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Abstract Computation of stochastic responses is a key step in reliability and probabilistic analysis of

dynamic systems. Monte Carlo Simulation (MCS) is generally employed for accurate analysis. Artificial

Neural Network (ANN) has a capability of mapping input to output. Due to the requirement of large

sample sizes in the reliability and probabilistic analysis, ANN has been successfully applied as a surrogate

model in many applications except non-stationary excitations. This paper proposes for the first time to

apply ANN as the surrogate model for the non-stationary excitation. Specifically, multi-layer feed-forward

ANN is employed for the purpose. The applicability of the proposed methodology is illustrated through

a probabilistic analysis of a 3-DOF linear system subjecting to non-stationary ground excitation. The

numerical results shown the potential of the proposed methodology.
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1. Introduction

Computation of responses at particular time instances is generally encountered in re-
liability and probabilistic analysis of linear dynamic systems subject to non-stationary
excitations. Monte Carlo Simulation is utilized in such analysis in order to obtain accu-
rate results. Accordingly, a number of non-stationary excitation realizations is generated
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in accordance with probabilistic descriptions, input to the system models, and perform
dynamic analysis. When rare events are of interest, e.g. the probabilities of event occur-
rences at the order of 10−6 or lower, the computation requires an extremely large number
of non-stationary excitation realizations, i.e. at the order of 106 or higher for the exem-
plified cases above. The extremely large number of non-stationary excitation realizations
is then input to the system models. Dynamic analysis is then performed to obtain system
response. When a large number of time steps are used in the response computation, the
computational effort is considerably high.

Computational intelligence has been applied to various domains (Harnpornchai et
al. [1]; Paokanta et al. [2]; Paokanta and Harnpornchai [3]; Paokanta et al. [4]; Paokanta
et al. [5] Harnpornchai and Wonggattaleekam [6],[7]). One of well-known computational
intelligence models is Artificial Neural Network (ANN). ANN has a capability of mapping
input to output. This is due to the ability of universal function approximation [8]. In this
paper, ANN is employed as a mapping function from non-stationary excitations to their
corresponding responses at particular time instances. More specifically, a feed-forward
ANN is used for the purpose. Accordingly, desired system responses are obtained by
forward computation with non-stationary excitations as input, which is different from a
recursive computation in traditional time domain analysis.

Therefore, the computational effort is apparently reduced. In context of reliability
and probabilistic analysis, the proposed ANN can be considered as a surrogate model of
performance function containing several random variables each of which is an excitation
magnitude at specific time instance. Such sequential random variables compose a non-
stationary stochastic excitation according to probability and stochastic process theory.
The application of ANN as a surrogate model of performance function can be found in
several researchers [9–13]. Most recent applications of ANN surrogate models include the
performance assessment of a vertical structure subjected to non-stationary, tornadic wind
loads [14], the simulation of wave propagation [15], the analysis of mooring lines and risers
[16], the prediction of pavement response to various tire configurations [17], estimation
of axial load-carrying capacity of concrete-filled steel tubes [18], self-compacting concrete
strength prediction [19], etc. However, it is the first time that this paper employs ANN
for mapping non-stationary excitations to stochastic dynamic responses.

The structure of paper is as follows. Following this introduction, the description of
ANN is presented. The non-stationary excitation model of ground acceleration and the
time-domain analysis of linear dynamic system are respectively described.

The learning of ANN for modeling the mapping function of non-stationary excitations
to dynamic responses at particular time instances is next explained. The proposed idea
and computational procedure is shown using numerical examples. Finally, the conclusion
is made.

2. Artificial Neural Network(ANN)

ANN is made up of simple processing units each of which is called neuron. The neurons
can store knowledge and apply it later. ANN emulate the brain in two aspects:

1) ANN obtains knowledge through learning processes.
2) The acquired knowledge is stored in terms of synaptic weights.
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2.1 Neuron
A neuron is an information-processing unit and is the basic for the ANN operation. A

neuron k is depicted as shown in Figure 1.

Figure 1. Model of a neuron.

A neuron contains three important elements:
(a) Synapses or connecting links. Each synapse is associated with a weight. The input

at the synapse j connected to the neuron k is modified by the synaptic weight wkj . The
synaptic weight is normally a real value.

(b) Adder for summing the modified input from applying the synaptic weight. The
summation is thus in the form of a linear combination.

(c) Activation function which is used for limiting the amplitude of the neuron output.
The activation function is also known as a squashing function because it limits the range
of output to be within an interval. Generally, the interval is [0, 1] or [−1, 1].

An external bias is also included to the neural representation. The bias is denoted by
bk. The effect of bias is to modify the linear combination of all inputs, that can be in the
increasing or decreasing manner.

Let the linear combination of all inputs be uk, i.e.

uk =

m∑
j=1

wkjxj (2.1)

where xj is the j-th input.
The output from the neuron is obtained from applying the activation function, i.e.

yk = ϕ(uk + bk) (2.2)

where ϕ(·) is the activation function.
Note that the total input to the activation function vk is equal to

vk = uk + bk. (2.3)

2.2 Activation Function
Typical activation functions are:

(a) Threshold function or Heaviside function.
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(b) Sigmoid function or the socalled S-shaped function. The sigmoid function is
the most commonly used activation function class used in the architecture of
ANN. The activation functions in the class of sigmoid function consist of:

Logistic Function

ϕ(v) =
1

1 + exp(−av)
(2.4)

in which a is the slope parameter.
Hyperbolic Tangent Function

ϕ(v) = tanh(v). (2.5)

The hyperbolic tangent function can yield negative as well as positive value and thus
very practical compared with the logistic function.

2.3 ANN Architecture
Typical ANN architectures are:
(a) Single-Layer Feed-Forward ANN.
(b) Multi-Layer Feed-Forward ANN.
(c) Recurrent ANN.
The Multi-Layer Feed-Forward ANN which works as a mapping function will be em-

ployed in this paper. Specifically, the Multi-Layer Feed-Forward ANN is composed of
one input layer, at least one hidden layer, and one output layer. The Multi-Layer Feed-
Forward ANN is graphically shown in Figure 2.

Figure 2. Multi-Layer Feed-Forward ANN.
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2.4 ANN Learning

The Multi-Layer Feed-Forward ANNs are capable of representing a broad class of
continuous functions including linear and non-linear forms. The determination of the
synaptic weights requires higher computational effort when there are many hidden layers
and neurons. An efficient learning method of weight determination is the so-called back
propagation algorithm. This algorithm has been extensively used by both research and
practice communities in various applications. The algorithm was invented and rediscov-
ered before it established the recognition through the PDP group work in 1985 [20]. The
algorithm has been one of the most cited and applied for ANN learning since then. Ac-
cordingly, the back-propagation algorithm will be used in this paper. The details of the
algorithm can be found in the literature, e.g. [21].

The back propagation (BP) algorithm was proposed in 1986 by Rumelhart, Hinton
and Williams for setting weights and hence for the training of multi-layer ANNs. This
opened the way for using multi-layer ANNs, nothing that the hidden layers have no desired
(hidden) outputs accessible. Once the BP algorithm of Rumelhart et al. was published,
it was very close to algorithms proposed earlier by Werbos in his Ph.D. dissertation
in Harvard in 1974 and then in a report by D. B. Parker at Stanford in 1982, both
unpublished and thus unavailable to the community at large. It goes without saying that
the availability of a rigorous method to set intermediate weights, namely to train hidden
layers of ANNs gave a major boost to the further development of ANN, opening the
way to overcome the single-layer shortcomings that had been pointed out by Minsky and
which nearly dealt a death blow to ANNs.

The BP algorithm starts, of necessity with computing the output layer, which is the
only one where desired outputs are available, but the outputs of the intermediate layers
are unavailable (see Figure 3), as follows: Let ε denote the error-energy at the output
layer, where:

ε ,
1

2

∑
k

(dk − yk)
2

=
1

2

∑
k

e2k k = 1, · · · , N (2.6)

N being the number of neurons in the output layer. Consequently, a gradient of ε is
considered, where:

∇εk =
∂ε

∂wkj
. (2.7)

Using the steepest descent (gradient) one has

wkj(m+ 1) = wkj(m) + ∆wkj(m) (2.8)

J denoting the jth input to the kth neuron of the output layer, where, again by the steepest
descent procedure:

∆wkj = −η ∂ε

∂wkj
. (2.9)
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Figure 3. An Error at the output layer.

The minus (−) sign in Eq.(2.9) indicates a down-hill direction towards a minimum. We
note from the perceptron’s definition that the k’s perceptron’s node-output zk is given by

zk =
∑
j

wkjxj (2.10)

xj being the jth input to that neuron, and noting that the perceptron’s output yk is:

yk = FN (Zk) (2.11)

F being a nonlinear function and must be continuous to allow its differentiation. We now
substitute

∂ε

∂wkj
=

∂ε

∂zk

∂zk
∂wkj

(2.12)

and, by Eq.(2.10)

∂zk
∂wkj

= xj(p) = yj(p− 1) (2.13)

p denoting the output layer, such that Eq.(2.12) becomes:

∂ε

∂wkj
=

∂ε

∂zk
xj(p) =

∂ε

∂zr
yj(p− 1). (2.14)

Defining:

Φk(p) = − ∂ε

∂zk(p)
. (2.15)

Then Eq.(2.14) yields:

∂ε

∂wkj
= −Φk(p)xjp = −Φkyi(p− 1) (2.16)

and, by Eqs.(2.9) and (2.16):

∆wkj = ηφk(p)xj(p) = ηΦk(p)yj(p− 1) (2.17)
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j denoting the jth input to neuron k of the output ( p ) layer. Furthermore, by Eq.(2.15)

Φk = − ∂ε

∂zk
= − ∂ε

∂yk

∂yk
∂zk

. (2.18)

From Eq.(2.16)

∂ε

∂yk
= − (dk − yk) = yk − dk (2.19)

whereas, for a sigmoid activation function:

yk = FN (zk) =
1

1 + exp (−zk)
. (2.20)

Therefore,

∂yk
∂zk

= yk (1− yk) . (2.21)

Consequently; by Eqs.(2.18), (2.19) and (2.20)

Φk = yk (1− yk) (dk − yk) (2.22)

such that, at the output layer, by Eqs. (2.9), (2.12)

∆wkj = −η ∂ε

∂wkj
= −η ∂ε

∂zk

∂zk
∂wkj

(2.23)

where, by Eqs.(2.13) and (2.18)

∆wkj(p) = ηΦk(p)yj(p− 1) (2.24)

ΦK being as in Eq.(2.22), to complete the derivation of the setting of output layer weights.
Back-propagating to the rth hidden layer, we still have, as before

∆wji = −η ∂ε

∂wji
(2.25)

for the ith branch into the jth neuron of the rth hidden layer. Consequently, in parallelity
to Eq.(2.12)

∆wji = −η ∂ε
∂zj

∂zj
∂wji

(2.26)

and noting Eq.(2.13) and the definition of Φ in Eq.(2.18):

∆wji = −η ∂ε
∂zj

yi(r − 1) (2.27)

such that, by the right hand-side relation of Eq.(2.18)

∆wji = −η
[

∂ε

∂yi(r)

∂yj
∂zj

]
yi(r − 1), (2.28)

where ∂ε
∂yj

is inaccessible (as is, therefore, also Φj(r) above).

ε can only be affected by upstream neurons when one propagates back-wards from the
output. No other information is available at that stage. Therefore

∂ε

∂yj(r)
=
∑
k

∂ε

∂zk(r + 1)

[
∂zk(r + 1)

∂yj(r)

]
=
∑
k

∂ε

∂zk

[
∂

∂yj(r)

∑
m

wkm(r + 1)ym(r)

]
(2.29)
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where the summation over k is carried out over the neurons of the next (the r+ 1 ) layer
that connect to yj(r), while the summation over m is done over all inputs to each k′ th
neuron of the (r + 1) layer.

The definition of Φ, Eq.(29) yields

∂ε

∂yj(r)
=
∑
k

∂ε

∂zk(r + 1)
wkj = −

∑
k

Φk(r + 1)wkj(r + 1) (2.30)

because only wkj(r + 1) is connected to yj(r).
Accordingly, by Eqs.(2.18), (2.19) and (2.30):

Φj(r) = −∂yi
∂zj

∑
k

Φk(r + 1)wkj(r + 1) = yj(r) [1− yj(r)]
∑
k

Φk(r + 1)wkj(r +1)

(2.31)

and, via Eq.(2.24):

∆wkj(r) = ηΦj(r)yj(r − 1)

to obtain ∆wji(r) as a function of φ and the weights of the (r+1) layer, noting Eq.(2.30).
Note that the partial derivatives of ε cannot be taken with respect to the hidden layer
considered. It thus must be taken as the partial derivatives of ε with respect to the
variables upstream in the direction of the output, which are the only ones that affect ε.
This observation is the basis for the BackPropagation procedure, to facilitate overcoming
the lack of accessible error data in the hidden layers.

The BP algorithm thus propagates backwards all the way to r = 1 (the first layer), to
complete its derivation. Its computation can thus be summarized as follows:

Apply the first training vector. Subsequently, compute ∆wkj(p) from Eqs.(2.22) and
(2.23) for the output (the p) layer and then proceed through computing ∆wji(r) from
Eq.(2.31) for r = p − 1, p− 2, . . . , 2, 1; using Eq.(2.30) to update Φj(r) on the basis of
Φj(r + 1) upstream (namely back-propagating from layer r + 1 to layer r), etc. Next,
update w(m+1) from w(m) and ∆w(m) for the m+1 iteration via Eq.(2.8) for the latter
training set. Repeat the whole process when applying the next training vector until you
go through all L training vectors. Then repeat the whole process for (m+ 2),(m+ 3), · · ·
. until adequate convergence is reached.

Initialization of wji(0) is accomplished by setting each weight to a low-valued random
value selected from a pool of random numbers, say in the range from −5 to +5.

3. Non-stationary Group Excitation Model and Simulation

In this section, the model of non-stationary excitation model and its simulation is de-
scribed.

3.1 Stationary Kanai-Tajimi Model
The Power Spectral Density Function (PSDF) resulting from the filtering of strong

ground motion originated at the bedrock and propagating through the soil layer is defined
by [22, 23]

S(w) = S0

ω4
g + 4η2gω

2
gω

2(
ω2
g − ω2

)2
+ 4η2gω

2
gω

2
(3.1)
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where s0 is the intensity of the PSDF at the rock level, ηg and ωg are the damping and
the natural frequency of the soil, respectively.

3.2 Non-stationary and Evolutionary Models of PSDF
The non-stationary PSDF of the ground acceleration can be obtained from applying

the modulation function to the stationary PSDF, i.e.

S(t, w) =
∣∣A (t, ω2

)∣∣S(ω) (3.2)

where A(t, ω) is a modulation function and S(ω) is a stationary PSDF, e.g. as given by
(3.1).

When A(t, ω) is a separable function of time and frequency function, the non-stationary
PSDF as given by (3.2) is reduced to the well-known uniformly modulated non-stationary
random processes. This kind of processes characterizes the invariant PSDF at every time
instance. Its entropy is thus constant and the analysis follows the same procedures for
stationary stochastic processes.

One of the widely applied modulation function is

A(t, ω) = e(t)g(t, ω) = A0

[
e−αt − eβt

]
e

(−rωt)
ωmtm (3.3)

where A0, α, β, r, ωm, tm are constants. It can be shown that the entropy of the non-
stationary processes using the aforementioned modulation function (3.3) is time variant.
The spectral representations (3.1) and (3.2) together with the modulation function (2.8)
will be used herein to construct a non-stationary stochastic process.

3.3 Simulation of Non-Stationary Ground Motion Processes
(a) Spectral Representation of Non-stationary Stochastic Processes Based on Priest-

ley’s theory of evolutionary spectral representation of non-stationary stochastic processes
[24, 25], an uni-variate and one dimensional non- stationary stochastic processes, the time
series representation is

f0(t) =
√

2

∞∑
k=0

√
2Sf0f0 (t, ωk) ∆ω cos (ωkt+ φk) . (3.4)

(b) Simulation of Non-stationary Stochastic Processes
From the infinite series representation shown in (3.4), it follows that the non-stationary

stochastic process f0(t) can be simulated by the following formula

f(t) =
√

2

N−1∑
k=0

√
2Sf0f0 (t, ωn) ∆ω cos (ωnt+ φn) (3.5)

where ωn = n∆ω, n = 0, 1, 2, . . . , N − 1 and ∆ω = ωu/N .
It is assumed that

Sf0f0(t, 0) = 0 (3.6)

where ωu represents an upper cut-off frequency which may be determined according to
precision requirement and beyond ωu the evolutionary power spectral density function
may be assumed to be zero. As such, ωu is a fixed value and hence ∆ω → 0 as N →∞.
The φ0, φ1, φ2, . . . , φN−1 are in dependent random phase angles and distributed uniformly
in the range of [0, 2π].
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4. Universal Approximation Theorem

It is aimed at mapping the inputs to output using ANN. This can be accomplished
based on the universal approximation theorem which is stated as follows:

Let ϕ(·) be a nonconstant, bounded, and monotone increasing, continuous function.
Let I(m) denoted m0 dimensional unit hypercube [0, 1]m0 . The space of continuous
function on Im0

is denoted by C (Im0
) and ε > 0, there exist an integer m1 and set of

real constants α1, bi , and wij , where i = 1, . . . ,m1 and j = 1, . . . ,m0 such that

F (x1, . . . , xm0
) =

m1∑
i=1

αiϕ

m0∑
j=1

wijxj + bi

 (4.1)

is defined as an approximate realization of the function f (x1, . . . , xm0) for all x1, x2, ..., xm0

that lie in the input space. The universal approximation theorem is directly applicable
to multilayer perceptrons As a case, the hyperbolic tangent function that is used in a
neuron model is indeed a nonconstant, bounded and monotone-increasing function. Con-
sequently, ANN satisfies conditions imposed on the function ϕ(·)

The universal approximation theorem is an existence theorem. The theorem provides
the mathematical justification for the approximation of an arbitrary continuous function
as opposed to exact representation. Equation (2.12), which is the essence of the theorem,
merely generalizes approximations by finite Fourier series. In effect, the theorem states
that a single hidden layer is sufficient for a multilayer perceptron to compute a uniform ε
approximation to a given training set represented by the set of input xm0 and a desired
(target) output, xm0 .

5. Application of ANN as Surrogate Model

Consider a Multi-degree of Freedom (MDOF) linear dynamic system subject to non-
stationary excitation. In particular, the non-stationary excitation is a stochastic non-
stationary ground excitation Ag(t). Based on the universal approximation theorem, an
ANN will be used as a mapping function from the stochastic non-stationary ground exci-
tation from time to t0 in order to predict the dynamic response at to e.g. the displacement
X (t0), i.e.

X (tn) = ANN (Ag (t0) , . . . , Ag (tn)) (5.1)

where ANN is the ANN model acting as a mapping function from the inputs {Ag(t0),
. . . , Ag(tn)} to the output X (tn). The ANN as a surrogate model is obtained from the
following steps.

1. Define the architecture of ANN. In this study, a three-layer feed-forward ANN is
used. There are input, hidden, and output layers. The number of hidden layer is limited
to one. Let the number of neurons in the hidden layer be equal to Nh.

2. Generate N numbers of stochastic ground excitation according to the procedure in
Section 3.

3. Input the N generated excitation to the Finite Element Model (FEM) to compute
the desired dynamic responses. The total number of responses is also equal to N .

4. Divide the N generated excitations and their corresponding responses into two
groups. The first group consists of Ntrain realizations of generated excitations and their
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corresponding responses. This group is denoted as the training set. The testing group con-
sists of Ntest generated excitations and their corresponding response. Note that Ntrain +
Ntest = N .

5. Employ the Ntrain excitations and their FEM dynamic responses as the input and
output of the ANN in order to train the ANN using the back-propagation algorithm.

6. Input the Ntest excitations to the trained ANN and compute the Ntest ANN-based
dynamic responses.

7. Compute the relative error ε from

ε =
1

Ntest

Ntest∑
i=1

∣∣∣∣XFEM,i −XANN,i

XANN,i

∣∣∣∣ . (5.2)

8. Vary the number of Nh and select the Nh with smallest ε.
The application of ANN as surrogate model will be shown in the next section.

6. Illustrative Example

Consider a 3-DOF linear system of shear frame building. The building subjects to the
non-stationary excitation. The equation of motion is given by

MẌ + CẊ + KX = −AgMΓ (6.1)

in which M,C,K is the mass, damping, and stiffness matrix, respectively. Ẍ, Ẋ,X are
the acceleration, velocity, and displacement matrix, respectively. While as Ag is the
non-stationary ground excitation. The matrix term Γ is defined by

Γ =

 1
1
1

 . (6.2)

The following parameters are used in the study.

M =

100 0 0
0 100 0
0 0 100

 (6.3)

C =

 2500 −2500 0
−2500 3500 −1000

0 −1000 3000

 (6.4)

K =

 1.0e7 −1.0e7 0
−1.0e7 1.5e7 −0.5e7

0 −0.5e7 1.0e7

 (6.5)

where S0 = 0.001, ωg = 15, ηg = 0.25, A0 = 2.87, α = 0.13, β = 0.35, r = 1.0,
ωm = 1000, tm = 5, and ωu = 1000.

1000 realizations of Ag are generated according to the prescribed procedure in Section
3 and parameters above. Each realization of Ag starts from t = 0 to t = 15 s, with the
time step size or discretization dt = 0.05. Specifically, X1(15), X2(15), and X3(15) are of
interest. A generated realization is shown in Figure 4.

700 realizations of Ag are used for training ANN and therefore are input in the FEM
model to compute the 700 realized responses X1(15), X2(15), and X3(15). The 700 real-
izations of Ag and respective response Xi(15)(i = 1, 2, 3) are used as input and output of
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ANN for its training. The generic architecture of ANN is given in Figure 5. Accordingly,
each response prediction has its own ANN architecture.

Figure 4. A realization of Ag.

Figure 5. Generic architecture of ANN surrogate model for prediction
of Xi(i = 1, 2, 3).

The remaining 200 realizations of Ag are input to the FEM model and the trained
ANN and computes the respective responses X1(15), X2(15), and X3(15), respectively.
These 200 realization is the test samples. Both FEM and ANN-based results using Nh
neurons in the hidden layer that yields the least relative error ε for each response are
reported in Table 1 . The ANN having Nh with the least ε is referred to as the best ANN.

The best ANN for each response is then employed for the stochastic analysis using
Monte Carlo Simulation (MCS). In this stochastic analysis, the uncertainty in soil prop-
erties is considered while the other parameters remain the same as those above.
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Table 1. Nh with the least relative error ε for each response Xi(15)
from test samples.

Response Nh ε
X1(15) 10 0.000461
X2(15) 8 0.000064
X3(15) 5 0.000152

The Probability Density Function (PDF) of each soil parameter is given as

ωg ∼ lognormal
(
2.703, 9.975× 10−2

)
(6.6)

ηg ∼ lognormal
(
−1.391, 9.975× 10−2

)
(6.7)

MCS is performed with 1000 realizations of Ag according to the both PDFs defined in
(2.20) and (2.21). All realizations of Ag are input to the FEM and the respective best
ANN model from Table 1. 1000 responses of X1(15), X2(15), and X3(15) are computed
from both FEM and best ANN models. The results are compared in Figure 6 to Figure
8. The accuracy of the ANN in predicting the stochastic responses is shown in Table 2.

Table 2. Accuracy of the ANN in predicting the stochastic response.

Response Relative error in prediction
X1(15) 0.00409
X2(15) 0.00337
X3(15) 0.00430

Figure 6. Comparison of X1(15) from the FEM and the best ANN model.
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Figure 7. Comparison of X2(15) from the FEM and the best ANN model.

Figure 8. Comparison of X3(15) from the FEM and the best ANN model.

Figure 6 to Figure 8 as well as the relative errors in prediction indicate that the ANN
model performs distinctly well as the surrogate models for time-domain analysis of linear
dynamic systems subject to non-stationary excitations.

The computational time of the used FEM with Newmark method [26], which is a
standard and conventional tool for dynamic analysis, is compared with the proposed ANN
surrogate model. The results are given in Table 3. The computing machine has 8 GB ram
with 9th Gen Intel ®coreTMi7. The proposed ANN model is significantly more efficient
than the standard FEM 30-200 times in terms of computational effort (confer Table 3).
This gain of efficiency is due to the forward and one-way computation of ANN whereas the
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Newmark method uses the recursive scheme. The comparison of the computational efforts
informs that ANN is significantly superior to FEM in terms of computational efficiency.

Table 3. Comparison of computational times between the FEM and the
proposed ANN model.

Response
Time used by FEM
(Seconds)

Time used by ANN
(Seconds)

Computation Efficiency of
ANN over FEM (times)

X1(15) 14.779212 0.480077 30.78508656
X2(15) 14.024838 0.082745 169.4946885
X3(15) 14.018782 0.068174 205.6323818

7. Conclusions

Feed-forward artificial neural net-works (ANNs) are proposed as a surrogate model
for time-domain analysis of linear dynamic systems subject to non-stationary excita-
tions. The model is of the multi-layer type that contains at least one hidden layer. The
back-propagation is employed for the learning of the ANNs. The realizations of non-
stationary excitations are simulated according to the evolutionary power spectral density
function model using time series presentation. A 3-DOF linear system subjecting to a
non-stationary stochastic ground motion due to random soil proper-ties is used as an illus-
trative example. The numerical results show the ANN performs excellent as the surrogate
model. The ANN models not only yields accurate results but is also significantly superior
to the analysis using Finite Element Method in terms of computational efficiency. The
proposed methodology has the potential of application for the risk and reliability analysis
of the system with uncertain parameters. The system includes civil engineering structures
subject to earthquakes, e.g. buildings and dams, the vibration of aerospace structures,
the offshore platforms subjected to dynamic waves, etc. The other practical and realistic
applications can be found in [27].
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