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1 Introduction

Throughout this paper, let H be a real Hilbert space with inner product ( · , · )
and norm ‖ · ‖ and let N and R be the set of all positive integers and the set
of all real numbers, respectively. Let C be a nonempty closed convex subset
of H and let {Tn} be a family of nonexpansive mappings of C into itself with
F := ∩∞

n=1F (Tn) 6= ∅, where F (Tn) is the set of all fixed points of Tn. Halpern [7]
considered the following iteration:

x1 = x ∈ C, xn+1 = αnx + (1 − αn)Tnxn (∀n ∈ N),

where {αn} ⊂ [0, 1). Wittmann [37] proved a strong convergence theorem when
Tn = T (∀n ∈ N), limn→∞ αn = 0,

∑∞
n=1 αn = ∞ and

∑∞
n=1 |αn − αn+1| < ∞,

where T is a nonexpansive mapping of C into itself with F (T ) 6= ∅. Then, Bauschke
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[2], Shimizu and Takahashi [24], Shioji and Takahashi [27], Kamimura and Taka-
hashi [12] and Iiduka and Takahashi [9, 10, 11] studied the strong convergence by
Halpern’s type iteration in Hilbert spaces and Shioji and Takahashi [26, 28, 29, 30],
Kamimura and Takahashi [13], Shimoji and Takahashi [25] and Takahashi, Tamura
and Toyoda [36] studied the strong convergence by Halpern’s type iteration in Ba-
nach spaces. Recently, Bauschke and Combettes [3] considered the following co-
herent condition: For every bounded sequence {zn} ⊂ C,

∑∞
n=1 ‖zn+1−zn‖

2 < ∞
and

∑∞
n=1 ‖zn − Tnzn‖

2 < ∞ imply ωw(zn) ⊂ F , where ωw(zn) is the set of all
weak cluster points of {zn} and proved a weak convergence theorem and a strong
convergence theorem by the hybrid Haugazeau’s method.
Motivated by Halpern’s type iteration and [3], in this paper, we consider the fol-
lowing iteration:

x1 = x ∈ C, xn+1 = αnx + (1 − αn)Tn(βnx + (1 − βn)xn) (∀n ∈ N) (1.1)

where {αn} ⊂ [0, 1) and {βn} ⊂ [0, 1) satisfy limn→∞ αn = limn→∞ βn = 0 and
∏∞

n=1(1 − αn)(1 − βn) = 0. Further, we consider the following conditions:

(I) There exists {an} ⊂ [0,∞) with
∑∞

n=1 an < ∞ such that for every bounded
subset B of C, there exists MB > 0 such that ‖Tnx−Tn+1x‖ ≤ anMB holds
for all n ∈ N and x ∈ B;

(II) for each bounded sequence {zn} ⊂ C, limn→∞ ‖zn − Tnzn‖ = 0 implies
ωw(zn) ⊂ F ;

(III) for every bounded sequence {zn} ⊂ C, limn→∞ ‖zn+1 − Tnzn‖ = 0 implies
ωw(zn) ⊂ F .

Then, we prove that if (i) {αn} and {βn} satisfy
∑∞

n=1(|αn − αn+1| + |βn −
βn+1|) < ∞ and (I) and (II) hold or (ii) (III) holds, {xn} converges strongly
to PF x, where PF is the metric projection onto F . These results generalize the
results of [9, 11, 12, 24, 37]. Further, we get a new result for splitting methods
(see [22, 15, 18] and references therein) by using these results.
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2 Preliminaries

We write xn ⇀ x to indicate that a sequence {xn} converges weakly to x.
Similarly, xn → x will symbolize the strong convergence. We know that H satisfies
Opial’s condition [21], that is, for any sequence {xn} ⊂ H with xn ⇀ x, the
inequality lim infn→∞ ‖xn − x‖ < lim infn→∞ ‖xn − y‖ holds for every y ∈ H
with y 6= x. Let C be a nonempty closed convex subset of H and let T be a
mapping of C into itself. T is said to be firmly nonexpansive if ‖Tx − Ty‖2 ≤
‖x− y‖2 −‖(I −T )x− (I −T )y‖2 for every x, y ∈ C. T is said to be nonexpansive
if ‖Tx − Ty‖ ≤ ‖x − y‖ for each x, y ∈ C. If T is firmly nonexpansive, T is
nonexpansive. We know that the metric projection PC of H onto C is firmly
nonexpansive and for x ∈ H and z ∈ C, z = PCx is equivalent to (x−z, z−u) ≥ 0
for all u ∈ C. It is known that F (T ) is closed and convex if T is nonexpansive of
C into itself. We have the following lemma by Opial’s condition; see [5].

Lemma 2.1. Let C be a nonempty closed convex subset of H and let T be a
nonexpansive mapping of C into itself such that F (T ) 6= ∅. Then, Tn = T (∀n ∈
N) satisfy the conditions (I) and (II) with an = 0 (∀n ∈ N).

Proof. By Tn = Tn+1 for every n ∈ N, (I) holds. Let {zn} be a bounded sequence
in C such that limn→∞ ‖zn − Tzn‖ = 0. Without loss of generality, let zn ⇀ w.
Suppose that w 6= Tw. By Opial’s condition,

lim inf
n→∞

‖zn − w‖ < lim inf
n→∞

‖zn − Tw‖ ≤ lim inf
n→∞

(‖zn − Tzn‖ + ‖Tzn − Tw‖)

≤ lim inf
n→∞

(‖zn − Tzn‖ + ‖zn − w‖) = lim inf
n→∞

‖zn − w‖.

This is a contradiction. So, ωw(zn) ⊂ F (T ).

An operator A : H −→ 2H is said to be monotone if (x1 − x2, y1 − y2) ≥ 0
whenever y1 ∈ Ax1 and y2 ∈ Ax2. A monotone operator A is said to be maximal
if the graph of A is not properly contained in the graph of any other monotone
operator. It is known that a monotone operator A is maximal if and only if
R(I + λA) = H for every λ > 0, where R(I + λA) is the range of I + λA. We also
know that a monotone operator A is maximal if and only if for (u, v) ∈ H × H,
(x − u, y − v) ≥ 0 for every (x, y) ∈ A implies v ∈ Au. And we have that for a
maximal monotone operator, A−10 = {x ∈ H : 0 ∈ Ax} is closed and convex. If
A is monotone, then we can define, for each λ > 0, a mapping Jλ : R(I + λA) −→
D(A) by Jλ = (I + λA)−1, where D(A) is the domain of A. Jλ is called the
resolvent of A. We also define the Yosida approximation Aλ by Aλ = (I − Jλ)/λ.
We know that A−10 = F (Jλ) holds and Jλ is firmly nonexpansive for every λ > 0.
It is also known that for λ > 0, ‖Aλx−Aλy‖ ≤ 2

λ
‖x−y‖ for each x, y ∈ R(I +λA);

see [33, 34] for more details. We have the following results.

Lemma 2.2. Let A : H −→ 2H be a maximal monotone operator such that
A−10 6= ∅. Then, the following hold:
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(i) Tn = Jλn
(∀n ∈ N) with {λn} ⊂ (0,∞), lim infn→∞ λn > 0 and

∑∞
n=1 |λn−

λn+1| < ∞ satisfy the conditions (I) and (II) with an = |λn − λn+1| (∀n ∈
N);

(ii) Tn = Jλn
(∀n ∈ N) with {λn} ⊂ (0,∞) and limn→∞ λn = ∞ satisfy the

condition (III).

Proof. (i). By [6, Lemma 2.1], we have

‖Jλn
x − Jλn+1

x‖ ≤
|λn − λn+1|

λn

‖x − Jλn
x‖ ≤

|λn − λn+1|

c
{2‖x − u‖}

for every n ∈ N and x ∈ H, where u ∈ A−10 and c = infn∈N λn (> 0). So,
for each bounded subset B of H, there exists MB > 2

c
supx∈B ‖x − u‖ such that

‖Tnx−Tn+1x‖ ≤ anMB for all n ∈ N and x ∈ B, where an = |λn−λn+1| (∀n ∈ N).
Next, let {zn} be a bounded sequence in H such that limn→∞ ‖zn − Jλn

zn‖ = 0.
Without loss of generality, let zn ⇀ w. Since A is monotone, we get

(Jλn
zn − u,−v) ≥

1

λn

(Jλn
zn − u, Jλn

zn − zn) ≥ −
1

c
‖Jλn

zn − u‖ · ‖Jλn
zn − zn‖

for every (u, v) ∈ A and n ∈ N. Jλn
zn ⇀ w and {Jλn

zn − u} is bounded. So, we
get (w − u,−v) ≥ 0 for all (u, v) ∈ A which implies w ∈ A−10 by maximality of
A. Therefore, ωw(zn) ⊂ A−10 = ∩∞

n=1F (Tn).
(ii). Let {zn} ⊂ H be a bounded sequence such that limn→∞ ‖zn+1 − Jλn

zn‖ = 0.
Let m ∈ N. By [20, Corollary 3.4], we have

‖zn+1 − Jλm
zn+1‖ ≤ ‖zn+1 − Jλn

zn‖ + ‖Jλn
zn − Jλm

Jλn
zn‖

+‖Jλm
Jλn

zn − Jλm
zn+1‖

≤ 2‖zn+1 − Jλn
zn‖ +

λm

λn

‖zn − Jλn
zn‖

≤ 2‖zn+1 − Jλn
zn‖ +

λm

λn

{2‖zn − u‖}

for every n ∈ N, where u ∈ A−10. Since a sequence {zn − u} is bounded and
limn→∞ λn = ∞, we have limn→∞ ‖zn −Jλm

zn‖ = 0 and hence ωw(zn) ⊂ A−10 =
∩∞

n=1F (Tn) by Opial’s condition.

Let α > 0 and C be a nonempty closed convex subset of H. An operator
A : C −→ H is said to be α-inverse-strongly-monotone [4, 16, 18] if (x − y,Ax −
Ay) ≥ α‖Ax − Ay‖2 for all x, y ∈ C. Let A : H −→ H be an α-inverse-strongly-
monotone operator and let B : H −→ 2H be a maximal monotone operator such
that (A + B)−10 6= ∅. Then, we know that A + B is maximal monotone and for
every λ > 0, (A + B)−10 = F (JB

λ (I − λA)), where JB
λ is the resolvent of B. It is

also known that JB
λ (I − λA) is nonexpansive of H into itself when 0 < λ ≤ 2α;

see [18, 19]. We have the following result.
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Lemma 2.3. Let α > 0. Let A : H −→ H be an α-inverse-strongly-monotone
operator and let B : H −→ 2H be a maximal monotone operator such that (A +
B)−10 6= ∅. Then, Tn = JB

λn
(I − λnA) (∀n ∈ N) with {λn} ⊂ [a, 2α] for some

a ∈ (0, 2α) and
∑∞

n=1 |λn − λn+1| < ∞ satisfy the conditions (I) and (II) with
an = |λn − λn+1| (∀n ∈ N).

Proof. Let u ∈ (A + B)−10 and λn > 0. Then we have JB
λn

(I − λnA)u = u.

This implies AB
λn

(I − λnA)u = −Au for all n ∈ N, where AB
λn

is the Yosida
approximation of B. So, by [6, Lemma 2.1], we get

‖JB
λn

(I − λnA)x − JB
λn+1

(I − λn+1A)x‖

≤ ‖JB
λn+1

(I − λn+1A)x − JB
λn

(I − λn+1A)x‖

+‖JB
λn

(I − λn+1A)x − JB
λn

(I − λnA)x‖

≤
|λn − λn+1|

λn+1
‖(I − λn+1A)x − JB

λn+1
(I − λn+1A)x‖ + |λn − λn+1|‖Ax‖

≤ |λn − λn+1|‖A
B
λn+1

(I − λn+1A)x‖ + |λn − λn+1|
( 1

α
‖x − u‖ + ‖Au‖

)

≤ |λn − λn+1|{‖A
B
λn+1

(I − λn+1A)x + Au‖ + ‖Au‖}

+|λn − λn+1|
( 1

α
‖x − u‖ + ‖Au‖

)

= |λn − λn+1|
{

‖AB
λn+1

(I − λn+1A)x − AB
λn+1

(I − λn+1A)u‖ + ‖Au‖

+
( 1

α
‖x − u | + ‖Au‖

)}

≤ |λn − λn+1|
{ 2

λn+1
‖(I − λn+1A)x − (I − λn+1A)u‖ + ‖Au‖

+
( 1

α
‖x − u‖ + ‖Au‖

)}

≤ |λn − λn+1|
{ 2

λn+1
(‖x − u‖ + λn+1‖Ax − Au‖) + ‖Au‖

+
( 1

α
‖x − u‖ + ‖Au‖

)}

≤ |λn − λn+1|
{2

a
‖x − u‖ +

2

α
‖x − u‖ + ‖Au‖ +

( 1

α
‖x − u‖ + ‖Au‖

)}

= |λn − λn+1|
{(2

a
+

3

α

)

‖x − u‖ + 2‖Au‖
}

for each n ∈ N and x ∈ H. So, for every bounded subset B of H, there exists

MB > supx∈B

{(

2
a

+ 3
α

)

‖x− u‖+ 2‖Au‖
}

such that ‖Tnx− Tn+1x‖ ≤ anMB for

all n ∈ N and x ∈ B, where an = |λn − λn+1| (∀n ∈ N). Next, let {zn} be a
bounded sequence in H such that limn→∞ ‖zn − JB

λn
(I − λnA)zn‖ = 0. Without

loss of generality, let zn ⇀ w. Let vn = JB
λn

(I − λnA)zn. Then, we obtain
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(vn − u, 1
λn

{(zn − λnAzn) − vn} + Au − v) ≥ 0 and hence

(vn − u,−v) ≥
(

vn − u,
1

λn

(vn − zn) + Azn − Au
)

=
1

λn

(vn − u, (I − λnA)vn − (I − λnA)zn) + (vn − u,Avn − Au)

≥ −
1

a
‖vn − u‖ · ‖(I − λnA)vn − (I − λnA)zn‖

for all (u, v) ∈ A + B and n ∈ N since A and B are monotone.

‖(I − λnA)vn − (I − λnA)zn‖
2 = ‖vn − zn‖

2 − 2λn(vn − zn, Avn − Azn)

+λ2
n‖Avn − Azn‖

2

≤ ‖vn − zn‖
2 + λn(λn − 2α)‖Avn − Azn‖

2

≤ ‖vn − zn‖
2

for each n ∈ N, vn ⇀ w and {vn − u} is bounded. So, we have (w − u,−v) ≥ 0
for every (u, v) ∈ A + B which implies w ∈ (A + B)−10 by maximality of A + B.
Therefore, ωw(zn) ⊂ (A + B)−10 = ∩∞

n=1F (Tn).

Let C be a nonempty closed convex subset of H and let A be a mapping of C
into H. Then, an element x in C is a solution of the variational inequality of A
if (y − x,Ax) ≥ 0 for all y ∈ C. It is known that for λ > 0, x ∈ C is a solution
of the variational inequality of A if and only if x = PC(I − λA)x. We denote by
V I(C,A) the set of all solutions of the variational inequality of A. We know that
V I(C,A) is a closed convex subset of C if A is monotone and continuous. We have
the following two lemmas.

Lemma 2.4. Let α > 0 and C be a nonempty closed convex subset of H. Let
A : C −→ H be an α-inverse-strongly-monotone operator with V I(C,A) 6= ∅.
Then, for every λ > 0, x ∈ C and z ∈ V I(C,A), ‖PC(I − λA)x − z‖2 ≤ ‖x −
z‖2 − 2α−λ

2α
‖x − PC(I − λA)x‖2.

Proof. Let λ > 0, x ∈ C and z ∈ V I(C,A). We have

‖PC(I − λA)x − z‖2

≤ ‖(I − λA)x − (I − λA)z‖2 − ‖(I − PC)(I − λA)x − (I − PC)(I − λA)z‖2

= ‖(x − z) − λ(Ax − Az)‖2 − ‖(x − PC(I − λA)x) − λ(Ax − Az)‖2

≤ ‖x − z‖2 − 2αλ‖Ax − Az‖2 + 2λ‖Ax − Az‖ · ‖x − PC(I − λA)x‖

−‖x − PC(I − λA)x‖2

= ‖x − z‖2 − 2αλ
{

‖Ax − Az‖ −
1

2α
‖x − PC(I − λA)x‖

}2

−
2α − λ

2α
‖x − PC(I − λA)x‖2

≤ ‖x − z‖2 −
2α − λ

2α
‖x − PC(I − λA)x‖2.
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Lemma 2.5. Let α > 0 and let C be a nonempty closed convex subset of H. Let A :
C −→ H be an α-inverse-strongly-monotone operator and let T be a nonexpansive
mapping of C into itself with F (T ) ∩ V I(C,A) 6= ∅. Then the following hold:

(i) TPC(I − λA) and PC(I − λA)T are nonexpansive of C into itself when
0 < λ ≤ 2α;

(ii) Tn = TPC(I − λnA), 0 < a ≤ λn ≤ b < 2α (∀n ∈ N) and
∑∞

n=1 |λn −
λn+1| < ∞ satisfy the conditions (I) and (II) with an = |λn − λn+1| (∀n ∈
N) and ∩∞

n=1F (Tn) = F (T ) ∩ V I(C,A);

(iii) Tn = PC(I − λnA)T , 0 < a ≤ λn ≤ b < 2α (∀n ∈ N) and
∑∞

n=1 |λn −
λn+1| < ∞ satisfy the conditions (I) and (II) with an = |λn − λn+1| (∀n ∈
N) and ∩∞

n=1F (Tn) = F (T ) ∩ V I(C,A).

Proof. (i). We have

‖TPC(I − λA)x − TPC(I − λA)y‖2 ≤ ‖PC(I − λA)x − PC(I − λA)y‖2

≤ ‖(x − y) − λ(Ax − Ay)‖2

= ‖x − y‖2 − 2λ(x − y,Ax − Ay) + λ2‖Ax − Ay‖2

≤ ‖x − y‖2 − λ(2α − λ)‖Ax − Ay‖2

≤ ‖x − y‖2

for every x, y ∈ C. So, TPC(I − λA) is nonexpansive. Similarly, PC(I − λA)T is
nonexpansive.
(ii). Let y ∈ C. We have

‖TPC(I − λnA)x − TPC(I − λn+1A)x‖

≤ ‖PC(I − λnA)x − PC(I − λn+1A)x‖ ≤ |λn − λn+1| · ‖Ax‖

≤ |λn − λn+1| ·
( 1

α
‖x − y‖ + ‖Ay‖

)

for every n ∈ N and x ∈ C. So, for each bounded subset B of C, there exists
MB > supx∈B{ 1

α
‖x− y‖+ ‖Ay‖} such that ‖Tnx−Tn+1x‖ ≤ anMB for all n ∈ N

and x ∈ B, where an = |λn −λn+1| (∀n ∈ N). Next, let z ∈ F (T )∩V I(C,A). We
have Tnz = TPC(I − λnA)z = Tz = z. So, F (T ) ∩ V I(C,A) ⊂ F (Tn) for every
n ∈ N. Conversely, let z ∈ F (Tn) and u ∈ F (T ) ∩ V I(C,A). By Lemma 2.4, we
get

‖z − u‖2 = ‖TPC(I − λnA)z − Tu‖2 ≤ ‖PC(I − λnA)z − u‖2

≤ ‖z − u‖2 −
2α − λn

2α
‖z − PC(I − λnA)z‖2

which implies z = PC(I − λnA)z, that is, z ∈ V I(C,A). Further, we obtain Tz =
TPC(I−λnA)z = z and hence, z ∈ F (T )∩V I(C,A). So, F (Tn) ⊂ F (T )∩V I(C,A)
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for each n ∈ N. Therefore, F (Tn) = F (T )∩V I(C,A) for all n ∈ N. Let {zn} be a
bounded sequence in C such that limn→∞ ‖zn − TPC(I − λnA)zn‖ = 0. Without
loss of generality, let zn ⇀ w. Let z ∈ F (T ) ∩ V I(C,A). By Lemma 2.4, we have

‖zn − z‖2 ≤ ‖zn − TPC(I − λnA)zn‖(‖zn − TPC(I − λnA)zn‖

+2‖TPC(I − λnA)zn − z‖) + ‖TPC(I − λnA)zn − z‖2

≤ ‖zn − TPC(I − λnA)zn‖(‖zn − TPC(I − λnA)zn‖ + 2‖zn − z‖)

+ ‖zn − z‖2 −
2α − λn

2α
‖zn − PC(I − λnA)zn‖

2

for every n ∈ N. So, we get limn→∞ ‖zn − PC(I − λnA)zn‖ = 0. Let vn =
PC(I−λnA)zn. For all u ∈ C, we obtain (zn−λnAzn−vn, vn−u) ≥ 0 and hence,

(Au, u − vn) ≥ (Avn − Au, vn − u) +
1

λn

((I − λnA)vn − (I − λnA)zn, vn − u)

≥ −
1

a
‖(I − λnA)vn − (I − λnA)zn‖ · ‖vn − u‖

for every n ∈ N since A is monotone. ‖(I − λnA)vn − (I − λnA)zn‖
2 ≤ ‖vn −

zn‖
2 + λn(λn − 2α)‖Avn − Azn‖

2 ≤ ‖vn − zn‖
2 for each n ∈ N, vn ⇀ w and

{vn − u} is bounded. So, we have (Au, u − w) ≥ 0 for all u ∈ C. By continuity
of A, (Aw, u − w) ≥ 0 for every u ∈ C, that is, w ∈ V I(C,A). Further, from
‖zn − Tzn‖ ≤ ‖zn − TPC(I − λnA)zn‖ + ‖PC(I − λnA)zn − zn‖ for each n ∈ N,
limn→∞ ‖zn − Tzn‖ = 0. By Opial’s condition, w ∈ F (T ). Therefore, ωw(zn) ⊂
F (T ) ∩ V I(C,A) = ∩∞

n=1F (Tn).
(iii). Let y ∈ C. As in (ii), for every bounded subset B of C, there exists
MB > supx∈B{ 1

α
‖x − y‖ + ‖ATy‖} such that ‖Tnx − Tn+1x‖ ≤ anMB for all

n ∈ N and x ∈ B, where an = |λn − λn+1| (∀n ∈ N). As in the proof of (ii), we
have F (Tn) = F (T ) ∩ V I(C,A) for each n ∈ N. Let {zn} be a bounded sequence
in C such that limn→∞ ‖zn − PC(I − λnA)Tzn‖ = 0. Without loss of generality,
let zn ⇀ w. As in (ii), we get limn→∞ ‖Tzn − PC(I − λnA)Tzn‖ = 0. And
hence, we obtain limn→∞ ‖zn − Tzn‖ = limn→∞ ‖zn − PC(I − λnA)zn‖ = 0. So,
w ∈ F (T ) ∩ V I(C,A). Therefore, ωw(zn) ⊂ F (T ) ∩ V I(C,A) = ∩∞

n=1F (Tn).

Let C be a nonempty closed convex subset of H. Let S1, S2, · · · be infinite
nonexpansive mappings of C into itself and let β1, β2, · · · be real numbers such
that 0 ≤ βi ≤ 1 for every i ∈ N. Then, for any n ∈ N, Takahashi [25, 32, 34]
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introduced a mapping Wn of C into itself as follows:

Un.n+1 = I,

Un,n = βnSnUn,n+1 + (1 − βn)I,

Un,n−1 = βn−1Sn−1Un,n + (1 − βn−1)I,

...

Un,k = βkSkUn,k+1 + (1 − βk)I,

...

Un,2 = β2S2Un,3 + (1 − β2)I,

Wn = Un,1 = β1S1Un,2 + (1 − β1)I.

Such a mapping Wn is called the W -mapping generated by Sn, Sn−1, · · · , S1 and
βn, βn−1, · · · , β1. We know that if ∩n

i=1F (Si) 6= ∅ and 0 < βi < 1 for every
i = 2, 3, · · · , n and 0 < β1 ≤ 1, F (Wn) = ∩n

i=1F (Si); see [34, 35]. We also have
that if ∩∞

n=1F (Sn) 6= ∅ and 0 < βi ≤ b < 1 for every i ∈ N for some b ∈ (0, 1),
limn→∞ Un,kx exists for every x ∈ C and k ∈ N; see [25]. By this, we define a
mapping W of C into itself as follows:

Wx = lim
n→∞

Wnx = lim
n→∞

Un,1x

for every x ∈ C. Such a W is called the W -mapping generated by S1, S2, · · · and
β1, β2, · · · . And we have that if ∩∞

i=1F (Si) 6= ∅ and 0 < βi ≤ b < 1 for every i ∈ N

for some b ∈ (0, 1), F (W ) = ∩∞
i=1F (Si); see [25]. We know the following result.

Lemma 2.6. Let C be a nonempty closed convex subset of H. Let S1, S2, · · ·
be infinite nonexpansive mappings of C into itself with ∩∞

n=1F (Sn) 6= ∅ and let
β1, β2, · · · be real numbers with 0 < βi ≤ b < 1 for every i ∈ N for some b ∈ (0, 1).
Let Wn be the W-mapping generated by Sn, Sn−1, · · · , S1 and βn, βn−1, · · · , β1 for
every n ∈ N. Then, Tn = Wn (∀n ∈ N) satisfy the conditions (I) and (II) with
an = bn+1 (∀n ∈ N).

Proof. Let u ∈ ∩∞
n=1F (Sn). we have

‖Wnx − Wn+1x‖ = ‖β1S1Un,2x − β1S1Un+1,2x‖

≤ β1‖Un,2x − Un+1,2x‖

= β1‖β2S2Un,3x − β2S2Un+1,3x‖ ≤ β1β2‖Un,3x − Un+1,3x‖

≤ · · · ≤ β1β2 · · ·βnβn+1‖x − Sn+1x‖ ≤ bn+1{2‖x − u‖}

for every n ∈ N and x ∈ C. So, for each bounded subset B of C, there exists
MB > 2 · supx∈B ‖x − u‖ such that ‖Tnx − Tn+1x‖ ≤ anMB for all n ∈ N and
x ∈ B, where an = bn+1 (∀n ∈ N). From [14, Theorem 3.1], {Tn} satisfies the
condition (II).
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Let S be a semigroup and let B(S) be the Banach space of all bounded real
valued functions on S with supremum norm. Then, for every s ∈ S and f ∈ B(S),
we can define rsf ∈ B(S) and lsf ∈ B(S) by (rsf)(t) = f(ts) and (lsf)(t) = f(st)
for each t ∈ S, respectively. We also denote by r∗s and l∗s the conjugate operators of
rs and ls, respectively. Let D be a subspace of B(S) containing constants and let µ
be an element of D∗. A linear functional µ is called a mean on D if ‖µ‖ = µ(1) = 1.
Let C be a nonempty closed convex subset of H. A family S = {T (s) : s ∈ S}
of mappings of C into itself is called a nonexpansive semigroup on C if it satisfies
the following conditions:

(i) T (st) = T (s)T (t) for all s, t ∈ S;

(ii) ‖T (s)x − T (s)y‖ ≤ ‖x − y‖ for every s ∈ S and x, y ∈ C.

We denote by F (S) the set of all common fixed points of S, that is, F (S) =
∩s∈SF (T (s)). It is known that F (S) is closed and convex. We have that if
F (S) 6= ∅ and (T (·)x, y) ∈ D for every x ∈ C and y ∈ H, there exists a unique
element Tµx in C such that (Tµx, z) = µs(T (s)x, z) for all z ∈ H for any mean µ
on D and x ∈ C; see [8, 31]. We also know that Tµ is a nonexpansive mapping of
C into itself. Further, we have the following [1]: Let C be a nonempty bounded
closed convex subset of H and let S be a semigroup. Let S = {T (s) : s ∈ S}
be a nonexpansive semigroup on C and let D be a subspace of B(S) containing
constants and invariant under ls for all s ∈ S. Suppose that for every x ∈ C and
z ∈ H, the function t 7→ (T (t)x, z) is in D. Let {µn} be a sequence of means on D
such that limn→∞ ‖µn − l∗sµn‖ = 0 for each s ∈ S. Then, limn→∞ supx∈C ‖Tµn

x−
T (t)Tµn

x‖ = 0 for all t ∈ S.

Lemma 2.7. Let C be a nonempty closed convex subset of H and let S be a
semigroup. Let S = {T (s) : s ∈ S} be a nonexpansive semigroup on C such that
F (S) 6= ∅ and let D be a subspace of B(S) containing constants and invariant
under ls for all s ∈ S. Suppose that for every x ∈ C and z ∈ H, the function t 7→
(T (t)x, z) is in D. Let {µn} be a sequence of means on D such that limn→∞ ‖µn−
l∗sµn‖ = 0 for each s ∈ S. Then, Tn = Tµn

(∀n ∈ N) satisfy the condition (III)
with ∩∞

n=1F (Tn) = F (S).

Proof. F (S) ⊂ ∩∞
n=1F (Tn) is trivial. Let u ∈ ∩∞

n=1F (Tn). We have limn→∞ ‖Tµn
u−

T (t)Tµn
u‖ = 0 for every t ∈ S and hence, u ∈ F (S). So, we get F (S) =

∩∞
n=1F (Tn). Next, let {zn} ⊂ C be a bounded sequence such that limn→∞ ‖zn+1−

Tµn
zn‖ = 0. We obtain

‖zn+1 − T (t)zn+1‖ ≤ ‖zn+1 − Tµn
zn‖ + ‖Tµn

zn − T (t)Tµn
zn‖

+‖T (t)Tµn
zn − T (t)zn+1‖

≤ 2‖zn+1 − Tµn
zn‖ + ‖Tµn

zn − T (t)Tµn
zn‖

for every t ∈ S and n ∈ N. Since we have limn→∞ ‖Tµn
zn−T (t)Tµn

zn‖ = 0 for all
t ∈ S, limn→∞ ‖zn − T (t)zn‖ = 0 for each t ∈ S. So, {Tn} satisfies the condition
(III) by Opial’s condition.
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Let C be a nonempty closed convex subset of H. A family S = {T (s) :
0 ≤ s < ∞} of mappings of C into itself is called a one-parameter nonexpansive
semigroup on C if it satisfies the following conditions:

(i) T (0)x = x for all x ∈ C;

(ii) T (s + t) = T (s)T (t) for every s, t ≥ 0;

(iii) ‖T (s)x − T (s)y‖ ≤ ‖x − y‖ for each s ≥ 0 and x, y ∈ C;

(iv) for all x ∈ C, s 7−→ T (s)x is continuous.

3 Main Results

Using an idea of [37] (see also [34, Theorem 5.1.2]), we have the following two
theorems.

Theorem 3.1. Let C be a nonempty closed convex subset of H and let {Tn} be a
family of nonexpansive mappings of C into itself such that F := ∩∞

n=1F (Tn) 6= ∅
which satisfies the conditions (I) and (II). Let {xn} be a sequence generated by
(1), where {αn} ⊂ [0, 1) and {βn} ⊂ [0, 1) satisfy limn→∞ αn = limn→∞ βn = 0,
∏∞

n=1(1 − αn)(1 − βn) = 0 and
∑∞

n=1(|αn − αn+1| + |βn − βn+1|) < ∞. Then,
{xn} converges strongly to PF x, where PF is the metric projection of H onto F .

Proof. Let u ∈ F . We have ‖xn − u‖ ≤ ‖x− u‖ for every n ∈ N. In fact, suppose
that ‖xn − u‖ ≤ ‖x − u‖ for some n ∈ N. We get

‖xn+1 − u‖ = ‖αnx + (1 − αn)Tn(βnx + (1 − βn)xn) − u‖

≤ αn‖x − u‖ + (1 − αn){βn‖x − u‖ + (1 − βn)‖xn − u‖}

≤ ‖x − u‖.

So, {xn} is bounded. Next, we obtain

‖xn+1 − xn‖

= ‖αnx + (1 − αn)Tn(βnx + (1 − βn)xn) − αn−1x

−(1 − αn−1)Tn−1(βn−1x + (1 − βn−1)xn−1)‖

= ‖(αn − αn−1)x + (1 − αn){Tn(βnx + (1 − βn)xn) − Tn−1(βnx + (1 − βn)xn)}

+ (1 − αn){Tn−1(βnx + (1 − βn)xn) − Tn−1(βn−1x + (1 − βn−1)xn−1)}

+ (αn−1 − αn)Tn−1(βn−1x + (1 − βn−1)xn−1)‖

≤ |αn − αn−1| · ‖x − Tn−1(βn−1x + (1 − βn−1)xn−1)‖

+ (1 − αn)‖Tn(βnx + (1 − βn)xn) − Tn−1(βnx + (1 − βn)xn)‖

+ (1 − αn)‖{βnx + (1 − βn)xn} − {βn−1x + (1 − βn−1)xn−1}‖

≤ |αn − αn−1| · M1 + (1 − αn)‖Tn(βnx + (1 − βn)xn) − Tn−1(βnx + (1 − βn)xn)‖

+ (1 − αn){|βn − βn−1| · (‖x‖ + ‖xn−1‖) + (1 − βn)‖xn − xn−1‖}
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for each n = 2, 3, · · · , where M1 = supn∈N\{1} ‖x−Tn−1(βn−1x+(1−βn−1)xn−1)‖.
Since a sequence {βnx + (1 − βn)xn} is bounded, there exists M2 > 0 such that

‖Tn(βnx + (1 − βn)xn) − Tn−1(βnx + (1 − βn)xn)‖ ≤ an−1M2

for all n = 2, 3, · · · by the condition (I). Therefore, we get

‖xn+1 − xn‖ ≤ (|αn − αn−1| + |βn − βn−1| + an−1)M

+(1 − αn)(1 − βn)‖xn − xn−1‖ (3.1)

for every n = 2, 3, · · · , where M = max{M1,M2, supn∈N\{1}{‖x‖+‖xn−1‖}}. Let
m,n ∈ N. By (2), we obtain

‖xn+m+1 − xn+m‖

≤ (|αn+m − αn+m−1| + |βn+m − βn+m−1| + an+m−1)M

+(1 − αn+m)(1 − βn+m)‖xn+m − xn+m−1‖

≤ (|αn+m − αn+m−1| + |βn+m − βn+m−1| + an+m−1)M

+ (1 − αn+m)(1 − βn+m){(|αn+m−1 − αn+m−2|

+|βn+m−1 − βn+m−2| + an+m−2)M

+ (1 − αn+m−1)(1 − βn+m−1)‖xn+m−1 − xn+m−2‖}

≤ {(|αn+m − αn+m−1| + |αn+m−1 − αn+m−2|)

+ (|βn+m − βn+m−1| + |βn+m−1 − βn+m−2|) + (an+m−1 + an+m−2)}M

+ (1 − αn+m)(1 − βn+m)(1 − αn+m−1)(1 − βn+m−1)‖xn+m−1 − xn+m−2‖

≤ · · ·

≤ M ·
n+m−1

∑

k=m

(|αk+1 − αk| + |βk+1 − βk| + ak)

+‖xm+1 − xm‖ ·
n+m
∏

k=m+1

(1 − αk)(1 − βk).

So, we have

lim sup
n→∞

‖xn+1 − xn‖ = lim sup
n→∞

‖xn+m+1 − xn+m‖

≤ M ·
∞
∑

k=m

(|αk+1 − αk| + |βk+1 − βk| + ak)

for each m ∈ N. Therefore, we get limn→∞ ‖xn+1 − xn‖ = 0. It follows from

‖xn − Tnxn‖ ≤ ‖xn − Tn(βnx + (1 − βn)xn)‖ + ‖Tn(βnx + (1 − βn)xn) − Tnxn‖

≤ ‖xn+1 − xn‖ + αn‖x − Tn(βnx + (1 − βn)xn)‖ + βn‖x − xn‖

for all n ∈ N that limn→∞ ‖xn − Tnxn‖ = 0. By the condition (II), we get
ωw(xn) ⊂ F . From limn→∞ ‖xn − Tn(βnx + (1 − βn)xn)‖ = 0,

lim sup
n→∞

(x − PF x, Tn(βnx + (1 − βn)xn) − PF x) = lim sup
n→∞

(x − PF x, xn − PF x).
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There exists a subsequence {xnk
} of {xn} such that lim supn→∞(x − PF x, xn −

PF x) = limk→∞(x − PF x, xnk
− PF x). Since {xnk

} is bounded, we may assume
that xnk

⇀ z ∈ F . So, we obtain

lim sup
n→∞

(x − PF x, xn − PF x) = (x − PF x, z − PF x) ≤ 0.

Let ε > 0. There exists m0 ∈ N such that αn‖x−PF x‖2 <
ε

2
, βn‖x−PF x‖2 <

ε

2
,

(x − PF x, Tn(βnx + (1 − βn)xn) − PF x) <
ε

4
and (x − PF x, xn − PF x) <

ε

4
for

every n ≥ m0. So, we have

‖xn+1 − PF x‖2 = ‖αn(x − PF x) + (1 − αn){Tn(βnx + (1 − βn)xn) − PF x}‖2

= α2
n‖x − PF x‖2 + (1 − αn)2‖Tn(βnx + (1 − βn)xn) − PF x‖2

+ 2αn(1 − αn)(x − PF x, Tn(βnx + (1 − βn)xn) − PF x)

≤ α2
n‖x − PF x‖2 + (1 − αn)2{β2

n‖x − PF x‖2 + (1 − βn)2‖xn − PF x‖2

+ 2βn(1 − βn)(x − PF x, xn − PF x)}

+2αn(1 − αn)(x − PF x, Tn(βnx + (1 − βn)xn) − PF x)

= {α2
n + β2

n(1 − αn)2}‖x − PF x‖2 + 2(1 − αn)2βn(1 − βn)(x − PF x, xn − PF x)

+ 2αn(1 − αn)(x − PF x, Tn(βnx + (1 − βn)xn) − PF x)

+(1 − αn)2(1 − βn)2‖xn − PF x‖2

≤ {αn + βn(1 − αn)2 + βn(1 − βn)(1 − αn)2 + αn(1 − αn)}
ε

2

+(1 − αn)(1 − βn)‖xn − PF x‖2

≤ {αn + βn(1 − αn) + βn(1 − αn) + αn}
ε

2
+ (1 − αn)(1 − βn)‖xn − PF x‖2

= {1 − (1 − αn)(1 − βn)}ε + (1 − αn)(1 − βn)‖xn − PF x‖2

for each n ≥ m0. Therefore, we get

‖xn+1 − PF x‖2 ≤ {1 −
n

∏

k=m0

(1 − αk)(1 − βk)}ε

+‖xm0
− PF x‖2

n
∏

k=m0

(1 − αk)(1 − βk)

for all n ≥ m0. So, we obtain lim supn→∞ ‖xn+1−PF x‖2 ≤ ε. Since ε is arbitrary,
we have xn → PF x.

Theorem 3.2. Let C be a nonempty closed convex subset of H and let {Tn} be
a family of nonexpansive mappings of C into itself such that F := ∩∞

n=1F (Tn) 6=
∅ which satisfies the condition (III). Let {xn} be a sequence generated by (1),
where {αn} ⊂ [0, 1) and {βn} ⊂ [0, 1) satisfy limn→∞ αn = limn→∞ βn = 0 and
∏∞

n=1(1 − αn)(1 − βn) = 0. Then, {xn} converges strongly to PF x.
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Proof. As in the proof of Theorem 3.1, we have {xn} is bounded. And it follows
from

‖xn+1 − Tnxn‖ ≤ ‖xn+1 − Tn(βnx + (1 − βn)xn)‖

+‖Tn(βnx + (1 − βn)xn) − Tnxn‖

≤ αn‖x − Tn(βnx + (1 − βn)xn)‖ + βn‖x − xn‖

for all n ∈ N that limn→∞ ‖xn+1 − Tnxn‖ = 0. By the condition (III), we
get ωw(xn) ⊂ F . Since limn→∞ ‖xn+1 − Tn(βnx + (1 − βn)xn)‖ = 0, we have
lim supn→∞(x− PF x, Tn(βnx + (1− βn)xn)− PF x) = lim supn→∞(x−PF x, xn −
PF x). As in the proof of Theorem 3.1, we obtain xn → PF x.

4 Applications

In this section, using Theorems 3.1 and 3.2, we improve well-known strong conver-
gence theorems. We first have the following theorem which generalizes the result
of [37] by Lemma 2.1 and Theorem 3.1.

Theorem 4.1. Let C be a nonempty closed convex subset of H and let T be a
nonexpansive mapping of C into itself such that F (T ) 6= ∅. Let {xn} be a sequence
generated by x1 = x ∈ C, xn+1 = αnx + (1 − αn)T (βnx + (1 − βn)xn) (∀n ∈ N),
where {αn} ⊂ [0, 1) and {βn} ⊂ [0, 1) satisfy limn→∞ αn = limn→∞ βn = 0,
∏∞

n=1(1 − αn)(1 − βn) = 0 and
∑∞

n=1(|αn − αn+1| + |βn − βn+1|) < ∞. Then,
{xn} converges strongly to PF (T )x.

We get the following theorem for proximal point algorithms (see [23, 12]) by
Lemma 2.2 (i) and Theorem 3.1 (see also [17, 38]).

Theorem 4.2. Let A : H −→ 2H be a maximal monotone operator such that
A−10 6= ∅. Let {xn} be a sequence generated by x1 = x ∈ H, xn+1 = αnx +
(1 − αn)Jλn

(βnx + (1 − βn)xn) (∀n ∈ N), where {αn} ⊂ [0, 1) and {βn} ⊂ [0, 1)
satisfy limn→∞ αn = limn→∞ βn = 0,

∏∞
n=1(1−αn)(1−βn) = 0 and

∑∞
n=1(|αn −

αn+1| + |βn − βn+1|) < ∞ and {λn} ⊂ (0,∞) satisfies lim infn→∞ λn > 0 and
∑∞

n=1 |λn − λn+1| < ∞. Then, {xn} converges strongly to PA−10x.

We get the following theorem for proximal point algorithms which generalizes
the result of [12] by Lemma 2.2 (ii) and Theorem 3.2.

Theorem 4.3. Let A : H −→ 2H be a maximal monotone operator such that
A−10 6= ∅. Let {xn} be a sequence generated by x1 = x ∈ H, xn+1 = αnx + (1 −
αn)Jλn

(βnx+(1−βn)xn) (∀n ∈ N), where {αn} ⊂ [0, 1) and {βn} ⊂ [0, 1) satisfy
limn→∞ αn = limn→∞ βn = 0 and

∏∞
n=1(1 − αn)(1 − βn) = 0 and {λn} ⊂ (0,∞)

satisfies limn→∞ λn = ∞. Then, {xn} converges strongly to PA−10x.

We have the new theorem for splitting methods by Lemma 2.3 and Theorem
3.1.
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Theorem 4.4. Let α > 0. Let A : H −→ H be an α-inverse-strongly-monotone
operator and let B : H −→ 2H be a maximal monotone operator such that (A +
B)−10 6= ∅. Let {xn} be a sequence generated by x1 = x ∈ H, xn+1 = αnx +
(1 − αn)JB

λn
(I − λnA)(βnx + (1 − βn)xn) (∀n ∈ N), where {αn} ⊂ [0, 1) and

{βn} ⊂ [0, 1) satisfy limn→∞ αn = limn→∞ βn = 0,
∏∞

n=1(1−αn)(1−βn) = 0 and
∑∞

n=1(|αn − αn+1| + |βn − βn+1|) < ∞ and {λn} ⊂ [a, 2α] for some a ∈ (0, 2α)
satisfies

∑∞
n=1 |λn − λn+1| < ∞. Then, {xn} converges strongly to P(A+B)−10x.

We get the following theorem which generalizes the result of [9] by Lemma 2.5
(i), (ii) and Theorem 3.1.

Theorem 4.5. Let α > 0 and let C be a nonempty closed convex subset of H.
Let A : C −→ H be an α-inverse-strongly-monotone operator and let T be a
nonexpansive mapping of C into itself with F (T ) ∩ V I(C,A) 6= ∅. Let {xn} be a
sequence generated by x1 = x ∈ C, xn+1 = αnx + (1 − αn)TPC(I − λnA)(βnx +
(1−βn)xn) (∀n ∈ N), where {αn} ⊂ [0, 1) and {βn} ⊂ [0, 1) satisfy limn→∞ αn =
limn→∞ βn = 0,

∏∞
n=1(1−αn)(1−βn) = 0 and

∑∞
n=1(|αn−αn+1|+ |βn−βn+1|) <

∞ and {λn} ⊂ [a, b] for some a, b ∈ (0, 2α) with a ≤ b satisfies
∑∞

n=1 |λn−λn+1| <
∞. Then, {xn} converges strongly to PF (T )∩V I(C,A)x.

We also have the following theorem which generalizes the result of [11] by
Lemma 2.5 (i), (iii) and Theorem 3.1.

Theorem 4.6. Let α > 0 and let C be a nonempty closed convex subset of H.
Let A : C −→ H be an α-inverse-strongly-monotone operator and let T be a
nonexpansive mapping of C into itself with F (T ) ∩ V I(C,A) 6= ∅. Let {xn} be a
sequence generated by x1 = x ∈ C, xn+1 = αnx + (1 − αn)PC(I − λnA)T (βnx +
(1−βn)xn) (∀n ∈ N), where {αn} ⊂ [0, 1) and {βn} ⊂ [0, 1) satisfy limn→∞ αn =
limn→∞ βn = 0,

∏∞
n=1(1−αn)(1−βn) = 0 and

∑∞
n=1(|αn−αn+1|+ |βn−βn+1|) <

∞ and {λn} ⊂ [a, b] for some a, b ∈ (0, 2α) with a ≤ b satisfies
∑∞

n=1 |λn−λn+1| <
∞. Then, {xn} converges strongly to PF (T )∩V I(C,A)x.

We have the following theorem for the W-mapping by Lemma 2.6 and Theorem
3.1 (see also [25]).

Theorem 4.7. Let C be a nonempty closed convex subset of H. Let S1, S2, · · ·
be infinite nonexpansive mappings of C into itself with ∩∞

n=1F (Sn) 6= ∅ and let
β1, β2, · · · be real numbers with 0 < βi ≤ b < 1 for every i ∈ N for some b ∈ (0, 1).
Let Wn be the W-mapping generated by Sn, Sn−1, · · · , S1 and βn, βn−1, · · · β1. Let
{xn} be a sequence generated by x1 = x ∈ C, xn+1 = αnx + (1 − αn)Wn(γnx +
(1− γn)xn) (∀n ∈ N), where {αn} ⊂ [0, 1) and {γn} ⊂ [0, 1) satisfy limn→∞ αn =
limn→∞ γn = 0,

∏∞
n=1(1−αn)(1−γn) = 0 and

∑∞
n=1(|αn−αn+1|+ |γn−γn+1|) <

∞. Then, {xn} converges strongly to P∩∞

n=1
F (Sn)x.

We have the following theorem for nonexpansive semigroups by Lemma 2.7
and Theorem 3.2 (see also [27]).
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Theorem 4.8. Let C be a nonempty closed convex subset of H and let S be a
semigroup. Let S = {T (s) : s ∈ S} be a nonexpansive semigroup on C such that
F (S) 6= ∅ and let D be a subspace of B(S) containing constants and invariant
under ls for all s ∈ S. Suppose that for every x ∈ C and z ∈ H, the function t 7→
(T (t)x, z) is in D. Let {µn} be a sequence of means on D such that limn→∞ ‖µn−
l∗sµn‖ = 0 for each s ∈ S. Let {xn} be a sequence generated by x1 = x ∈ C, xn+1 =
αnx + (1 − αn)Tµn

(βnx + (1 − βn)xn) (∀n ∈ N), where {αn} ⊂ [0, 1) and {βn} ⊂
[0, 1) satisfy limn→∞ αn = limn→∞ βn = 0 and

∏∞
n=1(1− αn)(1− βn) = 0. Then,

{xn} converges strongly to PF (S)x.

From Theorem 4.8, we get the following theorems.

Theorem 4.9. ([24]) Let C be a nonempty closed convex subset of H and let
T1, T2 be nonexpansive mappings of C into itself such that T1T2 = T2T1 and
F (T1) ∩ F (T2) 6= ∅. Let {xn} be a sequence generated by x1 = x ∈ C, xn+1 =
αnx + (1 − αn) 2

(n+1)(n+2)

∑n
k=0

∑

i+j=k T i
1T

j
2 xn (∀n ∈ N), where {αn} ⊂ [0, 1)

satisfies limn→∞ αn = 0 and
∑∞

n=0 αn = ∞. Then, {xn} converges strongly to
PF (T1)∩F (T2)x.

Proof. Let S = {0, 1, 2, · · · } × {0, 1, 2, · · · }, S = {T i
1T

j
2 : (i, j) ∈ S}, D = B(S)

and µn(f) =
2

(n + 1)(n + 2)

n
∑

k=0

∑

i+j=k

f(i, j) for every n ∈ N and f ∈ D. Then,

as in [1, Corollary 3.7], {µn} is a sequence of means on D and limn→∞ ‖µn −
l∗(l,m)µn‖ = 0 for each (l,m) ∈ S. By Theorem 4.8, we get Theorem 4.9.

Theorem 4.10. ([24]) Let C be a nonempty closed convex subset of H and let
S = {T (s) : 0 ≤ s < ∞} be a one-parameter nonexpansive semigroup on C such
that F (S) 6= ∅. Let {xn} be a sequence generated by x1 = x ∈ C, xn+1 = αnx +

(1 − αn) 1
tn

∫ tn

0
T (s)xn ds (∀n ∈ N), where {αn} ⊂ [0, 1) satisfies limn→∞ αn = 0

and
∑∞

n=0 αn = ∞ and {tn} ⊂ (0,∞) with limn→∞ tn = ∞. Then, {xn} converges
strongly to PF (S)x.

Proof. Let S = {s ∈ R : 0 ≤ s}, S = {T (s) : s ∈ S} and let D be the Banach
space C(S) of all bounded continuous functions on S with supremum norm. Let
λs(f) = 1

s

∫ s

0
f(t) dt for every s > 0 and f ∈ D. Then, lims→∞ ‖λs − l∗kλs‖ = 0

for each k ∈ (0,∞) from [1, Corollary 3.8]. We also have Tλs
x = 1

s

∫ s

0
T (t)x dt for

every x ∈ C. By Theorem 4.8, we get Theorem 4.10.
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