 4.6. Let o > 0 and let C' be a nonempty closed convex subset of H.
Let A : C — H be an «a-inverse-strongly-monotone operator and let T be a
nonexpansive mapping of C into itself with F(T)NVI(C,A) # 0. Let {z,} be a
sequence generated by x1 = x € C, xpy1 = apx + (1 — o) Po(I — My A)T (Brx +
(1—Bn)xn) (Vn € N), where {a,} C [0,1) and {B,} C [0,1) satisfy lim, o0 ovp, =
limy, oo B = 0, [1,2(1—an)(1=5,) = 0 and 32,7, (| — 1| +[Bn = Bry1]) <
oo and {\,} C [a,b] for some a,b € (0,2q) with a < b satisfies Y oo | [An—Any1] <
oo. Then, {x,} converges strongly to Ppiryvi(c,a)®-

We have the following theorem for the W-mapping by Lemma 2.6 and Theorem
3.1 (see also [25]).

Theorem 4.7. Let C be a nonempty closed convexr subset of H. Let S1,S53,- -
be infinite nonexpansive mappings of C into dtself with N2 F(S,) # 0 and let
01, B2, -+ be real numbers with 0 < B; < b < 1 for every i € N for some b € (0,1).
Let W,, be the W-mapping generated by Sy, Sn_1,-+-,51 and Bn, Bn_1, -+ P1. Let
{zn} be a sequence generated by x1 = © € C, Tpy1 = anx + (1 — an) Wy (ynx +
(1 —vn)xy,) (Vn € N), where {a,} C[0,1) and {v,} C [0,1) satisfy lim, oo vy, =
limy, oo v = 0, [ (1= an)(L=yn) = 0 and 3277 (Jon — anpr | + | yn = Ynp1]) <
oo. Then, {zy} converges strongly to Pne  p(s,)T-

We have the following theorem for nonexpansive semigroups by Lemma 2.7
and Theorem 3.2 (see also [27]).
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Theorem 4.8. Let C' be a nonempty closed convex subset of H and let S be a
semigroup. Let S = {T(s) : s € S} be a nonexpansive semigroup on C such that
F(S) # 0 and let D be a subspace of B(S) containing constants and invariant
under ls for all s € S. Suppose that for every x € C and z € H, the function t —
(T(t)x, z) isin D. Let {p,} be a sequence of means on D such that lim, o ||pn —
Upn|l = 0 for each s € S. Let {z,} be a sequence generated by x1 = x € C, xp4q1 =
anz+ (1 —0)Ty, (Bnz+ (1 = Bn)zy) (Vn € N), where {a,} C [0,1) and {B,} C
[0,1) satisfy limy,— o0 o, = limy, o B, = 0 and [ (1 — ay,)(1 — B,,) = 0. Then,
{xn} converges strongly to Pp(s)x.

From Theorem 4.8, we get the following theorems.

Theorem 4.9. (/2/]) Let C be a nonempty closed convex subset of H and let
Ty, Ts be nonexpansive mappings of C into itself such that Ty Ty, = ToT) and
F(Ty) N F(Ty) # 0. Let {x,} be a sequence generated by x1 = x € C, Tpp1 =
anz + (1 — an)mlfw dohe0 iy jer TiTxy (Y0 € N), where {an} C [0,1)
satisfies lim, oo oy, = 0 and Yo" o, = oo. Then, {x,} converges strongly to
Pr(1)nr(1y)T-

Proof. Let S = {0,1,2,---} x {0,1,2,---}, S = {T¥T} : (i,§) € S}, D = B(S)
2 = .
and p,(f) = MM;iJ;kf(z,j) for every n € N and f € D. Then,

as in [1, Corollary 3.7], {un} is a sequence of means on D and lim, e ||ttn —
I mybnll = 0 for each (I,m) € S. By Theorem 4.8, we get Theorem 4.9. O

Theorem 4.10. (/2/]) Let C be a nonempty closed convex subset of H and let
S={T(s) : 0 <s < oo} be a one-parameter nonexpansive semigroup on C such
that F(S) # 0. Let {z,} be a sequence generated by x1 = x € C, Tp41 = apx +
(1- an)i fot T(s)x, ds (Yn € N), where {a,} C [0,1) satisfies lim, o @, =0
and 07 o an = o0 and {t,} C (0,00) with lim,_. t, = co. Then, {x,} converges
strongly to Pp(s)x.

Proof. Let S={se€R : 0<s}, S={T(s) : s € S} and let D be the Banach
space C(S) of all bounded continuous functions on S with supremum norm. Let
As(f) =L 5 f(t)dt for every s > 0 and f € D. Then, lims_o [As — [} A =0

S

for each k € (0,00) from [1, Corollary 3.8]. We also have T,z = L [ T(t)x dt for
every x € C'. By Theorem 4.8, we get Theorem 4.10. O
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