www.math.science.cmu.ac.th/thaijournal

Strong Convergence Theorems of Halpern's Type for Families of Nonexpansive Mappings in Hilbert Spaces

K. Nakajo, K. Shimoji and W. Takahashi

Abstract

Let C be a nonempty closed convex subset of a real Hilbert space and let $\left\{T_{n}\right\}$ be a family of nonexpansive mappings of C into itself such that the set of all common fixed points of $\left\{T_{n}\right\}$ is nonempty. We consider a sequence $\left\{x_{n}\right\}$ generated by $x_{1}=x \in C, x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)(\forall n \in \mathbf{N})$, where $\left\{\alpha_{n}\right\} \subset[0,1)$ and $\left\{\beta_{n}\right\} \subset[0,1)$. Then, we give the conditions of $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{T_{n}\right\}$ under which $\left\{x_{n}\right\}$ converges strongly to a common fixed point of $\left\{T_{n}\right\}$.

Keywords : Strong convergence; Nonexpansive; Proximal point algorithm; Wmapping; Nonexpansive semigroup; Splitting method; Variational inequality.
2000 Mathematics Subject Classification : 49M05, $47 \mathrm{H} 05,47 \mathrm{H} 09,47 \mathrm{H} 20$, 49M27.

1 Introduction

Throughout this paper, let H be a real Hilbert space with inner product (\cdot, \cdot) and norm $\|\cdot\|$ and let \mathbf{N} and \mathbf{R} be the set of all positive integers and the set of all real numbers, respectively. Let C be a nonempty closed convex subset of H and let $\left\{T_{n}\right\}$ be a family of nonexpansive mappings of C into itself with $F:=\cap_{n=1}^{\infty} F\left(T_{n}\right) \neq \emptyset$, where $F\left(T_{n}\right)$ is the set of all fixed points of T_{n}. Halpern [7] considered the following iteration:

$$
x_{1}=x \in C, x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) T_{n} x_{n}(\forall n \in \mathbf{N}),
$$

where $\left\{\alpha_{n}\right\} \subset[0,1)$. Wittmann [37] proved a strong convergence theorem when $T_{n}=T(\forall n \in \mathbf{N}), \lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty$ and $\sum_{n=1}^{\infty}\left|\alpha_{n}-\alpha_{n+1}\right|<\infty$, where T is a nonexpansive mapping of C into itself with $F(T) \neq \emptyset$. Then, Bauschke

[^0][2], Shimizu and Takahashi [24], Shioji and Takahashi [27], Kamimura and Takahashi [12] and Iiduka and Takahashi $[9,10,11]$ studied the strong convergence by Halpern's type iteration in Hilbert spaces and Shioji and Takahashi [26, 28, 29, 30], Kamimura and Takahashi [13], Shimoji and Takahashi [25] and Takahashi, Tamura and Toyoda [36] studied the strong convergence by Halpern's type iteration in Banach spaces. Recently, Bauschke and Combettes [3] considered the following coherent condition: For every bounded sequence $\left\{z_{n}\right\} \subset C, \sum_{n=1}^{\infty}\left\|z_{n+1}-z_{n}\right\|^{2}<\infty$ and $\sum_{n=1}^{\infty}\left\|z_{n}-T_{n} z_{n}\right\|^{2}<\infty$ imply $\omega_{w}\left(z_{n}\right) \subset F$, where $\omega_{w}\left(z_{n}\right)$ is the set of all weak cluster points of $\left\{z_{n}\right\}$ and proved a weak convergence theorem and a strong convergence theorem by the hybrid Haugazeau's method.
Motivated by Halpern's type iteration and [3], in this paper, we consider the following iteration:
\[

$$
\begin{equation*}
x_{1}=x \in C, x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)(\forall n \in \mathbf{N}) \tag{1.1}
\end{equation*}
$$

\]

where $\left\{\alpha_{n}\right\} \subset[0,1)$ and $\left\{\beta_{n}\right\} \subset[0,1)$ satisfy $\lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\prod_{n=1}^{\infty}\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)=0$. Further, we consider the following conditions:
(I) There exists $\left\{a_{n}\right\} \subset[0, \infty)$ with $\sum_{n=1}^{\infty} a_{n}<\infty$ such that for every bounded subset B of C, there exists $M_{B}>0$ such that $\left\|T_{n} x-T_{n+1} x\right\| \leq a_{n} M_{B}$ holds for all $n \in \mathbf{N}$ and $x \in B ;$
(II) for each bounded sequence $\left\{z_{n}\right\} \subset C, \lim _{n \rightarrow \infty}\left\|z_{n}-T_{n} z_{n}\right\|=0$ implies $\omega_{w}\left(z_{n}\right) \subset F ;$
(III) for every bounded sequence $\left\{z_{n}\right\} \subset C, \lim _{n \rightarrow \infty}\left\|z_{n+1}-T_{n} z_{n}\right\|=0$ implies $\omega_{w}\left(z_{n}\right) \subset F$.
Then, we prove that if (i) $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ satisfy $\sum_{n=1}^{\infty}\left(\left|\alpha_{n}-\alpha_{n+1}\right|+\mid \beta_{n}-\right.$ $\left.\beta_{n+1} \mid\right)<\infty$ and (I) and (II) hold or (ii) (III) holds, $\left\{x_{n}\right\}$ converges strongly to $P_{F} x$, where P_{F} is the metric projection onto F. These results generalize the results of $[9,11,12,24,37]$. Further, we get a new result for splitting methods (see $[22,15,18]$ and references therein) by using these results.

2 Preliminaries

We write $x_{n} \rightharpoonup x$ to indicate that a sequence $\left\{x_{n}\right\}$ converges weakly to x. Similarly, $x_{n} \rightarrow x$ will symbolize the strong convergence. We know that H satisfies Opial's condition [21], that is, for any sequence $\left\{x_{n}\right\} \subset H$ with $x_{n} \rightharpoonup x$, the inequality $\liminf _{n \rightarrow \infty}\left\|x_{n}-x\right\|<\liminf _{n \rightarrow \infty}\left\|x_{n}-y\right\|$ holds for every $y \in H$ with $y \neq x$. Let C be a nonempty closed convex subset of H and let T be a mapping of C into itself. T is said to be firmly nonexpansive if $\|T x-T y\|^{2} \leq$ $\|x-y\|^{2}-\|(I-T) x-(I-T) y\|^{2}$ for every $x, y \in C . T$ is said to be nonexpansive if $\|T x-T y\| \leq\|x-y\|$ for each $x, y \in C$. If T is firmly nonexpansive, T is nonexpansive. We know that the metric projection P_{C} of H onto C is firmly nonexpansive and for $x \in H$ and $z \in C, z=P_{C} x$ is equivalent to $(x-z, z-u) \geq 0$ for all $u \in C$. It is known that $F(T)$ is closed and convex if T is nonexpansive of C into itself. We have the following lemma by Opial's condition; see [5].

Lemma 2.1. Let C be a nonempty closed convex subset of H and let T be a nonexpansive mapping of C into itself such that $F(T) \neq \emptyset$. Then, $T_{n}=T(\forall n \in$ $N)$ satisfy the conditions (I) and (II) with $a_{n}=0(\forall n \in N)$.

Proof. By $T_{n}=T_{n+1}$ for every $n \in \mathbf{N}$, (I) holds. Let $\left\{z_{n}\right\}$ be a bounded sequence in C such that $\lim _{n \rightarrow \infty}\left\|z_{n}-T z_{n}\right\|=0$. Without loss of generality, let $z_{n} \rightharpoonup w$. Suppose that $w \neq T w$. By Opial's condition,

$$
\begin{aligned}
\liminf _{n \rightarrow \infty}\left\|z_{n}-w\right\| & <\liminf _{n \rightarrow \infty}\left\|z_{n}-T w\right\| \leq \liminf _{n \rightarrow \infty}\left(\left\|z_{n}-T z_{n}\right\|+\left\|T z_{n}-T w\right\|\right) \\
& \leq \liminf _{n \rightarrow \infty}\left(\left\|z_{n}-T z_{n}\right\|+\left\|z_{n}-w\right\|\right)=\liminf _{n \rightarrow \infty}\left\|z_{n}-w\right\|
\end{aligned}
$$

This is a contradiction. So, $\omega_{w}\left(z_{n}\right) \subset F(T)$.
An operator $A: H \longrightarrow 2^{H}$ is said to be monotone if $\left(x_{1}-x_{2}, y_{1}-y_{2}\right) \geq 0$ whenever $y_{1} \in A x_{1}$ and $y_{2} \in A x_{2}$. A monotone operator A is said to be maximal if the graph of A is not properly contained in the graph of any other monotone operator. It is known that a monotone operator A is maximal if and only if $R(I+\lambda A)=H$ for every $\lambda>0$, where $R(I+\lambda A)$ is the range of $I+\lambda A$. We also know that a monotone operator A is maximal if and only if for $(u, v) \in H \times H$, $(x-u, y-v) \geq 0$ for every $(x, y) \in A$ implies $v \in A u$. And we have that for a maximal monotone operator, $A^{-1} 0=\{x \in H: 0 \in A x\}$ is closed and convex. If A is monotone, then we can define, for each $\lambda>0$, a mapping $J_{\lambda}: R(I+\lambda A) \longrightarrow$ $D(A)$ by $J_{\lambda}=(I+\lambda A)^{-1}$, where $D(A)$ is the domain of $A . J_{\lambda}$ is called the resolvent of A. We also define the Yosida approximation A_{λ} by $A_{\lambda}=\left(I-J_{\lambda}\right) / \lambda$. We know that $A^{-1} 0=F\left(J_{\lambda}\right)$ holds and J_{λ} is firmly nonexpansive for every $\lambda>0$. It is also known that for $\lambda>0,\left\|A_{\lambda} x-A_{\lambda} y\right\| \leq \frac{2}{\lambda}\|x-y\|$ for each $x, y \in R(I+\lambda A)$; see [33, 34] for more details. We have the following results.

Lemma 2.2. Let $A: H \longrightarrow 2^{H}$ be a maximal monotone operator such that $A^{-1} 0 \neq \emptyset$. Then, the following hold:
(i) $T_{n}=J_{\lambda_{n}}(\forall n \in \boldsymbol{N})$ with $\left\{\lambda_{n}\right\} \subset(0, \infty), \liminf _{n \rightarrow \infty} \lambda_{n}>0$ and $\sum_{n=1}^{\infty} \mid \lambda_{n}-$ $\lambda_{n+1} \mid<\infty$ satisfy the conditions (I) and (II) with $a_{n}=\left|\lambda_{n}-\lambda_{n+1}\right|(\forall n \in$ $N)$;
(ii) $T_{n}=J_{\lambda_{n}}(\forall n \in N)$ with $\left\{\lambda_{n}\right\} \subset(0, \infty)$ and $\lim _{n \rightarrow \infty} \lambda_{n}=\infty$ satisfy the condition (III).

Proof. (i). By [6, Lemma 2.1], we have

$$
\left\|J_{\lambda_{n}} x-J_{\lambda_{n+1}} x\right\| \leq \frac{\left|\lambda_{n}-\lambda_{n+1}\right|}{\lambda_{n}}\left\|x-J_{\lambda_{n}} x\right\| \leq \frac{\left|\lambda_{n}-\lambda_{n+1}\right|}{c}\{2\|x-u\|\}
$$

for every $n \in \mathbf{N}$ and $x \in H$, where $u \in A^{-1} 0$ and $c=\inf _{n \in \mathbf{N}} \lambda_{n}(>0)$. So, for each bounded subset B of H, there exists $M_{B}>\frac{2}{c} \sup _{x \in B}\|x-u\|$ such that $\left\|T_{n} x-T_{n+1} x\right\| \leq a_{n} M_{B}$ for all $n \in \mathbf{N}$ and $x \in B$, where $a_{n}=\left|\lambda_{n}-\lambda_{n+1}\right|(\forall n \in \mathbf{N})$. Next, let $\left\{z_{n}\right\}$ be a bounded sequence in H such that $\lim _{n \rightarrow \infty}\left\|z_{n}-J_{\lambda_{n}} z_{n}\right\|=0$. Without loss of generality, let $z_{n} \rightharpoonup w$. Since A is monotone, we get
$\left(J_{\lambda_{n}} z_{n}-u,-v\right) \geq \frac{1}{\lambda_{n}}\left(J_{\lambda_{n}} z_{n}-u, J_{\lambda_{n}} z_{n}-z_{n}\right) \geq-\frac{1}{c}\left\|J_{\lambda_{n}} z_{n}-u\right\| \cdot\left\|J_{\lambda_{n}} z_{n}-z_{n}\right\|$
for every $(u, v) \in A$ and $n \in \mathbf{N} . J_{\lambda_{n}} z_{n} \rightharpoonup w$ and $\left\{J_{\lambda_{n}} z_{n}-u\right\}$ is bounded. So, we get $(w-u,-v) \geq 0$ for all $(u, v) \in A$ which implies $w \in A^{-1} 0$ by maximality of A. Therefore, $\omega_{w}\left(z_{n}\right) \subset A^{-1} 0=\cap_{n=1}^{\infty} F\left(T_{n}\right)$.
(ii). Let $\left\{z_{n}\right\} \subset H$ be a bounded sequence such that $\lim _{n \rightarrow \infty}\left\|z_{n+1}-J_{\lambda_{n}} z_{n}\right\|=0$. Let $m \in \mathbf{N}$. By [20, Corollary 3.4], we have

$$
\begin{aligned}
\left\|z_{n+1}-J_{\lambda_{m}} z_{n+1}\right\| \leq & \left\|z_{n+1}-J_{\lambda_{n}} z_{n}\right\|+\left\|J_{\lambda_{n}} z_{n}-J_{\lambda_{m}} J_{\lambda_{n}} z_{n}\right\| \\
& +\left\|J_{\lambda_{m}} J_{\lambda_{n}} z_{n}-J_{\lambda_{m}} z_{n+1}\right\| \\
\leq & 2\left\|z_{n+1}-J_{\lambda_{n}} z_{n}\right\|+\frac{\lambda_{m}}{\lambda_{n}}\left\|z_{n}-J_{\lambda_{n}} z_{n}\right\| \\
\leq & 2\left\|z_{n+1}-J_{\lambda_{n}} z_{n}\right\|+\frac{\lambda_{m}}{\lambda_{n}}\left\{2\left\|z_{n}-u\right\|\right\}
\end{aligned}
$$

for every $n \in \mathbf{N}$, where $u \in A^{-1} 0$. Since a sequence $\left\{z_{n}-u\right\}$ is bounded and $\lim _{n \rightarrow \infty} \lambda_{n}=\infty$, we have $\lim _{n \rightarrow \infty}\left\|z_{n}-J_{\lambda_{m}} z_{n}\right\|=0$ and hence $\omega_{w}\left(z_{n}\right) \subset A^{-1} 0=$ $\cap_{n=1}^{\infty} F\left(T_{n}\right)$ by Opial's condition.

Let $\alpha>0$ and C be a nonempty closed convex subset of H. An operator $A: C \longrightarrow H$ is said to be α-inverse-strongly-monotone [4, 16, 18] if $(x-y, A x-$ $A y) \geq \alpha\|A x-A y\|^{2}$ for all $x, y \in C$. Let $A: H \longrightarrow H$ be an α-inverse-stronglymonotone operator and let $B: H \longrightarrow 2^{H}$ be a maximal monotone operator such that $(A+B)^{-1} 0 \neq \emptyset$. Then, we know that $A+B$ is maximal monotone and for every $\lambda>0,(A+B)^{-1} 0=F\left(J_{\lambda}^{B}(I-\lambda A)\right)$, where J_{λ}^{B} is the resolvent of B. It is also known that $J_{\lambda}^{B}(I-\lambda A)$ is nonexpansive of H into itself when $0<\lambda \leq 2 \alpha$; see $[18,19]$. We have the following result.

Lemma 2.3. Let $\alpha>0$. Let $A: H \longrightarrow H$ be an α-inverse-strongly-monotone operator and let $B: H \longrightarrow 2^{H}$ be a maximal monotone operator such that $(A+$ $B)^{-1} 0 \neq \emptyset$. Then, $T_{n}=J_{\lambda_{n}}^{B}\left(I-\lambda_{n} A\right)(\forall n \in \boldsymbol{N})$ with $\left\{\lambda_{n}\right\} \subset[a, 2 \alpha]$ for some $a \in(0,2 \alpha)$ and $\sum_{n=1}^{\infty}\left|\lambda_{n}-\lambda_{n+1}\right|<\infty$ satisfy the conditions (I) and (II) with $a_{n}=\left|\lambda_{n}-\lambda_{n+1}\right|(\forall n \in N)$.

Proof. Let $u \in(A+B)^{-1} 0$ and $\lambda_{n}>0$. Then we have $J_{\lambda_{n}}^{B}\left(I-\lambda_{n} A\right) u=u$. This implies $A_{\lambda_{n}}^{B}\left(I-\lambda_{n} A\right) u=-A u$ for all $n \in \mathbf{N}$, where $A_{\lambda_{n}}^{B}$ is the Yosida approximation of B. So, by [6, Lemma 2.1], we get

$$
\begin{aligned}
&\left\|J_{\lambda_{n}}^{B}\left(I-\lambda_{n} A\right) x-J_{\lambda_{n+1}}^{B}\left(I-\lambda_{n+1} A\right) x\right\| \\
& \leq\left\|J_{\lambda_{n+1}}^{B}\left(I-\lambda_{n+1} A\right) x-J_{\lambda_{n}}^{B}\left(I-\lambda_{n+1} A\right) x\right\| \\
&+\left\|J_{\lambda_{n}}^{B}\left(I-\lambda_{n+1} A\right) x-J_{\lambda_{n}}^{B}\left(I-\lambda_{n} A\right) x\right\| \\
& \leq \frac{\left|\lambda_{n}-\lambda_{n+1}\right|}{\lambda_{n+1}}\left\|\left(I-\lambda_{n+1} A\right) x-J_{\lambda_{n+1}}^{B}\left(I-\lambda_{n+1} A\right) x\right\|+\left|\lambda_{n}-\lambda_{n+1}\right|\|A x\| \\
& \leq\left|\lambda_{n}-\lambda_{n+1}\right|\left\|A_{\lambda_{n+1}}^{B}\left(I-\lambda_{n+1} A\right) x\right\|+\left|\lambda_{n}-\lambda_{n+1}\right|\left(\frac{1}{\alpha}\|x-u\|+\|A u\|\right) \\
& \leq\left|\lambda_{n}-\lambda_{n+1}\right|\left\{\left\|A_{\lambda_{n+1}}^{B}\left(I-\lambda_{n+1} A\right) x+A u\right\|+\|A u\|\right\} \\
&+\left|\lambda_{n}-\lambda_{n+1}\right|\left(\frac{1}{\alpha}\|x-u\|+\|A u\|\right) \\
&=\left|\lambda_{n}-\lambda_{n+1}\right|\left\{\left\|A_{\lambda_{n+1}}^{B}\left(I-\lambda_{n+1} A\right) x-A_{\lambda_{n+1}}^{B}\left(I-\lambda_{n+1} A\right) u\right\|+\|A u\|\right. \\
&\left.+\left(\frac{1}{\alpha}\|x-u \mid+\| A u \|\right)\right\} \\
& \leq\left|\lambda_{n}-\lambda_{n+1}\right|\left\{\frac{2}{\lambda_{n+1}}\left\|\left(I-\lambda_{n+1} A\right) x-\left(I-\lambda_{n+1} A\right) u\right\|+\|A u\|\right. \\
&\left.+\left(\frac{1}{\alpha}\|x-u\|+\|A u\|\right)\right\} \\
& \leq\left|\lambda_{n}-\lambda_{n+1}\right|\left\{\frac{2}{\lambda_{n+1}}\left(\|x-u\|+\lambda_{n+1}\|A x-A u\|\right)+\|A u\|\right. \\
&\left.+\left(\frac{1}{\alpha}\|x-u\|+\|A u\|\right)\right\} \\
& \leq\left|\lambda_{n}-\lambda_{n+1}\right|\left\{\frac{2}{a}\|x-u\|+\frac{2}{\alpha}\|x-u\|+\|A u\|+\left(\frac{1}{\alpha}\|x-u\|+\|A u\|\right)\right\} \\
&=\left|\lambda_{n}-\lambda_{n+1}\right|\left\{\left(\frac{2}{a}+\frac{3}{\alpha}\right)\|x-u\|+2\|A u\|\right\}
\end{aligned}
$$

for each $n \in \mathbf{N}$ and $x \in H$. So, for every bounded subset B of H, there exists $M_{B}>\sup _{x \in B}\left\{\left(\frac{2}{a}+\frac{3}{\alpha}\right)\|x-u\|+2\|A u\|\right\}$ such that $\left\|T_{n} x-T_{n+1} x\right\| \leq a_{n} M_{B}$ for all $n \in \mathbf{N}$ and $x \in B$, where $a_{n}=\left|\lambda_{n}-\lambda_{n+1}\right|(\forall n \in \mathbf{N})$. Next, let $\left\{z_{n}\right\}$ be a bounded sequence in H such that $\lim _{n \rightarrow \infty}\left\|z_{n}-J_{\lambda_{n}}^{B}\left(I-\lambda_{n} A\right) z_{n}\right\|=0$. Without loss of generality, let $z_{n} \rightharpoonup w$. Let $v_{n}=J_{\lambda_{n}}^{B}\left(I-\lambda_{n} A\right) z_{n}$. Then, we obtain
$\left(v_{n}-u, \frac{1}{\lambda_{n}}\left\{\left(z_{n}-\lambda_{n} A z_{n}\right)-v_{n}\right\}+A u-v\right) \geq 0$ and hence

$$
\begin{aligned}
\left(v_{n}-u,-v\right) & \geq\left(v_{n}-u, \frac{1}{\lambda_{n}}\left(v_{n}-z_{n}\right)+A z_{n}-A u\right) \\
& =\frac{1}{\lambda_{n}}\left(v_{n}-u,\left(I-\lambda_{n} A\right) v_{n}-\left(I-\lambda_{n} A\right) z_{n}\right)+\left(v_{n}-u, A v_{n}-A u\right) \\
& \geq-\frac{1}{a}\left\|v_{n}-u\right\| \cdot\left\|\left(I-\lambda_{n} A\right) v_{n}-\left(I-\lambda_{n} A\right) z_{n}\right\|
\end{aligned}
$$

for all $(u, v) \in A+B$ and $n \in \mathbf{N}$ since A and B are monotone.

$$
\begin{aligned}
\left\|\left(I-\lambda_{n} A\right) v_{n}-\left(I-\lambda_{n} A\right) z_{n}\right\|^{2}= & \left\|v_{n}-z_{n}\right\|^{2}-2 \lambda_{n}\left(v_{n}-z_{n}, A v_{n}-A z_{n}\right) \\
& +\lambda_{n}^{2}\left\|A v_{n}-A z_{n}\right\|^{2} \\
\leq & \left\|v_{n}-z_{n}\right\|^{2}+\lambda_{n}\left(\lambda_{n}-2 \alpha\right)\left\|A v_{n}-A z_{n}\right\|^{2} \\
\leq & \left\|v_{n}-z_{n}\right\|^{2}
\end{aligned}
$$

for each $n \in \mathbf{N}, v_{n} \rightharpoonup w$ and $\left\{v_{n}-u\right\}$ is bounded. So, we have $(w-u,-v) \geq 0$ for every $(u, v) \in A+B$ which implies $w \in(A+B)^{-1} 0$ by maximality of $A+B$. Therefore, $\omega_{w}\left(z_{n}\right) \subset(A+B)^{-1} 0=\cap_{n=1}^{\infty} F\left(T_{n}\right)$.

Let C be a nonempty closed convex subset of H and let A be a mapping of C into H. Then, an element x in C is a solution of the variational inequality of A if $(y-x, A x) \geq 0$ for all $y \in C$. It is known that for $\lambda>0, x \in C$ is a solution of the variational inequality of A if and only if $x=P_{C}(I-\lambda A) x$. We denote by $V I(C, A)$ the set of all solutions of the variational inequality of A. We know that $V I(C, A)$ is a closed convex subset of C if A is monotone and continuous. We have the following two lemmas.

Lemma 2.4. Let $\alpha>0$ and C be a nonempty closed convex subset of H. Let $A: C \longrightarrow H$ be an α-inverse-strongly-monotone operator with $\operatorname{VI}(C, A) \neq \emptyset$. Then, for every $\lambda>0, x \in C$ and $z \in V I(C, A),\left\|P_{C}(I-\lambda A) x-z\right\|^{2} \leq \| x-$ $z\left\|^{2}-\frac{2 \alpha-\lambda}{2 \alpha}\right\| x-P_{C}(I-\lambda A) x \|^{2}$.
Proof. Let $\lambda>0, x \in C$ and $z \in V I(C, A)$. We have

$$
\begin{aligned}
&\left\|P_{C}(I-\lambda A) x-z\right\|^{2} \\
& \leq\|(I-\lambda A) x-(I-\lambda A) z\|^{2}-\left\|\left(I-P_{C}\right)(I-\lambda A) x-\left(I-P_{C}\right)(I-\lambda A) z\right\|^{2} \\
&=\|(x-z)-\lambda(A x-A z)\|^{2}-\left\|\left(x-P_{C}(I-\lambda A) x\right)-\lambda(A x-A z)\right\|^{2} \\
& \leq\|x-z\|^{2}-2 \alpha \lambda\|A x-A z\|^{2}+2 \lambda\|A x-A z\| \cdot\left\|x-P_{C}(I-\lambda A) x\right\| \\
&-\left\|x-P_{C}(I-\lambda A) x\right\|^{2} \\
&=\|x-z\|^{2}-2 \alpha \lambda\left\{\|A x-A z\|-\frac{1}{2 \alpha}\left\|x-P_{C}(I-\lambda A) x\right\|\right\}^{2} \\
&-\frac{2 \alpha-\lambda}{2 \alpha}\left\|x-P_{C}(I-\lambda A) x\right\|^{2} \\
&\|x-z\|^{2}-\frac{2 \alpha-\lambda}{2 \alpha}\left\|x-P_{C}(I-\lambda A) x\right\|^{2} .
\end{aligned}
$$

Lemma 2.5. Let $\alpha>0$ and let C be a nonempty closed convex subset of H. Let A : $C \longrightarrow H$ be an α-inverse-strongly-monotone operator and let T be a nonexpansive mapping of C into itself with $F(T) \cap V I(C, A) \neq \emptyset$. Then the following hold:
(i) $T P_{C}(I-\lambda A)$ and $P_{C}(I-\lambda A) T$ are nonexpansive of C into itself when $0<\lambda \leq 2 \alpha$;
(ii) $T_{n}=T P_{C}\left(I-\lambda_{n} A\right), 0<a \leq \lambda_{n} \leq b<2 \alpha(\forall n \in N)$ and $\sum_{n=1}^{\infty} \mid \lambda_{n}-$ $\lambda_{n+1} \mid<\infty$ satisfy the conditions (I) and (II) with $a_{n}=\left|\lambda_{n}-\lambda_{n+1}\right|(\forall n \in$ N) and $\cap_{n=1}^{\infty} F\left(T_{n}\right)=F(T) \cap V I(C, A)$;
(iii) $T_{n}=P_{C}\left(I-\lambda_{n} A\right) T, 0<a \leq \lambda_{n} \leq b<2 \alpha(\forall n \in N)$ and $\sum_{n=1}^{\infty} \mid \lambda_{n}-$ $\lambda_{n+1} \mid<\infty$ satisfy the conditions (I) and (II) with $a_{n}=\left|\lambda_{n}-\lambda_{n+1}\right|(\forall n \in$ $N)$ and $\cap_{n=1}^{\infty} F\left(T_{n}\right)=F(T) \cap V I(C, A)$.

Proof. (i). We have

$$
\begin{aligned}
& \left\|T P_{C}(I-\lambda A) x-T P_{C}(I-\lambda A) y\right\|^{2} \leq\left\|P_{C}(I-\lambda A) x-P_{C}(I-\lambda A) y\right\|^{2} \\
& \quad \leq\|(x-y)-\lambda(A x-A y)\|^{2} \\
& \quad=\|x-y\|^{2}-2 \lambda(x-y, A x-A y)+\lambda^{2}\|A x-A y\|^{2} \\
& \quad \leq\|x-y\|^{2}-\lambda(2 \alpha-\lambda)\|A x-A y\|^{2} \\
& \quad \leq\|x-y\|^{2}
\end{aligned}
$$

for every $x, y \in C$. So, $T P_{C}(I-\lambda A)$ is nonexpansive. Similarly, $P_{C}(I-\lambda A) T$ is nonexpansive.
(ii). Let $y \in C$. We have

$$
\begin{aligned}
& \left\|T P_{C}\left(I-\lambda_{n} A\right) x-T P_{C}\left(I-\lambda_{n+1} A\right) x\right\| \\
& \quad \leq\left\|P_{C}\left(I-\lambda_{n} A\right) x-P_{C}\left(I-\lambda_{n+1} A\right) x\right\| \leq\left|\lambda_{n}-\lambda_{n+1}\right| \cdot\|A x\| \\
& \quad \leq\left|\lambda_{n}-\lambda_{n+1}\right| \cdot\left(\frac{1}{\alpha}\|x-y\|+\|A y\|\right)
\end{aligned}
$$

for every $n \in \mathbf{N}$ and $x \in C$. So, for each bounded subset B of C, there exists $M_{B}>\sup _{x \in B}\left\{\frac{1}{\alpha}\|x-y\|+\|A y\|\right\}$ such that $\left\|T_{n} x-T_{n+1} x\right\| \leq a_{n} M_{B}$ for all $n \in \mathbf{N}$ and $x \in B$, where $a_{n}=\left|\lambda_{n}-\lambda_{n+1}\right|(\forall n \in \mathbf{N})$. Next, let $z \in F(T) \cap V I(C, A)$. We have $T_{n} z=T P_{C}\left(I-\lambda_{n} A\right) z=T z=z$. So, $F(T) \cap V I(C, A) \subset F\left(T_{n}\right)$ for every $n \in \mathbf{N}$. Conversely, let $z \in F\left(T_{n}\right)$ and $u \in F(T) \cap V I(C, A)$. By Lemma 2.4, we get

$$
\begin{aligned}
\|z-u\|^{2} & =\left\|T P_{C}\left(I-\lambda_{n} A\right) z-T u\right\|^{2} \leq\left\|P_{C}\left(I-\lambda_{n} A\right) z-u\right\|^{2} \\
& \leq\|z-u\|^{2}-\frac{2 \alpha-\lambda_{n}}{2 \alpha}\left\|z-P_{C}\left(I-\lambda_{n} A\right) z\right\|^{2}
\end{aligned}
$$

which implies $z=P_{C}\left(I-\lambda_{n} A\right) z$, that is, $z \in V I(C, A)$. Further, we obtain $T z=$ $T P_{C}\left(I-\lambda_{n} A\right) z=z$ and hence, $z \in F(T) \cap V I(C, A)$. So, $F\left(T_{n}\right) \subset F(T) \cap V I(C, A)$
for each $n \in \mathbf{N}$. Therefore, $F\left(T_{n}\right)=F(T) \cap V I(C, A)$ for all $n \in \mathbf{N}$. Let $\left\{z_{n}\right\}$ be a bounded sequence in C such that $\lim _{n \rightarrow \infty}\left\|z_{n}-T P_{C}\left(I-\lambda_{n} A\right) z_{n}\right\|=0$. Without loss of generality, let $z_{n} \rightharpoonup w$. Let $z \in F(T) \cap V I(C, A)$. By Lemma 2.4, we have

$$
\begin{aligned}
\left\|z_{n}-z\right\|^{2} \leq & \left\|z_{n}-T P_{C}\left(I-\lambda_{n} A\right) z_{n}\right\|\left(\left\|z_{n}-T P_{C}\left(I-\lambda_{n} A\right) z_{n}\right\|\right. \\
& \left.+2\left\|T P_{C}\left(I-\lambda_{n} A\right) z_{n}-z\right\|\right)+\left\|T P_{C}\left(I-\lambda_{n} A\right) z_{n}-z\right\|^{2} \\
\leq & \left\|z_{n}-T P_{C}\left(I-\lambda_{n} A\right) z_{n}\right\|\left(\left\|z_{n}-T P_{C}\left(I-\lambda_{n} A\right) z_{n}\right\|+2\left\|z_{n}-z\right\|\right) \\
& +\left\|z_{n}-z\right\|^{2}-\frac{2 \alpha-\lambda_{n}}{2 \alpha}\left\|z_{n}-P_{C}\left(I-\lambda_{n} A\right) z_{n}\right\|^{2}
\end{aligned}
$$

for every $n \in \mathbf{N}$. So, we get $\lim _{n \rightarrow \infty}\left\|z_{n}-P_{C}\left(I-\lambda_{n} A\right) z_{n}\right\|=0$. Let $v_{n}=$ $P_{C}\left(I-\lambda_{n} A\right) z_{n}$. For all $u \in C$, we obtain $\left(z_{n}-\lambda_{n} A z_{n}-v_{n}, v_{n}-u\right) \geq 0$ and hence,

$$
\begin{aligned}
\left(A u, u-v_{n}\right) & \geq\left(A v_{n}-A u, v_{n}-u\right)+\frac{1}{\lambda_{n}}\left(\left(I-\lambda_{n} A\right) v_{n}-\left(I-\lambda_{n} A\right) z_{n}, v_{n}-u\right) \\
& \geq-\frac{1}{a}\left\|\left(I-\lambda_{n} A\right) v_{n}-\left(I-\lambda_{n} A\right) z_{n}\right\| \cdot\left\|v_{n}-u\right\|
\end{aligned}
$$

for every $n \in \mathbf{N}$ since A is monotone. $\left\|\left(I-\lambda_{n} A\right) v_{n}-\left(I-\lambda_{n} A\right) z_{n}\right\|^{2} \leq \| v_{n}-$ $z_{n}\left\|^{2}+\lambda_{n}\left(\lambda_{n}-2 \alpha\right)\right\| A v_{n}-A z_{n}\left\|^{2} \leq\right\| v_{n}-z_{n} \|^{2}$ for each $n \in \mathbf{N}, v_{n} \rightharpoonup w$ and $\left\{v_{n}-u\right\}$ is bounded. So, we have $(A u, u-w) \geq 0$ for all $u \in C$. By continuity of $A,(A w, u-w) \geq 0$ for every $u \in C$, that is, $w \in V I(C, A)$. Further, from $\left\|z_{n}-T z_{n}\right\| \leq\left\|z_{n}-T P_{C}\left(I-\lambda_{n} A\right) z_{n}\right\|+\left\|P_{C}\left(I-\lambda_{n} A\right) z_{n}-z_{n}\right\|$ for each $n \in \mathbf{N}$, $\lim _{n \rightarrow \infty}\left\|z_{n}-T z_{n}\right\|=0$. By Opial's condition, $w \in F(T)$. Therefore, $\omega_{w}\left(z_{n}\right) \subset$ $F(T) \cap V I(C, A)=\cap_{n=1}^{\infty} F\left(T_{n}\right)$.
(iii). Let $y \in C$. As in (ii), for every bounded subset B of C, there exists $M_{B}>\sup _{x \in B}\left\{\frac{1}{\alpha}\|x-y\|+\|A T y\|\right\}$ such that $\left\|T_{n} x-T_{n+1} x\right\| \leq a_{n} M_{B}$ for all $n \in \mathbf{N}$ and $x \in B$, where $a_{n}=\left|\lambda_{n}-\lambda_{n+1}\right|(\forall n \in \mathbf{N})$. As in the proof of (ii), we have $F\left(T_{n}\right)=F(T) \cap V I(C, A)$ for each $n \in \mathbf{N}$. Let $\left\{z_{n}\right\}$ be a bounded sequence in C such that $\lim _{n \rightarrow \infty}\left\|z_{n}-P_{C}\left(I-\lambda_{n} A\right) T z_{n}\right\|=0$. Without loss of generality, let $z_{n} \rightharpoonup w$. As in (ii), we get $\lim _{n \rightarrow \infty}\left\|T z_{n}-P_{C}\left(I-\lambda_{n} A\right) T z_{n}\right\|=0$. And hence, we obtain $\lim _{n \rightarrow \infty}\left\|z_{n}-T z_{n}\right\|=\lim _{n \rightarrow \infty}\left\|z_{n}-P_{C}\left(I-\lambda_{n} A\right) z_{n}\right\|=0$. So, $w \in F(T) \cap V I(C, A)$. Therefore, $\omega_{w}\left(z_{n}\right) \subset F(T) \cap V I(C, A)=\cap_{n=1}^{\infty} F\left(T_{n}\right)$.

Let C be a nonempty closed convex subset of H. Let S_{1}, S_{2}, \cdots be infinite nonexpansive mappings of C into itself and let $\beta_{1}, \beta_{2}, \cdots$ be real numbers such that $0 \leq \beta_{i} \leq 1$ for every $i \in \mathbf{N}$. Then, for any $n \in \mathbf{N}$, Takahashi [25, 32, 34]
introduced a mapping W_{n} of C into itself as follows:

$$
\begin{aligned}
U_{n . n+1} & =I \\
U_{n, n} & =\beta_{n} S_{n} U_{n, n+1}+\left(1-\beta_{n}\right) I \\
U_{n, n-1} & =\beta_{n-1} S_{n-1} U_{n, n}+\left(1-\beta_{n-1}\right) I \\
\vdots & \\
U_{n, k} & =\beta_{k} S_{k} U_{n, k+1}+\left(1-\beta_{k}\right) I \\
\vdots & \\
U_{n, 2} & =\beta_{2} S_{2} U_{n, 3}+\left(1-\beta_{2}\right) I \\
W_{n}=U_{n, 1} & =\beta_{1} S_{1} U_{n, 2}+\left(1-\beta_{1}\right) I
\end{aligned}
$$

Such a mapping W_{n} is called the W-mapping generated by $S_{n}, S_{n-1}, \cdots, S_{1}$ and $\beta_{n}, \beta_{n-1}, \cdots, \beta_{1}$. We know that if $\cap_{i=1}^{n} F\left(S_{i}\right) \neq \emptyset$ and $0<\beta_{i}<1$ for every $i=2,3, \cdots, n$ and $0<\beta_{1} \leq 1, F\left(W_{n}\right)=\cap_{i=1}^{n} F\left(S_{i}\right)$; see [34, 35]. We also have that if $\cap_{n=1}^{\infty} F\left(S_{n}\right) \neq \emptyset$ and $0<\beta_{i} \leq b<1$ for every $i \in \mathbf{N}$ for some $b \in(0,1)$, $\lim _{n \rightarrow \infty} U_{n, k} x$ exists for every $x \in C$ and $k \in \mathbf{N}$; see [25]. By this, we define a mapping W of C into itself as follows:

$$
W x=\lim _{n \rightarrow \infty} W_{n} x=\lim _{n \rightarrow \infty} U_{n, 1} x
$$

for every $x \in C$. Such a W is called the W-mapping generated by S_{1}, S_{2}, \cdots and $\beta_{1}, \beta_{2}, \cdots$. And we have that if $\cap_{i=1}^{\infty} F\left(S_{i}\right) \neq \emptyset$ and $0<\beta_{i} \leq b<1$ for every $i \in \mathbf{N}$ for some $b \in(0,1), F(W)=\cap_{i=1}^{\infty} F\left(S_{i}\right)$; see [25]. We know the following result.

Lemma 2.6. Let C be a nonempty closed convex subset of H. Let S_{1}, S_{2}, \ldots be infinite nonexpansive mappings of C into itself with $\cap_{n=1}^{\infty} F\left(S_{n}\right) \neq \emptyset$ and let $\beta_{1}, \beta_{2}, \cdots$ be real numbers with $0<\beta_{i} \leq b<1$ for every $i \in \boldsymbol{N}$ for some $b \in(0,1)$. Let W_{n} be the W-mapping generated by $S_{n}, S_{n-1}, \cdots, S_{1}$ and $\beta_{n}, \beta_{n-1}, \cdots, \beta_{1}$ for every $n \in \boldsymbol{N}$. Then, $T_{n}=W_{n}(\forall n \in \boldsymbol{N})$ satisfy the conditions (I) and (II) with $a_{n}=b^{n+1}(\forall n \in N)$.

Proof. Let $u \in \cap_{n=1}^{\infty} F\left(S_{n}\right)$. we have

$$
\begin{aligned}
& \left\|W_{n} x-W_{n+1} x\right\|=\left\|\beta_{1} S_{1} U_{n, 2} x-\beta_{1} S_{1} U_{n+1,2} x\right\| \\
& \quad \leq \beta_{1}\left\|U_{n, 2} x-U_{n+1,2} x\right\| \\
& \quad=\quad \beta_{1}\left\|\beta_{2} S_{2} U_{n, 3} x-\beta_{2} S_{2} U_{n+1,3} x\right\| \leq \beta_{1} \beta_{2}\left\|U_{n, 3} x-U_{n+1,3} x\right\| \\
& \quad \leq \quad \cdots \leq \beta_{1} \beta_{2} \cdots \beta_{n} \beta_{n+1}\left\|x-S_{n+1} x\right\| \leq b^{n+1}\{2\|x-u\|\}
\end{aligned}
$$

for every $n \in \mathbf{N}$ and $x \in C$. So, for each bounded subset B of C, there exists $M_{B}>2 \cdot \sup _{x \in B}\|x-u\|$ such that $\left\|T_{n} x-T_{n+1} x\right\| \leq a_{n} M_{B}$ for all $n \in \mathbf{N}$ and $x \in B$, where $a_{n}=b^{n+1}(\forall n \in \mathbf{N})$. From [14, Theorem 3.1], $\left\{T_{n}\right\}$ satisfies the condition (II).

Let S be a semigroup and let $B(S)$ be the Banach space of all bounded real valued functions on S with supremum norm. Then, for every $s \in S$ and $f \in B(S)$, we can define $r_{s} f \in B(S)$ and $l_{s} f \in B(S)$ by $\left(r_{s} f\right)(t)=f(t s)$ and $\left(l_{s} f\right)(t)=f(s t)$ for each $t \in S$, respectively. We also denote by r_{s}^{*} and l_{s}^{*} the conjugate operators of r_{s} and l_{s}, respectively. Let D be a subspace of $B(S)$ containing constants and let μ be an element of D^{*}. A linear functional μ is called a mean on D if $\|\mu\|=\mu(1)=1$. Let C be a nonempty closed convex subset of H. A family $\mathcal{S}=\{T(s): s \in S\}$ of mappings of C into itself is called a nonexpansive semigroup on C if it satisfies the following conditions:
(i) $T(s t)=T(s) T(t)$ for all $s, t \in S$;
(ii) $\|T(s) x-T(s) y\| \leq\|x-y\|$ for every $s \in S$ and $x, y \in C$.

We denote by $F(\mathcal{S})$ the set of all common fixed points of \mathcal{S}, that is, $F(\mathcal{S})=$ $\cap_{s \in S} F(T(s))$. It is known that $F(\mathcal{S})$ is closed and convex. We have that if $F(\mathcal{S}) \neq \emptyset$ and $(T(\cdot) x, y) \in D$ for every $x \in C$ and $y \in H$, there exists a unique element $T_{\mu} x$ in C such that $\left(T_{\mu} x, z\right)=\mu_{s}(T(s) x, z)$ for all $z \in H$ for any mean μ on D and $x \in C$; see [8,31]. We also know that T_{μ} is a nonexpansive mapping of C into itself. Further, we have the following [1]: Let C be a nonempty bounded closed convex subset of H and let S be a semigroup. Let $\mathcal{S}=\{T(s): s \in S\}$ be a nonexpansive semigroup on C and let D be a subspace of $B(S)$ containing constants and invariant under l_{s} for all $s \in S$. Suppose that for every $x \in C$ and $z \in H$, the function $t \mapsto(T(t) x, z)$ is in D. Let $\left\{\mu_{n}\right\}$ be a sequence of means on D such that $\lim _{n \rightarrow \infty}\left\|\mu_{n}-l_{s}^{*} \mu_{n}\right\|=0$ for each $s \in S$. Then, $\lim _{n \rightarrow \infty} \sup _{x \in C} \| T_{\mu_{n}} x-$ $T(t) T_{\mu_{n}} x \|=0$ for all $t \in S$.
Lemma 2.7. Let C be a nonempty closed convex subset of H and let S be a semigroup. Let $\mathcal{S}=\{T(s): s \in S\}$ be a nonexpansive semigroup on C such that $F(\mathcal{S}) \neq \emptyset$ and let D be a subspace of $B(S)$ containing constants and invariant under l_{s} for all $s \in S$. Suppose that for every $x \in C$ and $z \in H$, the function $t \mapsto$ $(T(t) x, z)$ is in D. Let $\left\{\mu_{n}\right\}$ be a sequence of means on D such that $\lim _{n \rightarrow \infty} \| \mu_{n}-$ $l_{s}^{*} \mu_{n} \|=0$ for each $s \in S$. Then, $T_{n}=T_{\mu_{n}}(\forall n \in N)$ satisfy the condition (III) with $\cap_{n=1}^{\infty} F\left(T_{n}\right)=F(\mathcal{S})$.

Proof. $F(\mathcal{S}) \subset \cap_{n=1}^{\infty} F\left(T_{n}\right)$ is trivial. Let $u \in \cap_{n=1}^{\infty} F\left(T_{n}\right)$. We have $\lim _{n \rightarrow \infty} \| T_{\mu_{n}} u-$ $T(t) T_{\mu_{n}} u \|=0$ for every $t \in S$ and hence, $u \in F(\mathcal{S})$. So, we get $F(\mathcal{S})=$ $\cap_{n=1}^{\infty} F\left(T_{n}\right)$. Next, let $\left\{z_{n}\right\} \subset C$ be a bounded sequence such that $\lim _{n \rightarrow \infty} \| z_{n+1}-$ $T_{\mu_{n}} z_{n} \|=0$. We obtain

$$
\begin{aligned}
\left\|z_{n+1}-T(t) z_{n+1}\right\| \leq & \left\|z_{n+1}-T_{\mu_{n}} z_{n}\right\|+\left\|T_{\mu_{n}} z_{n}-T(t) T_{\mu_{n}} z_{n}\right\| \\
& +\left\|T(t) T_{\mu_{n}} z_{n}-T(t) z_{n+1}\right\| \\
\leq & 2\left\|z_{n+1}-T_{\mu_{n}} z_{n}\right\|+\left\|T_{\mu_{n}} z_{n}-T(t) T_{\mu_{n}} z_{n}\right\|
\end{aligned}
$$

for every $t \in S$ and $n \in \mathbf{N}$. Since we have $\lim _{n \rightarrow \infty}\left\|T_{\mu_{n}} z_{n}-T(t) T_{\mu_{n}} z_{n}\right\|=0$ for all $t \in S, \lim _{n \rightarrow \infty}\left\|z_{n}-T(t) z_{n}\right\|=0$ for each $t \in S$. So, $\left\{T_{n}\right\}$ satisfies the condition (III) by Opial's condition.

Let C be a nonempty closed convex subset of H. A family $\mathcal{S}=\{T(s)$: $0 \leq s<\infty\}$ of mappings of C into itself is called a one-parameter nonexpansive semigroup on C if it satisfies the following conditions:
(i) $T(0) x=x$ for all $x \in C$;
(ii) $T(s+t)=T(s) T(t)$ for every $s, t \geq 0$;
(iii) $\|T(s) x-T(s) y\| \leq\|x-y\|$ for each $s \geq 0$ and $x, y \in C$;
(iv) for all $x \in C, s \longmapsto T(s) x$ is continuous.

3 Main Results

Using an idea of [37] (see also [34, Theorem 5.1.2]), we have the following two theorems.

Theorem 3.1. Let C be a nonempty closed convex subset of H and let $\left\{T_{n}\right\}$ be a family of nonexpansive mappings of C into itself such that $F:=\cap_{n=1}^{\infty} F\left(T_{n}\right) \neq \emptyset$ which satisfies the conditions (I) and (II). Let $\left\{x_{n}\right\}$ be a sequence generated by (1), where $\left\{\alpha_{n}\right\} \subset[0,1)$ and $\left\{\beta_{n}\right\} \subset[0,1)$ satisfy $\lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \beta_{n}=0$, $\prod_{n=1}^{\infty}\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)=0$ and $\sum_{n=1}^{\infty}\left(\left|\alpha_{n}-\alpha_{n+1}\right|+\left|\beta_{n}-\beta_{n+1}\right|\right)<\infty$. Then, $\left\{x_{n}\right\}$ converges strongly to $P_{F} x$, where P_{F} is the metric projection of H onto F.

Proof. Let $u \in F$. We have $\left\|x_{n}-u\right\| \leq\|x-u\|$ for every $n \in \mathbf{N}$. In fact, suppose that $\left\|x_{n}-u\right\| \leq\|x-u\|$ for some $n \in \mathbf{N}$. We get

$$
\begin{aligned}
\left\|x_{n+1}-u\right\| & =\left\|\alpha_{n} x+\left(1-\alpha_{n}\right) T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)-u\right\| \\
& \leq \alpha_{n}\|x-u\|+\left(1-\alpha_{n}\right)\left\{\beta_{n}\|x-u\|+\left(1-\beta_{n}\right)\left\|x_{n}-u\right\|\right\} \\
& \leq\|x-u\|
\end{aligned}
$$

So, $\left\{x_{n}\right\}$ is bounded. Next, we obtain

$$
\begin{aligned}
\| x_{n+1} & -x_{n} \| \\
= & \| \alpha_{n} x+\left(1-\alpha_{n}\right) T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)-\alpha_{n-1} x \\
& -\left(1-\alpha_{n-1}\right) T_{n-1}\left(\beta_{n-1} x+\left(1-\beta_{n-1}\right) x_{n-1}\right) \| \\
= & \|\left(\alpha_{n}-\alpha_{n-1}\right) x+\left(1-\alpha_{n}\right)\left\{T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)-T_{n-1}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)\right\} \\
& +\left(1-\alpha_{n}\right)\left\{T_{n-1}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)-T_{n-1}\left(\beta_{n-1} x+\left(1-\beta_{n-1}\right) x_{n-1}\right)\right\} \\
& \quad+\left(\alpha_{n-1}-\alpha_{n}\right) T_{n-1}\left(\beta_{n-1} x+\left(1-\beta_{n-1}\right) x_{n-1}\right) \| \\
\leq \quad \mid & \alpha_{n}-\alpha_{n-1} \mid \cdot\left\|x-T_{n-1}\left(\beta_{n-1} x+\left(1-\beta_{n-1}\right) x_{n-1}\right)\right\| \\
& +\left(1-\alpha_{n}\right)\left\|T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)-T_{n-1}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)\right\| \\
& \quad+\left(1-\alpha_{n}\right)\left\|\left\{\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right\}-\left\{\beta_{n-1} x+\left(1-\beta_{n-1}\right) x_{n-1}\right\}\right\| \\
\leq \quad \mid & \alpha_{n}-\alpha_{n-1} \mid \cdot M_{1}+\left(1-\alpha_{n}\right)\left\|T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)-T_{n-1}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)\right\| \\
& +\left(1-\alpha_{n}\right)\left\{\left|\beta_{n}-\beta_{n-1}\right| \cdot\left(\|x\|+\left\|x_{n-1}\right\|\right)+\left(1-\beta_{n}\right)\left\|x_{n}-x_{n-1}\right\|\right\}
\end{aligned}
$$

for each $n=2,3, \cdots$, where $M_{1}=\sup _{n \in \mathbf{N} \backslash\{1\}}\left\|x-T_{n-1}\left(\beta_{n-1} x+\left(1-\beta_{n-1}\right) x_{n-1}\right)\right\|$. Since a sequence $\left\{\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right\}$ is bounded, there exists $M_{2}>0$ such that

$$
\left\|T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)-T_{n-1}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)\right\| \leq a_{n-1} M_{2}
$$

for all $n=2,3, \cdots$ by the condition (I). Therefore, we get

$$
\begin{align*}
\left\|x_{n+1}-x_{n}\right\| \leq & \left(\left|\alpha_{n}-\alpha_{n-1}\right|+\left|\beta_{n}-\beta_{n-1}\right|+a_{n-1}\right) M \\
& +\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)\left\|x_{n}-x_{n-1}\right\| \tag{3.1}
\end{align*}
$$

for every $n=2,3, \cdots$, where $M=\max \left\{M_{1}, M_{2}, \sup _{n \in \mathbf{N} \backslash\{1\}}\left\{\|x\|+\left\|x_{n-1}\right\|\right\}\right\}$. Let $m, n \in \mathbf{N}$. By (2), we obtain

$$
\begin{aligned}
&\left\|x_{n+m+1}-x_{n+m}\right\| \\
& \leq\left(\left|\alpha_{n+m}-\alpha_{n+m-1}\right|+\left|\beta_{n+m}-\beta_{n+m-1}\right|+a_{n+m-1}\right) M \\
&+\left(1-\alpha_{n+m}\right)\left(1-\beta_{n+m}\right)\left\|x_{n+m}-x_{n+m-1}\right\| \\
& \leq\left(\left|\alpha_{n+m}-\alpha_{n+m-1}\right|+\left|\beta_{n+m}-\beta_{n+m-1}\right|+a_{n+m-1}\right) M \\
&+\left(1-\alpha_{n+m}\right)\left(1-\beta_{n+m}\right)\left\{\left(\left|\alpha_{n+m-1}-\alpha_{n+m-2}\right|\right.\right. \\
&\left.+\left|\beta_{n+m-1}-\beta_{n+m-2}\right|+a_{n+m-2}\right) M \\
&\left.+\left(1-\alpha_{n+m-1}\right)\left(1-\beta_{n+m-1}\right)\left\|x_{n+m-1}-x_{n+m-2}\right\|\right\} \\
& \leq\left\{\left(\left|\alpha_{n+m}-\alpha_{n+m-1}\right|+\left|\alpha_{n+m-1}-\alpha_{n+m-2}\right|\right)\right. \\
&\left.+\left(\left|\beta_{n+m}-\beta_{n+m-1}\right|+\left|\beta_{n+m-1}-\beta_{n+m-2}\right|\right)+\left(a_{n+m-1}+a_{n+m-2}\right)\right\} M \\
&+\left(1-\alpha_{n+m}\right)\left(1-\beta_{n+m}\right)\left(1-\alpha_{n+m-1}\right)\left(1-\beta_{n+m-1}\right)\left\|x_{n+m-1}-x_{n+m-2}\right\| \\
& \leq \cdots \\
& \leq M \cdot \sum_{k=m}^{n+m-1}\left(\left|\alpha_{k+1}-\alpha_{k}\right|+\left|\beta_{k+1}-\beta_{k}\right|+a_{k}\right) \\
&+\left\|x_{m+1}-x_{m}\right\| \cdot \prod_{k=m+1}^{n+m}\left(1-\alpha_{k}\right)\left(1-\beta_{k}\right) .
\end{aligned}
$$

So, we have

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\| & =\limsup _{n \rightarrow \infty}\left\|x_{n+m+1}-x_{n+m}\right\| \\
& \leq M \cdot \sum_{k=m}^{\infty}\left(\left|\alpha_{k+1}-\alpha_{k}\right|+\left|\beta_{k+1}-\beta_{k}\right|+a_{k}\right)
\end{aligned}
$$

for each $m \in \mathbf{N}$. Therefore, we get $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$. It follows from

$$
\begin{aligned}
\left\|x_{n}-T_{n} x_{n}\right\| & \leq\left\|x_{n}-T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)\right\|+\left\|T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)-T_{n} x_{n}\right\| \\
& \leq\left\|x_{n+1}-x_{n}\right\|+\alpha_{n}\left\|x-T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)\right\|+\beta_{n}\left\|x-x_{n}\right\|
\end{aligned}
$$

for all $n \in \mathbf{N}$ that $\lim _{n \rightarrow \infty}\left\|x_{n}-T_{n} x_{n}\right\|=0$. By the condition (II), we get $\omega_{w}\left(x_{n}\right) \subset F$. From $\lim _{n \rightarrow \infty}\left\|x_{n}-T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)\right\|=0$,
$\underset{n \rightarrow \infty}{\limsup }\left(x-P_{F} x, T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)-P_{F} x\right)=\limsup _{n \rightarrow \infty}\left(x-P_{F} x, x_{n}-P_{F} x\right)$.

There exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $\limsup _{n \rightarrow \infty}\left(x-P_{F} x, x_{n}-\right.$ $\left.P_{F} x\right)=\lim _{k \rightarrow \infty}\left(x-P_{F} x, x_{n_{k}}-P_{F} x\right)$. Since $\left\{x_{n_{k}}\right\}$ is bounded, we may assume that $x_{n_{k}} \rightharpoonup z \in F$. So, we obtain

$$
\limsup _{n \rightarrow \infty}\left(x-P_{F} x, x_{n}-P_{F} x\right)=\left(x-P_{F} x, z-P_{F} x\right) \leq 0
$$

Let $\varepsilon>0$. There exists $m_{0} \in \mathbf{N}$ such that $\alpha_{n}\left\|x-P_{F} x\right\|^{2}<\frac{\varepsilon}{2}, \beta_{n}\left\|x-P_{F} x\right\|^{2}<\frac{\varepsilon}{2}$, $\left(x-P_{F} x, T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)-P_{F} x\right)<\frac{\varepsilon}{4}$ and $\left(x-P_{F} x, x_{n}-P_{F} x\right)<\frac{\varepsilon}{4}$ for every $n \geq m_{0}$. So, we have

$$
\begin{aligned}
\| x_{n+1} & -P_{F} x\left\|^{2}=\right\| \alpha_{n}\left(x-P_{F} x\right)+\left(1-\alpha_{n}\right)\left\{T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)-P_{F} x\right\} \|^{2} \\
= & \alpha_{n}^{2}\left\|x-P_{F} x\right\|^{2}+\left(1-\alpha_{n}\right)^{2}\left\|T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)-P_{F} x\right\|^{2} \\
& +2 \alpha_{n}\left(1-\alpha_{n}\right)\left(x-P_{F} x, T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)-P_{F} x\right) \\
\leq & \alpha_{n}^{2}\left\|x-P_{F} x\right\|^{2}+\left(1-\alpha_{n}\right)^{2}\left\{\beta_{n}^{2}\left\|x-P_{F} x\right\|^{2}+\left(1-\beta_{n}\right)^{2}\left\|x_{n}-P_{F} x\right\|^{2}\right. \\
& \left.+2 \beta_{n}\left(1-\beta_{n}\right)\left(x-P_{F} x, x_{n}-P_{F} x\right)\right\} \\
& +2 \alpha_{n}\left(1-\alpha_{n}\right)\left(x-P_{F} x, T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)-P_{F} x\right) \\
= & \left\{\alpha_{n}^{2}+\beta_{n}^{2}\left(1-\alpha_{n}\right)^{2}\right\}\left\|x-P_{F} x\right\|^{2}+2\left(1-\alpha_{n}\right)^{2} \beta_{n}\left(1-\beta_{n}\right)\left(x-P_{F} x, x_{n}-P_{F} x\right) \\
& +2 \alpha_{n}\left(1-\alpha_{n}\right)\left(x-P_{F} x, T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)-P_{F} x\right) \\
& +\left(1-\alpha_{n}\right)^{2}\left(1-\beta_{n}\right)^{2}\left\|x_{n}-P_{F} x\right\|^{2} \\
\leq & \left\{\alpha_{n}+\beta_{n}\left(1-\alpha_{n}\right)^{2}+\beta_{n}\left(1-\beta_{n}\right)\left(1-\alpha_{n}\right)^{2}+\alpha_{n}\left(1-\alpha_{n}\right)\right\} \frac{\varepsilon}{2} \\
& +\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)\left\|x_{n}-P_{F} x\right\|^{2} \\
\leq & \left\{\alpha_{n}+\beta_{n}\left(1-\alpha_{n}\right)+\beta_{n}\left(1-\alpha_{n}\right)+\alpha_{n}\right\} \frac{\varepsilon}{2}+\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)\left\|x_{n}-P_{F} x\right\|^{2} \\
= & \left\{1-\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)\right\} \varepsilon+\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)\left\|x_{n}-P_{F} x\right\|^{2}
\end{aligned}
$$

for each $n \geq m_{0}$. Therefore, we get

$$
\begin{aligned}
\left\|x_{n+1}-P_{F} x\right\|^{2} \leq & \left\{1-\prod_{k=m_{0}}^{n}\left(1-\alpha_{k}\right)\left(1-\beta_{k}\right)\right\} \varepsilon \\
& +\left\|x_{m_{0}}-P_{F} x\right\|^{2} \prod_{k=m_{0}}^{n}\left(1-\alpha_{k}\right)\left(1-\beta_{k}\right)
\end{aligned}
$$

for all $n \geq m_{0}$. So, we obtain $\lim \sup _{n \rightarrow \infty}\left\|x_{n+1}-P_{F} x\right\|^{2} \leq \varepsilon$. Since ε is arbitrary, we have $x_{n} \rightarrow P_{F} x$.

Theorem 3.2. Let C be a nonempty closed convex subset of H and let $\left\{T_{n}\right\}$ be a family of nonexpansive mappings of C into itself such that $F:=\cap_{n=1}^{\infty} F\left(T_{n}\right) \neq$ \emptyset which satisfies the condition (III). Let $\left\{x_{n}\right\}$ be a sequence generated by (1), where $\left\{\alpha_{n}\right\} \subset[0,1)$ and $\left\{\beta_{n}\right\} \subset[0,1)$ satisfy $\lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\prod_{n=1}^{\infty}\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)=0$. Then, $\left\{x_{n}\right\}$ converges strongly to $P_{F} x$.

Proof. As in the proof of Theorem 3.1, we have $\left\{x_{n}\right\}$ is bounded. And it follows from

$$
\begin{aligned}
\left\|x_{n+1}-T_{n} x_{n}\right\| \leq & \left\|x_{n+1}-T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)\right\| \\
& +\left\|T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)-T_{n} x_{n}\right\| \\
\leq & \alpha_{n}\left\|x-T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)\right\|+\beta_{n}\left\|x-x_{n}\right\|
\end{aligned}
$$

for all $n \in \mathbf{N}$ that $\lim _{n \rightarrow \infty}\left\|x_{n+1}-T_{n} x_{n}\right\|=0$. By the condition (III), we get $\omega_{w}\left(x_{n}\right) \subset F$. Since $\lim _{n \rightarrow \infty}\left\|x_{n+1}-T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)\right\|=0$, we have $\lim \sup _{n \rightarrow \infty}\left(x-P_{F} x, T_{n}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)-P_{F} x\right)=\lim \sup _{n \rightarrow \infty}\left(x-P_{F} x, x_{n}-\right.$ $\left.P_{F} x\right)$. As in the proof of Theorem 3.1, we obtain $x_{n} \rightarrow P_{F} x$.

4 Applications

In this section, using Theorems 3.1 and 3.2 , we improve well-known strong convergence theorems. We first have the following theorem which generalizes the result of [37] by Lemma 2.1 and Theorem 3.1.

Theorem 4.1. Let C be a nonempty closed convex subset of H and let T be a nonexpansive mapping of C into itself such that $F(T) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence generated by $x_{1}=x \in C, x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) T\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)(\forall n \in \boldsymbol{N})$, where $\left\{\alpha_{n}\right\} \subset[0,1)$ and $\left\{\beta_{n}\right\} \subset[0,1)$ satisfy $\lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \beta_{n}=0$, $\prod_{n=1}^{\infty}\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)=0$ and $\sum_{n=1}^{\infty}\left(\left|\alpha_{n}-\alpha_{n+1}\right|+\left|\beta_{n}-\beta_{n+1}\right|\right)<\infty$. Then, $\left\{x_{n}\right\}$ converges strongly to $P_{F(T)} x$.

We get the following theorem for proximal point algorithms (see [23, 12]) by Lemma 2.2 (i) and Theorem 3.1 (see also [17, 38]).

Theorem 4.2. Let $A: H \longrightarrow 2^{H}$ be a maximal monotone operator such that $A^{-1} 0 \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence generated by $x_{1}=x \in H, x_{n+1}=\alpha_{n} x+$ $\left(1-\alpha_{n}\right) J_{\lambda_{n}}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)(\forall n \in N)$, where $\left\{\alpha_{n}\right\} \subset[0,1)$ and $\left\{\beta_{n}\right\} \subset[0,1)$ satisfy $\lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \beta_{n}=0, \prod_{n=1}^{\infty}\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)=0$ and $\sum_{n=1}^{\infty}\left(\mid \alpha_{n}-\right.$ $\alpha_{n+1}\left|+\left|\beta_{n}-\beta_{n+1}\right|\right)<\infty$ and $\left\{\lambda_{n}\right\} \subset(0, \infty)$ satisfies $\liminf _{n \rightarrow \infty} \lambda_{n}>0$ and $\sum_{n=1}^{\infty}\left|\lambda_{n}-\lambda_{n+1}\right|<\infty$. Then, $\left\{x_{n}\right\}$ converges strongly to $P_{A^{-10} 0} x$.

We get the following theorem for proximal point algorithms which generalizes the result of [12] by Lemma 2.2 (ii) and Theorem 3.2.

Theorem 4.3. Let $A: H \longrightarrow 2^{H}$ be a maximal monotone operator such that $A^{-1} 0 \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence generated by $x_{1}=x \in H, x_{n+1}=\alpha_{n} x+(1-$ $\left.\alpha_{n}\right) J_{\lambda_{n}}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)(\forall n \in \boldsymbol{N})$, where $\left\{\alpha_{n}\right\} \subset[0,1)$ and $\left\{\beta_{n}\right\} \subset[0,1)$ satisfy $\lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\prod_{n=1}^{\infty}\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)=0$ and $\left\{\lambda_{n}\right\} \subset(0, \infty)$ satisfies $\lim _{n \rightarrow \infty} \lambda_{n}=\infty$. Then, $\left\{x_{n}\right\}$ converges strongly to $P_{A^{-1} 0} x$.

We have the new theorem for splitting methods by Lemma 2.3 and Theorem 3.1.

Theorem 4.4. Let $\alpha>0$. Let $A: H \longrightarrow H$ be an α-inverse-strongly-monotone operator and let $B: H \longrightarrow 2^{H}$ be a maximal monotone operator such that $(A+$ $B)^{-1} 0 \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence generated by $x_{1}=x \in H, x_{n+1}=\alpha_{n} x+$ $\left(1-\alpha_{n}\right) J_{\lambda}^{B}\left(I-\lambda_{n} A\right)\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)(\forall n \in N)$, where $\left\{\alpha_{n}\right\} \subset[0,1)$ and $\left\{\beta_{n}\right\} \subset[0,1)$ satisfy $\lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \beta_{n}=0, \prod_{n=1}^{\infty}\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)=0$ and $\sum_{n=1}^{\infty}\left(\left|\alpha_{n}-\alpha_{n+1}\right|+\left|\beta_{n}-\beta_{n+1}\right|\right)<\infty$ and $\left\{\lambda_{n}\right\} \subset[a, 2 \alpha]$ for some $a \in(0,2 \alpha)$ satisfies $\sum_{n=1}^{\infty}\left|\lambda_{n}-\lambda_{n+1}\right|<\infty$. Then, $\left\{x_{n}\right\}$ converges strongly to $P_{(A+B)^{-1} 0} x$.

We get the following theorem which generalizes the result of [9] by Lemma 2.5 (i), (ii) and Theorem 3.1.

Theorem 4.5. Let $\alpha>0$ and let C be a nonempty closed convex subset of H. Let $A: C \longrightarrow H$ be an α-inverse-strongly-monotone operator and let T be a nonexpansive mapping of C into itself with $F(T) \cap V I(C, A) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence generated by $x_{1}=x \in C, x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) T P_{C}\left(I-\lambda_{n} A\right)\left(\beta_{n} x+\right.$ $\left.\left(1-\beta_{n}\right) x_{n}\right)(\forall n \in N)$, where $\left\{\alpha_{n}\right\} \subset[0,1)$ and $\left\{\beta_{n}\right\} \subset[0,1)$ satisfy $\lim _{n \rightarrow \infty} \alpha_{n}=$ $\lim _{n \rightarrow \infty} \beta_{n}=0, \prod_{n=1}^{\infty}\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)=0$ and $\sum_{n=1}^{\infty}\left(\left|\alpha_{n}-\alpha_{n+1}\right|+\left|\beta_{n}-\beta_{n+1}\right|\right)<$ ∞ and $\left\{\lambda_{n}\right\} \subset[a, b]$ for some $a, b \in(0,2 \alpha)$ with $a \leq b$ satisfies $\sum_{n=1}^{\infty}\left|\lambda_{n}-\lambda_{n+1}\right|<$ ∞. Then, $\left\{x_{n}\right\}$ converges strongly to $P_{F(T) \cap V I(C, A)} x$.

We also have the following theorem which generalizes the result of [11] by Lemma 2.5 (i), (iii) and Theorem 3.1.

Theorem 4.6. Let $\alpha>0$ and let C be a nonempty closed convex subset of H. Let $A: C \longrightarrow H$ be an α-inverse-strongly-monotone operator and let T be a nonexpansive mapping of C into itself with $F(T) \cap V I(C, A) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence generated by $x_{1}=x \in C, x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) P_{C}\left(I-\lambda_{n} A\right) T\left(\beta_{n} x+\right.$ $\left.\left(1-\beta_{n}\right) x_{n}\right)(\forall n \in N)$, where $\left\{\alpha_{n}\right\} \subset[0,1)$ and $\left\{\beta_{n}\right\} \subset[0,1)$ satisfy $\lim _{n \rightarrow \infty} \alpha_{n}=$ $\lim _{n \rightarrow \infty} \beta_{n}=0, \prod_{n=1}^{\infty}\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)=0$ and $\sum_{n=1}^{\infty}\left(\left|\alpha_{n}-\alpha_{n+1}\right|+\left|\beta_{n}-\beta_{n+1}\right|\right)<$ ∞ and $\left\{\lambda_{n}\right\} \subset[a, b]$ for some $a, b \in(0,2 \alpha)$ with $a \leq b$ satisfies $\sum_{n=1}^{\infty}\left|\lambda_{n}-\lambda_{n+1}\right|<$ ∞. Then, $\left\{x_{n}\right\}$ converges strongly to $P_{F(T) \cap V I(C, A)} x$.

We have the following theorem for the W-mapping by Lemma 2.6 and Theorem 3.1 (see also [25]).

Theorem 4.7. Let C be a nonempty closed convex subset of H. Let S_{1}, S_{2}, \ldots be infinite nonexpansive mappings of C into itself with $\cap_{n=1}^{\infty} F\left(S_{n}\right) \neq \emptyset$ and let $\beta_{1}, \beta_{2}, \cdots$ be real numbers with $0<\beta_{i} \leq b<1$ for every $i \in \boldsymbol{N}$ for some $b \in(0,1)$. Let W_{n} be the W-mapping generated by $S_{n}, S_{n-1}, \cdots, S_{1}$ and $\beta_{n}, \beta_{n-1}, \cdots \beta_{1}$. Let $\left\{x_{n}\right\}$ be a sequence generated by $x_{1}=x \in C, x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) W_{n}\left(\gamma_{n} x+\right.$ $\left.\left(1-\gamma_{n}\right) x_{n}\right)(\forall n \in \boldsymbol{N})$, where $\left\{\alpha_{n}\right\} \subset[0,1)$ and $\left\{\gamma_{n}\right\} \subset[0,1)$ satisfy $\lim _{n \rightarrow \infty} \alpha_{n}=$ $\lim _{n \rightarrow \infty} \gamma_{n}=0, \prod_{n=1}^{\infty}\left(1-\alpha_{n}\right)\left(1-\gamma_{n}\right)=0$ and $\sum_{n=1}^{\infty}\left(\left|\alpha_{n}-\alpha_{n+1}\right|+\left|\gamma_{n}-\gamma_{n+1}\right|\right)<$ ∞. Then, $\left\{x_{n}\right\}$ converges strongly to $P_{\cap_{n=1}^{\infty} F\left(S_{n}\right)} x$.

We have the following theorem for nonexpansive semigroups by Lemma 2.7 and Theorem 3.2 (see also [27]).

Theorem 4.8. Let C be a nonempty closed convex subset of H and let S be a semigroup. Let $\mathcal{S}=\{T(s): s \in S\}$ be a nonexpansive semigroup on C such that $F(\mathcal{S}) \neq \emptyset$ and let D be a subspace of $B(S)$ containing constants and invariant under l_{s} for all $s \in S$. Suppose that for every $x \in C$ and $z \in H$, the function $t \mapsto$ $(T(t) x, z)$ is in D. Let $\left\{\mu_{n}\right\}$ be a sequence of means on D such that $\lim _{n \rightarrow \infty} \| \mu_{n}-$ $l_{s}^{*} \mu_{n} \|=0$ for each $s \in S$. Let $\left\{x_{n}\right\}$ be a sequence generated by $x_{1}=x \in C, x_{n+1}=$ $\alpha_{n} x+\left(1-\alpha_{n}\right) T_{\mu_{n}}\left(\beta_{n} x+\left(1-\beta_{n}\right) x_{n}\right)(\forall n \in N)$, where $\left\{\alpha_{n}\right\} \subset[0,1)$ and $\left\{\beta_{n}\right\} \subset$ $[0,1)$ satisfy $\lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\prod_{n=1}^{\infty}\left(1-\alpha_{n}\right)\left(1-\beta_{n}\right)=0$. Then, $\left\{x_{n}\right\}$ converges strongly to $P_{F(\mathcal{S})^{x}}$.

From Theorem 4.8, we get the following theorems.
Theorem 4.9. ([24]) Let C be a nonempty closed convex subset of H and let T_{1}, T_{2} be nonexpansive mappings of C into itself such that $T_{1} T_{2}=T_{2} T_{1}$ and $F\left(T_{1}\right) \cap F\left(T_{2}\right) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence generated by $x_{1}=x \in C, x_{n+1}=$ $\alpha_{n} x+\left(1-\alpha_{n}\right) \frac{2}{(n+1)(n+2)} \sum_{k=0}^{n} \sum_{i+j=k} T_{1}^{i} T_{2}^{j} x_{n}(\forall n \in N)$, where $\left\{\alpha_{n}\right\} \subset[0,1)$ satisfies $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=0}^{\infty} \alpha_{n}=\infty$. Then, $\left\{x_{n}\right\}$ converges strongly to $P_{F\left(T_{1}\right) \cap F\left(T_{2}\right)} x$.

Proof. Let $S=\{0,1,2, \cdots\} \times\{0,1,2, \cdots\}, \mathcal{S}=\left\{T_{1}^{i} T_{2}^{j}:(i, j) \in S\right\}, D=B(S)$ and $\mu_{n}(f)=\frac{2}{(n+1)(n+2)} \sum_{k=0}^{n} \sum_{i+j=k} f(i, j)$ for every $n \in \mathbf{N}$ and $f \in D$. Then, as in [1, Corollary 3.7], $\left\{\mu_{n}\right\}$ is a sequence of means on D and $\lim _{n \rightarrow \infty} \| \mu_{n}-$ $l_{(l, m)}^{*} \mu_{n} \|=0$ for each $(l, m) \in S$. By Theorem 4.8, we get Theorem 4.9.

Theorem 4.10. ([24]) Let C be a nonempty closed convex subset of H and let $\mathcal{S}=\{T(s): 0 \leq s<\infty\}$ be a one-parameter nonexpansive semigroup on C such that $F(\mathcal{S}) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence generated by $x_{1}=x \in C, x_{n+1}=\alpha_{n} x+$ $\left(1-\alpha_{n}\right) \frac{1}{t_{n}} \int_{0}^{t_{n}} T(s) x_{n} d s(\forall n \in N)$, where $\left\{\alpha_{n}\right\} \subset[0,1)$ satisfies $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=0}^{\infty} \alpha_{n}=\infty$ and $\left\{t_{n}\right\} \subset(0, \infty)$ with $\lim _{n \rightarrow \infty} t_{n}=\infty$. Then, $\left\{x_{n}\right\}$ converges strongly to $P_{F(\mathcal{S})} x$.

Proof. Let $S=\{s \in \mathbf{R}: 0 \leq s\}, \mathcal{S}=\{T(s): s \in S\}$ and let D be the Banach space $C(S)$ of all bounded continuous functions on S with supremum norm. Let $\lambda_{s}(f)=\frac{1}{s} \int_{0}^{s} f(t) d t$ for every $s>0$ and $f \in D$. Then, $\lim _{s \rightarrow \infty}\left\|\lambda_{s}-l_{k}^{*} \lambda_{s}\right\|=0$ for each $k \in(0, \infty)$ from [1, Corollary 3.8]. We also have $T_{\lambda_{s}} x=\frac{1}{s} \int_{0}^{s} T(t) x d t$ for every $x \in C$. By Theorem 4.8, we get Theorem 4.10.

References

[1] S. Atsushiba and W. Takahashi, Approximating common fixed points of nonexpansive semigroups by the Mann iteration process, Ann. Univ. Mariae CurieSklodowska, 51(1997), 1-16.
[2] H. H. Bauschke, The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space, J. Math. Anal. Appl., 202(1996), 150-159.
[3] H. H. Bauschke and P. L. Combettes, A weak-to-strong convergence principle for fejér-monotone methods in Hilbert spaces, Math. Oper. Res., 26(2001), 248-264.
[4] F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl., 20(1967), 197-228.
[5] F. E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Sympos. Pure Math., 100(2), Amer. Math. Soc. Providence, R. I. (1976).
[6] K. Eshita and W. Takahashi, Approximating zero points of accretive operators in general Banach spaces, JP J. Fixed Point Theory Appl., 2(2007), 105-116.
[7] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 73(1967), 957-961.
[8] N. Hirano, K. Kido and W. Takahashi, Nonexpansive retractions and nonlinear ergodic theorems in Banach spaces, Nonlinear Anal., 12(1988), 1269-1281.
[9] H. Iiduka and W. Takahashi, Strong convergence theorems for nonexpansive mappings and inverse- strongly-monotone mappings, Nonlinear Anal., 61(2005), 341-350.
[10] H. Iiduka and W. Takahashi, Strong convergence theorems for nonexpansive nonself-mappings and inverse-strongly-monotone mappings, J. Convex Anal., 11(2004), 69-79.
[11] H. Iiduka and W. Takahashi, Strong and weak convergence theorems by a hybrid steepest descent method in a Hilbert space, in Nonlinear Analysis and Convex Analysis (W. Takahashi and T. Tanaka Eds), Yokohama Publishers, Yokohama, 115-130, 2004.
[12] S. Kamimura and W. Takahashi, Approximating solutions of maximal monotone operators in Hilbert spaces, J. Approx. Theory, 106(2000), 226-240.
[13] S. Kamimura and W. Takahashi, Weak and strong convergence of solutions to accretive operator inclusions and applications, Set-Valued Anal., 8(2000), 361-374.
[14] M. Kikkawa and W. Takahashi, Approximating fixed points of infinite nonexpansive mappings by the hybrid method, J. Optim. Theory Appl., 117(2003), 93-101.
[15] P. L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16(1979), 964-979.
[16] F. Liu and M. Z. Nashed, Regularization of nonlinear ill-posed variational inequalities and convergence rates, Set-Valued Anal., 6(1998), 313-344.
[17] K. Nakajo, Strong convergence to zeros of accretive operators in Banach spaces, J. Nonlinear Convex Anal., 7(2006), 71-81.
[18] K. Nakajo and W. Takahashi, Strong and weak convergence theorems by an improved splitting method, Comm. Appl. Nonlinear Anal., 9(2002), 99-107.
[19] K. Nakajo and W. Takahashi, Approximation of a zero of maximal monotone operators in Hilbert spaces, in Nonlinear Analysis and Convex Analysis (W. Takahashi and T. Tanaka Eds.), Yokohama Publishers, Yokohama, 303-314, 2003.
[20] K. Nakajo, K. Shimoji and W.Takahashi, A weak convergence theorem by products of mappings in Hilbert spaces, in Nonlinear Analysis and Convex Analysis (W. Takahashi and T. Tanaka Eds.), Yokohama Publishers, Yokohama, 381-390, 2004.
[21] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73(1967), 591-597.
[22] G. B. Passty, Ergodic convergence to a zero of the sum of monotone operators in Hilbert space, J. Math. Anal. Appl., 72(1979), 383-390.
[23] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14(1976), 877-898.
[24] T. Shimizu and W. Takahashi, Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl., 211(1997), 71-83.
[25] K. Shimoji and W. Takahashi, Strong convergence to common fixed points of infinite nonexpansive mappings and applications, Taiwanese J. Math., 5(2001), 387-404.
[26] N. Shioji and W. Takahashi, Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc., 125(1997), 3641-3645.
[27] N. Shioji and W. Takahashi, Strong convergence theorems for asymptotically nonexpansive semigroups in Hilbert spaces, Nonlinear Anal., 34(1998), 87-99.
[28] N. Shioji and W. Takahashi, A strong convergence theorem for asymptotically nonexpansive mappings in Banach spaces, Arch. Math., 72(1999), 354-359.
[29] N. Shioji and W. Takahashi, Strong convergence theorems for continuous semigroups in Banach spaces, Math. Japonica, 50(1999), 57-66.
[30] N. Shioji and W. Takahashi, Strong convergence theorems for asymptotically nonexpansive semigroups in Banach spaces, J. Nonlinear Convex Anal., 1(2000), 73-87.
[31] W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc., 81(1981), 253-256.
[32] W. Takahashi, Weak and strong convergence theorems for families of nonexpansive mappings and their applications, Ann. Univ. Mariae CurieSklodowska Sect. A, 51(1997), 277-292.
[33] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
[34] W. Takahashi, Convex Analysis and Approximation of Fixed Points, Yokohama Publishers, Yokohama, 2000(Japanese).
[35] W. Takahashi and K. Shimoji, Convergence theorems for nonexpansive mappings and feasibility problems, Math. Comput. Modelling, 32(2000), 14631471.
[36] W. Takahashi, T. Tamura and M. Toyoda, Approximation of common fixed points of a family of finite nonexpansive mappings in Banach spaces, Sci. Math., 56(2002), 475-480.
[37] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math., 58(1992), 486-491.
[38] H. K. Xu, Strong convergence of an iterative method for nonexpansive and accretive operators, J. Math. Anal. Appl., 314(2006), 631-643.
(Received 25 May 2008)

```
Kazuhide Nakajo
Faculty of Engineering, Tamagawa University,
Tamagawa-Gakuen, Machida-shi,
Tokyo, 194-8610, Japan.
e-mail: nakajo@eng.tamagawa.ac.jp
```

Kazuya Shimoji
Department of Mathematical Sciences,
Faculty of Science, University of the Ryukyus,
Nishihara-cho,
Okinawa, 903-0213, Japan.
e-mail : shimoji@math.u-ryukyu.ac.jp

Wataru Takahashi
Department of Mathematical and Computing Sciences, Tokyo Institute of Technology,
Oh-okayama, Meguro-ku, Tokyo, 152-8552, Japan.
e-mail : wataru@is.titech.ac.jp

[^0]: Copyright (c) 2009 by the Mathematical Association of Thailand. All rights reserved.

