Thai Journal of **Math**ematics Volume 21 Number 1 (2023) Pages 171–181

http://thaijmath.in.cmu.ac.th

Amenability and Weak Amenability of Some Banach Algebras

Behrooz Olfatian Gillan^{1,*}, Mohammad Reza Omidi¹, Amir Sahami² and Ali Zamani³

 ¹ Kermanshah University of Technology, Basic Sciences Department, Kermanshah, Iran e-mail : b.olfatian@kut.ac.ir (B.O. Gillan); m.omidi@kut.ac.ir (M.R. Omidi)
 ² Ilam University, Basic Sciences Department, Ilam, Iran e-mail : a.sahami@ilam.ac.ir (A. Sahami)
 ³ Department of Mathematics Farhangiyan University, Tehran, Iran

e-mail : zamani.ali85@yahoo.com (A. Zamani)

Abstract In this paper, we suppose that H is a compact subgroup of locally compact topological group G and G/H is a homogeneous space which is equipped with a strongly quasi-invariant Radon measure μ . Then in the group algebra $L^1(G)$, we replace the homogeneouse space G/H instead of G and consider the new Banach algebra $L^1(G/H)$. We study this Banach algebra and it's dual. At the end, by characterization of $L^{\infty}(G/H)$ and the left and right dual $L^1(G/H)$ -module actions of $L^{\infty}(G/H)$, we give a necessary and sufficient conditions for amenability and weak amenability of this Banach algebra.

MSC: 43A20; 46H05; 43A07 Keywords: Banach algebra; homogeneous space; amenability; weak amenability

Submission date: 15.07.2019 / Acceptance date: 17.01.2020

1. INTRODUCTION

Let G be a locally compact group and H be a closed subgroup of G. Then the space G/H consisting of all left cosets of H in G is a locally compact Hausdorff topological space that G acts on it transitively from the left. The term homogeneous space means a transitive G-space which is topologically isomorphic to G/H, for some closed subgroup H of G. It has been shown that if G is σ -compact, then every transitive G-space is homeomorphic to the quotient space G/H for some closed subgroup H (cf.[1], Subsection 2.6). We know that the homogeneous space G/H is not a group when H is not normal. However, over the last decades, the principal part of the classical harmonic analysis on locally compact topological groups carries over the homogeneous spaces G/H and it is quite well studied by several authors and have been achieved many interesting applications in geometric analysis, mathematical physics, differential geometry, geometric analysis (cf. [2–7]).

^{*}Corresponding author.

In the following paper we aim to further develop the abstract results over the some Banach function algebras related to homogeneous spaces (coset spaces) of a locally compact group. For a locally compact group G with the left Haar measur m_G , it is well known that $L^1(G)$ is an involutive Banach algebra with a bounded approximate identity. The standard convolution for $f, g \in L^1(G)$ is given by

$$f *_{L^{1}(G)} g(x) = \int_{G} f(y)g(y^{-1}x)dm_{G} \quad (a.e \ x \in G),$$
(1.1)

(cf.[1]). In [8], assuming that H is a compact subgroup of G with the normalized Haar measure m_H and μ is a stongly quasi-invariant Radon measure on G/H arising from the rho-function ρ , it is shown that there is a well defined convolution on $L^1(G/H, \mu)$. This convolution for $\varphi, \psi \in L^1(G/H, \mu)$ is given by

$$\varphi * \psi(xH) = \int_{H} \varphi_{\rho} *_{L^{1}(G)} g(xh)(\rho(xh))^{-1} dm_{H} \quad (\text{a.e } xH \in G/H),$$

where $\varphi_{\rho} = \rho(\varphi \circ q)$ and g is any function in $L^1(G)$ which

$$\psi(xH) = \int_{H} g(xh)(\rho(xh))^{-1} dm_H \qquad (\text{a.e } xH \in G/H).$$

Also, $L^1(G/H, \mu)$ with this convolution becomes a Banach algebra which has a bounded right approximate identity and it is involutive Banach algebra if and only if H is normal in G. For any $\varphi \in L^1(G/H, \mu)$ and $a \in G$, the left and right translations are defined respectively as

$$L_a\varphi(xH) = \int_H \mathcal{L}_a\varphi_\rho(xh)(\rho(xh))^{-1}dm_H \qquad (\text{a.e } xH \in G/H),$$

and

$$R_a\varphi(xH) = \int_H \mathcal{R}_a\varphi_\rho(xh)(\rho(xh))^{-1}dm_H \qquad (\text{a.e } xH \in G/H),$$

where \mathcal{L}_a (resp. \mathcal{R}_a) is the left translation on $L^1(G)$ which is given by $\mathcal{L}_a f(x) = f(a^{-1}x)$ (resp. $\mathcal{R}_a f(x) = f(xa)$) for $f \in L^1(G)$ and $x \in G$.

It is well known that $L^1(G)$ as a Banach algebra is amenable if and only if G is amenable (The well known Johnson's theorem). Also, $L^1(G)$ is always weakly amenable (see [9]). In this paper, motivated by the amenability and weak amenability of $L^1(G)$, we consider $L^1(G/H)$ as a Banach algebra where H is a compact subgroup of G and G/H is a homogeneous space which it is not necessarily a locally compact group. Then we characterize $L^{\infty}(G/H)$ as dual of the Banach algebra $L^1(G/H)$ and we obtain the left and the right dual $L^1(G/H)$ -module actions of $L^{\infty}(G/H)$ and study the amenability and weak amenability $L^1(G/H)$. Finally, we find necessary and sufficient conditions for amenability and weak amenability of the Banach algebra $L^1(G/H)$.

2. Preliminaries

In this section, for the readers convenience, we provide a summary of the mathematical notations and definitions which will be used in the sequel. (For details, we refer the reader to the general reference [9, 10], or any other standard book of harmonic analysis.)

For a locally compact Hausdorff space X equipped with a positive Radon measure m_X , we mean the space of containing all of continuous complex-valued functions on X which have compact support by $C_c(X)$. For each $1 \leq p < \infty$, we denote the Banach space of equivalence classes of m_X -measurable complex valued functions $f: X \to \mathbb{C}$ such that

$$||f||_p = \left(\int_X |f(x)|^p dm_X(x)\right)^{1/p} < \infty,$$

by $L^p(X, m_X)$ and in brief by $L^p(X)$ which contains $C_c(X)$ as a $\|\cdot\|_p$ -dense subspace. We denote the Banach space of all equivalence classes of locally measurable functions on Xwhich are locally essentially bounded, by $L^{\infty}(X)$. The functions f, g in $L^p(X)$ are equal if they are equal almost everywhere and we just write f = g for $1 \leq p < \infty$. Also, for $f, g \in L^{\infty}(X)$ the equality f = g means that they are equal locally almost everywhere.

Let A be a Banach algebra and E be a Banach A-bimodule. Then the dual Banach space E^* of E is a Banach A-bimodule, with the dual actions given by

$$(a \cdot f)(x) = f(xa)$$
 and $(f \cdot a)(x) = f(ax)$ $(f \in E^*, a \in A, x \in E)$.

In particular, A^* is a Banach A-bimodule. For example, for a locally compact topological group G, it is well known that $L^{\infty}(G)$ as dual of $L^1(G)$ is a Banach $L^1(G)$ -bimodule and for each $f \in L^1(G)$ and $\psi \in L^{\infty}(G)$ the left and right $L^1(G)$ -module actions of $L^{\infty}(G)$ are given by

$$\psi \cdot f = \tilde{f} * \psi$$
 and $f \cdot \psi = \psi * \check{f}$

in which $\tilde{f}(x) = f(x^{-1})/\Delta(x)$ and $\check{f}(x) = f(x^{-1})$ and Δ is the modular function of G.

A linear map $D: A \to E^*$ is a derivation if $D(ab) = D(a) \cdot b + a \cdot D(b)(a, b \in A)$. For example, if $\varphi \in E^*$, then the map $d_{\varphi}: a \mapsto a \cdot \varphi - \varphi \cdot a$ is a derivation. The derivations such as d_{φ} are called inner. The set of all derivations and inner drivations from A into E are denoted by $Z^1(A, E)$ and $B^1(A, E)$, respectively. Also, the quotient space $H^1(A, E) = Z^1(A, E)/B^1(A, E)$ is called first cohomology group of A.

Let A be a Banach algebra. Then A is called amenable if $H^1(A, E^*) = 0$ for every Banach A-bimodule E. Also, A is called weakly amenable if $H^1(A, A^*) = 0$, i.e., a Banach algebra A is weakly amenable if every continuous derivation from A into A^* is inner. For example in [9], we can see that the group algebra $L^1(G)$ is amenable if and only if G is amenable and also, $L^1(G)$ is always weakly amenable.

When G is a locally compact topological group and H is a closed subgroup of G, then the quotient space G/H consisting of all left cosets of H in G, is a homogeneous space that G acts on it from the left. Let μ be a Radon measure on G/H and $x \in G$. The translation μ_x of μ is defined by $\mu_x(E) = \mu(xE)$ for all Borel subset $E \subseteq G/H$. The measure μ is called strongly quasi-invariant measure on the homogeneous space G/H if there exists a continuous function $\lambda : G \times (G/H) \to (0, \infty)$ such that $d\mu_x(E) = \lambda(x, E)d\mu(E)$ for all $x \in G$ and Borel subset E of G/H.

Let Δ_G and Δ_H be the modular functions of G and H, respectively. A rho-function for the pair (G, H) is a continuous function $\rho: G \to (0, \infty)$ such that

 $\rho(xh) = \Delta_H(h)\Delta_G(h)^{-1}\rho(x)$ for each $x \in G$ and $h \in H$. It has been shown that for any locally compact group G and closed subgroup H of G, the pair (G, H) admits a rho-function (cf. [1], Proposition 2.54). If m_G and m_H are the Haar measures G and H, respectively, then for any given rho-function ρ , the homogeneous space G/H has a strongly quasi-invariant Radon measure μ which satisfies in the Mackey-Bruhat formula; i.e.,

$$\int_{G/H} \int_{H} f(xh)(\rho(xh))^{-1} dm_{H} d\mu(xH) = \int_{G} f(x) dm_{G} \qquad (f \in L^{1}(G)),$$

(cf. [1]).

Throughout this paper, we suppose that G is a locally compact topological group with the left Haar measure m_G , H is a compact subgroup of G with the normalized Haar measure m_H and G/H is a homogeneous space which is equipped to a strongly quassi invariant measure μ . Also, the map $q: G \to G/H$ by q(x) = xH is the canonical quotient map.

3. Main Results

In this section, we suppose that $1 \leq p < \infty$ and H is a compact subgroup of locally compact group G. When H is closed then the function space $C_c(G/H)$ consists of all functions $P_H(f)$, where $f \in C_c(G)$ and

$$P_H(f)(xH) = \int_H f(xh)(\rho(xh))^{-1} dm_H.$$
(3.1)

This equivalently means that the linear map $P_H : C_c(G) \to C_c(G/H)$ is a surjective bounded linear operator. The extension of the linear map P_H of $L^1(G)$ onto $L^1(G/H)$ is norm-decreasing, that is

$$||P_H(f)||_1 \le ||f||_1 \qquad (f \in L^1(G)),$$

(cf. [1, 11, 12]). Now, by assuming that H is a compact subgroup of G, we consider that the linear map $P_H: C_c(G) \to C_c(G/H)$ given by

$$P_H(f)(xH) = \int_H f(xh)(\rho(xh))^{-1/p} dm_H.$$
(3.2)

Then we show that P_H is extendable from $L^p(G)$ onto $L^p(G/H)$ and also it is normdecreasing for $1 \leq p < \infty$. Note that the value of p in relation (3.2) is determined by value of p in $L^p(G)$.

Proposition 3.1. Let H be a compact subgroup of locally compact group G, μ be a strongly quassi invariant measure on G/H associated to the Mackey-Brouhat formula, and $1 \leq p < \infty$. Then the linear map P_H introduced in (3.2) is extendable to a unique surjective, norm-decreasing and bounded linear map from $L^p(G)$ onto $L^p(G/H)$ which still will be denoted by P_H .

Proof. Let $f \in C_c(G)$, H be a compact subgroup of G and $1 \leq p < \infty$. Then the compactness of H, using Minkowski's inequality and the Mackey-Brouhat formula allow us to write

$$\begin{split} \|P_{H}f\|_{p}^{p} &= \int_{G/H} |P_{H}f(xH)|^{p} d\mu(xH) \\ &= \int_{G/H} |\int_{H} f(xh)(\rho(xh))^{-1/p} dm_{H}|^{p} d\mu(xH) \\ &\leq \int_{G/H} \int_{H} |f(xh)|^{p} \rho(xh)^{-1} dm_{H} d\mu(xH) \\ &= \int_{G} |f(x)|^{p} dm_{G} \\ &= \|f\|_{p}^{p}. \end{split}$$

175

So, $||P_H f||_p \leq ||f||_p$. Hence, P_H has a unique extension to a norm-decreasing linear map from $L^p(G)$ onto $L^p(G/H)$ and still will be denoted by P_H .

The map P_H is surjective. Because if $\varphi \in L^p(G/H)$, then by taking $f = \rho^{1/p}(\varphi \circ q)$ and using of the Mackey-Brouhat formula we have

$$\begin{split} |f||_p^p &= \int_G \rho(x) |\varphi \circ q|^p(x) dm_G \\ &= \int_{G/H} \int_H \rho(xh) |\varphi \circ q|^p(xh) (\rho(xh))^{-1} dm_H d\mu(xH) \\ &= \int_{G/H} |\varphi(xH)|^p d\mu(xH) \\ &= \|P_H f\|_p^p, \end{split}$$

therefore, $f \in L^p(G)$ and also it's obvious that $P_H(f) = \varphi$.

Note that by this fact that a relative invariant Radon measure is a special case of a strongly quasi invariant Radon measure and in the above theorem the homogeneous space G/H has been equipped with a strongly quasi invariant Radon measure, so the above theorem can be considered as a generalization of Proposition 3.4 in [8].

Corollary 3.2. Let H be a compact subgroup of a locally compact group G. Then for all $\varphi \in L^p(G/H)$, we have

$$\|\varphi\|_p = \|\varphi_\rho\|_p$$

where $\varphi_{\rho} = \rho^{1/p}(\varphi \circ q)$ and q is the canonical quotient map on G/H.

Proof. For all $\varphi \in L^p(G/H)$, by the compactness of H and using the Mackey-Brouhat formula, we can write

$$\begin{split} \|\varphi\|_{p}^{p} &= \int_{G/H} |\varphi(xH)|^{p} d\mu(xH) \\ &= \int_{G/H} \int_{H} |\varphi_{\rho}(xh)|^{p} (\rho(xh))^{-1} dm_{H} d\mu(xH) \\ &= \int_{G} |\varphi_{\rho}(xh)|^{p} dm_{G} \\ &= \|\varphi_{\rho}\|_{p}^{p}, \end{split}$$

which this completes the proof.

For a compact subgroup H of G we set

$$C_c(G:H) = \{ f \in C_c(G) : R_h f = f, h \in H \}$$

and $L^p(G:H)$ is clouser of $C_c(G:H)$ under the norm $\|\cdot\|_p$. At the following proposition we characterize $L^p(G:H)$.

Proposition 3.3. Let H be a compact subgroup of G. Then the space $L^p(G : H)$ is specified as follow

$$L^{p}(G:H) = \{f \in L^{p}(G) : R_{h}f = f, h \in H\}$$
$$= \{\rho^{1/p}(\varphi \circ q) : \varphi \in L^{p}(G/H)\},\$$

which is a closed subalgebra of $L^p(G)$.

Proof. For this end, it is enough to show that for all $f \in L^p(G : H)$, the equality $f = (P_H f)_{\rho} := \rho^{1/p}(P_H f \circ q)$ holds. Let $f \in L^p(G : H)$. Then there is a sequence $(f_n)_n$ in $C_c(G : H)$ such that $||f_n - f||_p \to 0$. Now, by the compactness of H and Corollary 3.2 and Proposition 3.1, we can write

$$\begin{split} \|f - (P_H f)_{\rho}\|_p &\leq \|f - f_n\|_p + \|(P_H (f_n - f))_{\rho}\|_p \\ &= \|f - f_n\|_p + \|P_H (f_n - f)\|_p \\ &\leq 2\|f - f_n\|_p, \end{split}$$

which guarantees that $f = (P_H f)_{\rho}$.

Corollary 3.4. For a compact subgroup H of G, the normed space $L^p(G/H)$ can be considered as a closed subspace of $L^p(G)$ whenever $1 \le p < \infty$.

Proof. By restriction of the map P_H on $L^p(G:H)$ and using Propositions 3.2 and 3.3 for all $f \in L^p(G:H)$, we have

$$||P_H f||_p = ||(P_H f)_\rho)||_p = ||f||_p$$

Now, let $\varphi \in L^p(G/H)$. Then the facts of $\varphi_\rho \in L^p(G : H)$ and $P_H(\varphi_\rho) = \varphi$ imply the surjectivity of P_H . Therefore, the map $P_H : L^p(G : H) \to L^p(G/H)$ is an isometry isomorphism. Hence $L^p(G/H)$ can be considered as a closed subspace of $L^p(G)$.

At the following, we fix p = 1 and focus on the Banach algebra $L^1(G/H)$. We need characterize $L^{\infty}(G/H)$ as dual of $L^1(G/H)$ and then the left and right module actions $L^{\infty}(G/H)$ on $L^1(G/H)$. Then we can study the weak amenability of the Banach algebra $L^1(G/H)$.

Theorem 3.5. The Banach algebra $L^1(G/H)$ always possesses a bounded right approximate identity when H is a compact subgroup of G.

Proof. We know that $L^1(G)$ always possesses a bounded approximate identity $\{u_\alpha\}_\alpha$ (cf. [12], Proposition 3.7.7). First, we show that $\{(P_H u_\alpha)_\rho\}_\alpha$ is a right approximate identity for $L^1(G:H)$ specified in Proposition 3.3. Let $f \in L^1(G:H)$. Then we have

$$f * (P_H u_\alpha)_\rho(x) = \int_H f * \mathcal{R}_h u_\alpha(x) dm_H(x) \qquad (x \in G)$$

Thus by the compactness of H and Fubini's theorem, we can write

$$\begin{split} \|f*(P_Hu_\alpha)_\rho - f\|_1 &= \int_G |\int_H (f*\mathcal{R}_h u_\alpha - f)(x)dm_H(h)|dm_G(x)\\ &\leq \int_G \int_H |\mathcal{R}_h(f*u_\alpha) - \mathcal{R}_h f)(x)|dm_H(h)dm_G(x)\\ &= \int_H \int_G |(\mathcal{R}_h f*u_\alpha - \mathcal{R}_h f)(x)|dm_G(x)dm_H(h)\\ &= \int_H \|\mathcal{R}_h(f*u_\alpha - f)\|_1 dm_H(h)\\ &= \int_H \|(f*u_\alpha - f)\|_1 dm_H(h)\\ &= \|(f*u_\alpha - f)\|_1, \end{split}$$

which this implies that $\{(P_H u_\alpha)_\rho\}_\alpha$ is a right approximate identity for $L^1(G:H)$. Now by applying this fact that P_H from $L^1(G:H)$ onto $L^1(G/H)$ is an isometry isomorphism and also multiplicative, hence by using Proposition 3.2, we conclude that $\{P_H u_\alpha\}_\alpha$ is a right approximate identity for $L^1(G/H)$.

Remark 3.6. $L^1(G/H)$ possesses a left approximate identity if and only if H is normal in G (cf. [8]).

Corollary 3.7. For compact subgroup H of G, The Banach algebra $L^1(G/H)$ is amenable if and only if H is normal in G and G is amenable.

Proof. This fact that every amenable Banach algebra has a bounded approximate identity guarantees that amenability of $L^1(G/H)$ is equivalent to that H is normal in G.

Suppose that H is a compact subgroup of G. Then we set

$$L^{\infty}(G:H) = \{ f \in L^{\infty}(G); \mathcal{R}_h f = f, h \in H \}$$

and at the following we show that there is an isometric isomorphism between $L^{\infty}(G:H)$ and $L^{\infty}(G/H)$.

Theorem 3.8. Let H be a compact subgroup of G. Then there is a surjective linear map $P_{\infty}: L^{\infty}(G) \mapsto L^{\infty}(G/H)$ such that for all $f \in L^{\infty}(G)$

$$P_{\infty}(f)(xH) = \int_{H} f(xh) dm_{H}(h) \ (\mu\text{-locally almost every } xH \in G/H).$$
(3.3)

Proof. Let $f \in L^{\infty}(G)$. We assign to f a continuous linear map on $L^{1}(G/H)$ as

$$\varphi \mapsto \int_{G} \varphi_{\rho}(x) f(x) dm_{G}(x)$$

where $\varphi \in L^1(G/H)$ and $\varphi_{\rho} = \rho(\varphi \circ q)$. By the duality between $L^{\infty}(G/H)$ and $L^1(G/H)$ there is an element $\psi_f \in L^{\infty}(G/H)$ such that

$$\int_{G/H} \varphi(xH)\psi_f(xH)d\mu(xH) = \int_G \varphi_\rho(x)f(x)dm_G(x).$$

Hence for all $\varphi \in L^1(G/H)$ we can write

$$\begin{split} \int_{G/H} \varphi(xH)\psi_f(xH)d\mu(xH) &= \int_G \varphi_\rho(x)f(x)dm_G(x) \\ &= \int_{G/H} \int_H \varphi_\rho(x)f(xh)(\rho(xh))^{-1}dm_H(h)d\mu(xH) \\ &= \int_{G/H} \varphi(xH)\int_H f(xh)dm_H(h)d\mu(xH), \end{split}$$

and this implies that

$$\psi_f(xH) = \int_H f(xh) dm_H(h), \qquad (3.4)$$

for μ -locally almost every $xH \in G/H$. So, if the map $P_{\infty} : L^{\infty}(G) \mapsto L^{\infty}(G/H)$ is given by

$$P_{\infty}(f)(xH) = \int_{H} f(xh) dm_{H}(h) \qquad (\mu\text{-locally almost every } xH \in G/H),$$

then by (3.4) $P_{\infty}f = \psi_f$. So, $P_{\infty}f \in L^{\infty}(G/H)$, i.e. the map P_{∞} is well-defined. Also, if $\varphi \in L^{\infty}(G/H)$, then $\varphi \circ q \in L^{\infty}(G)$ and $P_{\infty}(\varphi \circ q) = \varphi$. Hence P_{∞} is surjective.

Now we can easily show that:

Corollary 3.9. The map $P_{\infty}: L^{\infty}(G:H) \to L^{\infty}(G/H)$ is an isometry isomorphism.

Using the map P_H and P_{∞} , we may express the left and the right dual $L^1(G/H)$ -module actions of $L^{\infty}(G/H)$ via corresponding the left and the right $L^1(G)$ -module actions of $L^{\infty}(G)$. In detail, for all $\psi \in L^{\infty}(G:H)$ and $g \in L^1(G:H)$, we have

$$P_{\infty}(\psi \cdot g) = P_{\infty}(\psi) \cdot P_H(g) \text{ and } P_{\infty}(g \cdot \psi) = P_H(g) \cdot P_{\infty}(\psi),$$

which in general case we express this in the following theorem.

Theorem 3.10. Let H be a compact subgroup of G. Then the left and right module actions $L^{\infty}(G/H)$ on $L^{1}(G/H)$ are given respectively by

$$\varphi \cdot f = P_{\infty}(\varphi_{\rho} \cdot f_{\rho}) \text{ and } f \cdot \varphi = P_{\infty}(f_{\rho} \cdot \varphi_{\rho}),$$

where $f \in L^1(G/H)$, $\varphi \in L^{\infty}(G/H)$, $\varphi_{\rho} = \varphi \circ q$ and $f_{\rho} = \rho(f \circ q)$.

Proof. Let $f \in L^1(G/H)$, $\varphi \in L^{\infty}(G/H)$. We know that $L^1(G) * L^{\infty}(G) \subseteq L^{\infty}(G)$, hence $(f_{\rho}) * \varphi_{\rho} \in L^{\infty}(G)$. So by using Theorem 3.8 $P_{\infty}((f_{\rho}) * \varphi_{\rho}) \in L^{\infty}(G/H)$. Therefore by using the Mackey-Brouhat formula and the compactness of H for each $g \in L^1(G/H)$ we can write

$$\begin{split} P_{\infty}((f_{\rho})^{\tilde{}}*\varphi_{\rho})(g) &= \int_{G/H} T_{\infty}((f_{\rho})^{\tilde{}}*\varphi \circ q)(xH)g(xH)d\mu(xH) \\ &= \int_{G/H} \int_{H} \frac{((f_{\rho})^{\tilde{}}*\varphi \circ q)(x\xi)\rho(x\xi)g \circ q(x\xi)}{\rho(x\xi)}d\xi d\mu(xH) \\ &= \int_{G}((f_{\rho})^{\tilde{}}*\varphi \circ q)(x)\rho(x)g \circ q(x)dx \\ &= \int_{G} \int_{G} \frac{f_{\rho}(y^{-1})}{\Delta(y)}\varphi \circ q(y^{-1}x)dy\rho(x)g \circ q(x)dx \\ &= \int_{G} f_{\rho}(y) \int_{G} \varphi \circ q(x)\rho(y^{-1}x)g \circ q(y^{-1}x)dxdy \\ &= \int_{G} \varphi \circ q(x) \int_{G} f_{\rho}(y)g_{\rho}(y^{-1}x)dydx \\ &= \int_{G} \varphi \circ q(x)f_{\rho}*g_{\rho}(x)dx \\ &= \int_{G/H} \int_{H} \frac{\varphi \circ q(x\xi)f_{\rho}*g_{\rho}(x\xi)}{\rho(x\xi)}d\xi d\mu(xH) \\ &= \int_{G/H} \int_{H} \frac{\varphi \circ q(x\xi)\rho(x\xi)(f*g) \circ q(x\xi)}{\rho(x\xi)}d\xi d\mu(xH) \\ &= \int_{G/H} \varphi(xH)f*g(xH)d\mu(xH) \\ &= \varphi(f*g) = (\varphi \cdot f)(g). \end{split}$$

Also by these facts that $L^{\infty}(G) * (L^{1}(G)) \subseteq L^{\infty}(G)$ and $\varphi_{\rho} * (f_{\rho}) \in L^{\infty}(G)$, so $P_{\infty}(\varphi_{r}ho * (f_{\rho})) \in L^{\infty}(G/H)$. Hence by using the Mackey-Brouhat formula and the compactness of H for each $g \in L^{1}(G/H)$ we can write

$$\begin{split} P_{\infty}(\varphi_{\rho}*(f_{\rho}))(g) &= \int_{G/H} P_{\infty}(\varphi_{\rho}*(f_{\rho}))(xH)g(xH)d\mu(xH) \\ &= \int_{G/H} \int_{H} \frac{(\varphi \circ q * (f_{\rho}))(x)\rho(x)g \circ q(x)g)}{\rho(x\xi)}d\xi d\mu(xH) \\ &= \int_{G} (\varphi \circ q * (f_{\rho}))(x)\rho(x)g \circ q(x)dx \\ &= \int_{G} \rho(x)g \circ q(x) \int_{G} \varphi \circ q(y)(f_{\rho})(y^{-1}x)dydx \\ &= \int_{G} \rho(x)g \circ q(x) \int_{G} \varphi \circ q(y)\rho(x^{-1}y)(f \circ q)(x^{-1}y)dydx \\ &= \int_{G} \varphi \circ q(y) \int_{G} \rho(x^{-1}y)(f \circ q)(x^{-1}y)\rho(x)g \circ q(x)dxdy \\ &= \int_{G} \varphi \circ q(y) \int_{G} g_{\rho}(x)f_{\rho}(x^{-1}y)dxdy \\ &= \int_{G} \varphi \circ q(y)g_{\rho} * f_{\rho}(y)dy \\ &= \int_{G/H} \int_{H} \frac{\varphi \circ q(y\xi)(g * f)_{\rho}(y\xi)}{\rho(y\xi)}d\xi d\mu(xH) \\ &= \int_{G/H} \varphi(yH)(g * f)(yH)d\mu(yH) \\ &= \varphi(g * f) = (f \cdot \varphi)(g). \end{split}$$

Corollary 3.11. For a compact subgroup H of G, the left and right module actions $L^{\infty}(G/H)$ on $L^{1}(G/H)$ are given respectively by

$$\begin{split} P_{\infty}(\varphi_{\rho}) \cdot P_{H}(f_{\rho}) &= P_{\infty}(\varphi_{\rho} \cdot f_{\rho}) \ and \ P_{H}(f_{\rho}) \cdot P_{\infty}(\varphi_{\rho}) = P_{\infty}(f_{\rho} \cdot \varphi_{\rho}), \\ where \ f \in L^{1}(G/H), \ \varphi \in L^{\infty}(G/H), \ \varphi_{\rho} &= \varphi \circ q \ and \ f_{\rho} = \rho(f \circ q). \end{split}$$

Now we can find a necessary and sufficient condition for that the Banch algebra $L^1(G/H)$ is weakly amenable.

Theorem 3.12. Let $\tilde{D} : L^1(G/H) \mapsto L^{\infty}(G/H)$ be a continuous derivation. Then \tilde{D} is an inner derivation if and only if there is a continuous derivation $D : L^1(G) \mapsto L^{\infty}(G)$ such that $\tilde{D} \circ P_H = P_{\infty} \circ D$.

Proof. Let $\tilde{D}: L^1(G/H) \mapsto L^{\infty}(G/H)$ be a continuous derivation and there is a continuous derivation $D: L^1(G) \mapsto L^{\infty}(G)$ such that $\tilde{D} \circ P_H = P_{\infty} \circ D$. Then by Proposition 3.1 and Theorem 3.8 we have the following diagram:

So, for each $f \in L^1(G/H)$ and $\varphi \in L^\infty(G/H)$ we can write

$$\tilde{D}(f) = \tilde{D}(P_H(f_\rho)) = \tilde{D} \circ P_H(f_\rho)$$

= $P_\infty \circ D(f_\rho) = P_\infty(D(f_\rho)),$ (3.5)

in which $f = \rho(f \circ q)$. On the other hand, we know that $L^1(G)$ is weakly amenable, hence there is $\psi_0 \in L^{\infty}(G)$ such that

$$D(f_{\rho}) = f_{\rho} \cdot \psi_0 - \psi_0 \cdot f_{\rho}, \tag{3.6}$$

so, by (3.6) and (3.5) and Corollary 3.11 we can write

$$D(f) = P_{\infty}(f_{\rho} \cdot \psi_0 - \psi_0 \cdot f_{\rho}) = P_{\infty}(f_{\rho} \cdot \psi_0) - P_{\infty}(\psi_0 \cdot f_{\rho})$$

= $P_H(f_{\rho}) \cdot P_{\infty}(\psi_0) - P_{\infty}(\psi_0) \cdot P_H(f_{\rho})$
= $f \cdot P_{\infty}(\psi_0) - P_{\infty}(\psi_0) \cdot f$
= $d_{P_{\infty}(\psi_0)}(f).$

So, for arbitrary continuous derivation $\tilde{D} : L^1(G/H) \mapsto L^{\infty}(G/H)$ there is $P_{\infty}(\psi_0) \in L^{\infty}(G/H)$ such that $\tilde{D} = d_{P_{\infty}(\psi_0)}$, i.e., \tilde{D} is inner and hence $L^1(G/H)$ is weakly amenable.

For the revers, let $\tilde{D} : L^1(G/H) \mapsto L^{\infty}(G/H)$ is an inner derivation. We know that the restriction of P_{∞} to $L^{\infty}(G:H)$ is an isometry isomorphism. So, it is enough to show that $P_{\infty}^{-1} \circ \tilde{D} \circ P_H : L^1(G) \mapsto L^{\infty}(G:H)$ is an inner derivation. For this, let $f \in L^1(G)$. Since \tilde{D} is an inner derivation, so there is $\varphi_0 \in L^{\infty}(G/H)$ such that

$$(P_{\infty}^{-1} \circ \tilde{D} \circ P_{H})(f) = (P_{\infty}^{-1})(\tilde{D}(P_{H}f))$$

$$= (P_{\infty}^{-1})((P_{H}f) \cdot \varphi_{0} - \varphi_{0} \cdot (P_{H}f))$$

$$= (P_{\infty}^{-1})(P_{\infty}((P_{H}f)_{\rho} \cdot (\varphi_{0})_{\rho}) - P_{\infty}((\varphi_{0})_{\rho} \cdot (P_{H}f)_{\rho}))$$

$$= f \cdot (\varphi_{0})_{\rho} - (\varphi_{0})_{\rho} \cdot f$$

$$= d_{(\varphi_{0})_{\rho}}(f)$$

which this implies that $P_{\infty}^{-1} \circ \tilde{D} \circ P_H$ is an inner derivation.

At the end, the following corollary be straightly derived from Theorem 3.12.

Corollary 3.13. The Banach algebra $L^1(G/H)$ is weakly amenable if and only if for each continuous derivation $\tilde{D} : L^1(G/H) \to L^{\infty}(G/H)$ there is a continuous derivation $D : L^1(G) \to L^{\infty}(G)$ such that $\tilde{D} \circ P_H = P_{\infty} \circ D$.

References

- G.B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, Boca Raton, 1995.
- [2] B.E. Forrest, Fourier analysis on coset space, Rocky Mountain J. Math. 28 (1) (1998) 173–190.
- [3] B.E. Forrest, E. Samei, N. Spronk, Convolutions on compact groups and Fourier algebras of coset spaces, Studia Math. 196 (3) (2010) 223–249.
- [4] A.G. Farashahi, Abstract harmonic analysis of relative convolutions over canonical homogeneous spaces of semidirect product groups, J. Aust. Math. Soc. 101 (2016) 171–187.

- [5] E. Kaniuth, Weak spectral synthesis in Fourier algebras of coset spaces, Studia Math. 197 (3) (2010) 229–246.
- [6] V. Kisil, Relative convolutions. I. Properties and applications, Adv. Math. 147 (1) (1999) 35–73.
- [7] V. Kisil, Calculus of operators: Covariant transform and relative convolutions, Banach J. Math. Anal. 8 (2) (2014) 156–184.
- [8] A.G. Farashahi, Convolution and involution on function spaces of homogeneous spaces, Bull. Malays. Math. Sci. Soc. 36 (4) (2013) 1109–1122.
- [9] V. Runde, Lectures on Amenability, Springer-Verlag, Berlin, 2002.
- [10] G.B. Folland, Real Analysis: Modern Techniques and Their Applications (2nd ed.), John Wiley, 1999.
- [11] E. Kaniuth, A Course in Commutative Banach Algebras, Springer, 2009.
- [12] H. Reiter, J.D. Stegeman, Classical Harmonic Analysis and Locally Compact Groups, Oxford Science Publications, Clarendon Press, New York, 2000.