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1. Introduction and Preliminaries

The existence and approximation of best proximity points is an interesting topic in
optimization theory [1, 2]. On the other hand, the study of fixed point theorems for multi-
valued operators is initiated by Markins [3] and Nadler [4]. Since then, some papers have
been devoted to the treatment of multi-valued operators in variant (generalized) metric
spaces. This paper is devoted to prove some best proximity points for multi-valued
mappings. Recently, M. U. Ali, T. Kamran an N. Shahzad [5] introduced the notion of
α − ψ-proximal contractive multimaps and proved some best proximity points for such
mappings. On the hand, the concept of F -contraction for single valued mappings was
introduced by Wardowski [6]. Very recently, Altun et al [7] introduced the concept of
multi-valued F -contraction and established some fixed point results. Later, Olgun et
al [8] generalized the above concept and they obtained some nice fixed point resultsfor
multi-valued contractive mappings. In this paper, using the concepts of multi-valued F -
contraction and α-proximal admissible mapping, we give some best proximity points for
non-self multi-valued mappings in complete metric spaces.

Let Cb(X) be the family of all nonempty, closed and bounded subsets of the metric
space (X, d). Also, K(X) denotes the collection of nonempty compact subsets of X. For
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A,B ∈ Cb(X) and x ∈ X, define

d(x,A) = inf{d(x, a) : a ∈ A}, δ(A,B) = sup{d(a,B) : a ∈ A},
δ(B,A) = sup{d(b, A) : b ∈ B}, H(A,B) = max {δ(A,B), δ(B,A)} .

The above H is the Pompeiu-Hausdorff metric induced by the metric d. For A and B
two nonempty subsets of a metric space (X, d), define

d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B},
A0 = {a ∈ A : d(a, b) = d(A,B), for some b ∈ B},
B0 = {b ∈ B : d(a, b) = d(A,B), for some a ∈ A}.

Definition 1.1. Let (X, d) be a metric space. Consider A and B two nonempty subsets
of X. Let T : A→ B be a non-self mapping. We say x? ∈ X is a best proximity point of
T if

d(x?, Tx?) = d(A,B).

Best proximity point reduce to fixed point if A = B. In fact, d(x?, Tx?) = d(A,B) = 0 i.e.,
x? = Tx?. We say x? ∈ A is best proximity point of multi-valued mapping T : A → 2B

if d(x?, Tx?) = d(A,B). Now if A = B, then d(x?, Tx?) = 0. So we can say x? ∈ Tx?,
that is best proximity point of a multi-valued mapping in our aspect can reduce to a
fixed point(in general). Now we assume Tx is closed for every x. Since d(x?, Tx?) = 0
then there exists {yn} ⊆ Tx? such that limn→∞ d(x?, yn) = 0. Since Tx? is closed then
x? ∈ Tx?. So this definition is suitable for closed(or compact) valued T .

For more results on best proximity points, we refer the reader to [9–14].

Definition 1.2. (See [14]) Let A and B be nonempty subsets of a metric space (X, d)
with A0 6= ∅. The pair (A,B) is said to have the weak P -property if and only if{

d(x1, y1) = d(A,B),

d(x2, y2) = d(A,B)
⇒ d(x1, x2) ≤ d(y1, y2),

where x1, x2 ∈ A0 and y1, y2 ∈ B0.

Recently, M. U. Ali, T. Kamran and N. Shahzad [5] introduced a new type of con-
tractive mappings called α−ψ-proximal contractive Multimaps and using the concept of
α-proximal admissible mapping, they [5] proved several best proximity points.

Definition 1.3. (See [5]) Let A and B be nonempty subsets of a metric space (X, d) and
α : A×A→ [0,∞). A mapping T : A→ 2B \ ∅ is named α-proximal admissible if

α(x1, x2) ≥ 1

d(u1, y1) = d(A,B),

d(u2, y2) = d(A,B)

⇒ α(u1, u2) ≥ 1,

where x1, x2, u1, u2 ∈ A, y1 ∈ Tx1 and y2 ∈ Tx2.

Clearly, if A = B, T is α-proximal admissible implies that T is α-admissible.
Let F : R+ → R satisfying the conditions:

(F1) F is increasing, i.e., F (α) < F (β) for all α, β ∈ R+ with α < β;
(F2) ∀αn > 0, lim

n→∞
αn = 0⇔ lim

n→∞
F (αn) = −∞;

(F3) ∃k ∈ (0, 1) such that lim
α→0+

αkF (α) = 0;
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(F4) F (inf M) = inf F (M) for all M ⊂ (0,∞) with inf M > 0.

We denote by F the class of functions F satisfying the conditions (F1)− (F3).

Remark 1.4. Note that if F is right-continuous and satisfies condition (F1), then it
satisfies (F4).

Definition 1.5. Let (X, d) be a metric space and T : A → Cb(B) be a multi-valued
mapping. We say that T is an α − F -proximal contraction if there exist three functions
F ∈ F , α : A×A→ [0,∞) and τ : (0,∞)→ (0,∞) for which lim inft→s+ τ(t) > 0, for all
s ≥ 0, such that

τ(d(x, y)) + F (H(Tx, Ty)) ≤ F (d(x, y)), (1.1)

for all x, y ∈ A satisfying H(Tx, Ty) > 0 and α(x, y) ≥ 1.

2. Main Results

First, we need the following remark.

Remark 2.1. Let K be a compact subset of a metric space (X, d) and x ∈ X, then there
exists y ∈ K such that d(x,K) = d(x, y).

Our first main result is

Theorem 2.2. Let A and B be nonempty closed subsets of a complete metric space (X, d)
such tat A0 6= ∅. Let T : A→ K(B) be an α− F -proximal contraction. Suppose that

(i) for each x ∈ A0, we have Tx ⊆ B0 and (A,B) satisfies the weak P -property;
(ii) there exist elements x0, x1 ∈ A0 and y1 ∈ Tx0 such that

d(x1, y1) = d(A,B) and α(x0, x1) ≥ 1;

(iii) T is an α-proximal admissible;
(iv) T is continuous.

Then T has a best proximity point, that is, there exists an element x? ∈ A0 such that
d(x?, Tx?) = d(A,B).

Proof. By assumption (ii), there exist x0, x1 ∈ A0 and y1 ∈ Tx0 such that

d(x1, y1) = d(A,B) and α(x0, x1) ≥ 1. (2.1)

If y1 ∈ Tx1, then we have d(A,B) ≤ d(x1, Tx1) ≤ d(x1, y1) = d(A,B), that is x1 is a best
proximity point of T and the proof is finished. Suppose now that y1 6∈ Tx1. It follows
that H(Tx0, Tx1) > 0. So, by (1.1), we get

τ(d(x0, x1)) + F (H(Tx0, Tx1)) ≤ F (d(x0, x1)). (2.2)

On the other hand, from 0 < d(y1, Tx1) ≤ H(Tx0, Tx1) and (F1)

τ(d(x0, x1)) + F (d(y1, Tx1)) ≤ F (d(x0, x1)).

Since Tx1 is compact, there exists y2 ∈ Tx1 such that d(y1, Tx1) = d(y1, y2). This leads
to

F (d(y1, y2)) ≤ F (d(x0, x1))− τ(d(x0, x1)). (2.3)

From condition (i), we have Tx1 ⊆ B0, so there exists x2 ∈ A0 such that

d(x2, y2) = d(A,B). (2.4)
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By (2.1), (2.4) and the fact that T is α-proximal admissible, we have

α(x1, x2) ≥ 1.

From condition (i), the pair (A,B) satisfies the weak P -property , so

d(x1, x2) ≤ d(y1, y2).

If x1 = x2, then we have x1 is a best proximity point of T and also the proof is finished.
Suppose that x1 6= x2. From (2.3) and (F1)

F (d(x1, x2)) ≤ F (d(y1, y2)) ≤ F (d(x0, x1))− τ(d(x0, x1)). (2.5)

If y2 ∈ Tx2, then x2 is a best proximity point of T. Suppose now that y2 6∈ Tx2. Since
α(x1, x2) ≥ 1, it follows from (1.1)

τ(d(x1, x2)) + F (H(Tx1, Tx2)) ≤ F (d(x1, x2)). (2.6)

Then from 0 < d(y2, Tx2) ≤ H(Tx1, Tx2) and (F1)

F (d(y2, Tx2)) ≤ F (d(x1, x2))− τ(d(x1, x2)).

Since Tx2 is compact, there exists y3 ∈ Tx2 such that d(y2, Tx2) = d(y2, y3). This leads
to

F (d(y2, y3)) ≤ F (d(x1, x2))− τ(d(x1, x2)). (2.7)

Moreover, there exists x3 ∈ A0 such that

d(x3, y3) = d(A,B). (2.8)

By (2.4), (2.8) and the fact that T is α-proximal admissible, we have

α(x2, x3) ≥ 1.

Since (A,B) satisfies the weak P -property , so

d(x2, x3) ≤ d(y2, y3).

If x2 = x3, then we have x2 is a best proximity point of T and also the proof is finished.
Suppose that x2 6= x3. From (2.7) and (F1)

F (d(x2, x3)) ≤ F (d(y2, y3)) ≤ F (d(x1, x2))− τ(d(x1, x2)). (2.9)

Repeating the above strategy, by induction, we arrive to construct two sequences {xn} ⊆
A0 and {yn} ⊆ B0 such that, for all n = 1, 2, . . .

(i) α(xn, xn+1) ≥ 1, xn 6= xn+1;
(ii) yn ∈ Txn−1, yn 6∈ Txn;

(iii) d(xn, yn) = d(A,B) and

F (d(xn, xn+1)) ≤ F (d(yn, yn+1)) ≤ F (d(xn−1, xn))− τ(d(xn−1, xn)). (2.10)

Denote an = d(xn, xn+1), for n = 0, 1, 2, . . .
From (2.10), we have, for all n = 1, 2, . . .

F (an) ≤ F (an−1)− τ(an−1) < F (an−1). (2.11)

By (F1), we get, for all n = 1, 2, . . .

an < an−1, (2.12)
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which implies that {an} is a decreasing sequence of positive real numbers and so it is
convergent. Let 2δ = lim inf

n→∞
τ(an) > 0. Then there exists n0 ∈ N such that

δ < τ(an), for all n ≥ n0. (2.13)

It follows from (2.11) and (2.13), for all n > n0

F (an) ≤ F (an−1)− δ ≤ F (an−2)− 2δ ≤ · · · ≤ F (an0)− (n− n0)δ. (2.14)

It follows lim
n→∞

F (an) = −∞, so that, by (F2), limn→∞ an = 0. Thus from (F3), there

exists k ∈ (0, 1) such that

lim
n→∞

aknF (an) = 0. (2.15)

But then

aknF (an)− aknF (an0
) ≤ akn(F (an0

)− (n− n0)δ)− aknF (an0
)

= −(n− n0)δakn ≤ 0,
(2.16)

which, for n→∞, yields limn→∞ nakn = 0. It follows that there exists n1 ∈ N such that

an ≤
1

n
1
k

, for all n ≥ n1. (2.17)

Then for all m > n ≥ n1

d(xn, xm) ≤
m−1∑
i=n

d(xi, xi+1) =

m−1∑
i=n

ai ≤
∞∑
i=n

1

i
1
k

→ 0 as n→∞, (2.18)

which shows that {xn} is a Cauchy sequence in A. From (2.10) and (F1), we have, for all
n = 1, 2, . . .

d(yn, yn+1) < an−1. (2.19)

Then, by a similar reasoning, we show that {yn} is a Cauchy sequence in B. Since A and
B are closed subsets of the complete metric space (X, d), there exist x? ∈ A and y? ∈ B
such that xn → x? and yn → y? as n→∞. Since d(xn, yn) = d(A,B), for all n, by letting
n→∞, we conclude that d(x?, y?) = d(A,B).

The mapping T is continuous, so limn→∞H(Txn, Tx
?) = 0. On the other hand, since

yn+1 ∈ Txn, we have

d(y?, Tx?) ≤ d(y?, yn+1) + d(yn+1, Tx
?) ≤ d(y?, yn+1) +H(Txn, Tx

?).

Letting n→∞ in above inequalities, we get

d(y?, Tx?) ≤ 0.

This leads to y? ∈ Tx? = Tx?. Furthermore, one has

d(A,B) ≤ d(x?, Tx?) ≤ d(x?, y?) = d(A,B),

that is, x? is a best proximity point of T . This ends the proof of Theorem 2.2.

Remark 2.3. If we take Cb(B) instead of K(B) in Theorem 2.2, we have the following
problem: Does T has a best proximity point? In the following theorem, we give a partial
answer for this problem by adding the condition (F4) on F .

Theorem 2.4. Let A and B be nonempty closed subsets of a complete metric space (X, d)
such tat A0 6= ∅. Let T : A→ Cb(B) be an α− F -proximal contraction. Suppose that
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(i) for each x ∈ A0, we have Tx ⊆ B0 and (A,B) satisfies the weak P -property;
(ii) there exist elements x0, x1 ∈ A0 and y1 ∈ Tx0 such that

d(x1, y1) = d(A,B) and α(x0, x1) ≥ 1;

(iii) T is an α-proximal admissible;
(iv) (F4) holds;
(v) T is continuous.

Then T has a best proximity point.

Proof. By assumption (ii), there exist x0, x1 ∈ A0 and y1 ∈ Tx0 such that

d(x1, y1) = d(A,B) and α(x0, x1) ≥ 1. (2.20)

To avoid the repetition, we may suppose that y1 6∈ Tx1. It follows that H(Tx0, Tx1) > 0.
So from (1.1), 0 < d(y1, Tx1) ≤ H(Tx0, Tx1) and (F1), we obtain

F (d(y1, Tx1)) ≤ F (d(x0, x1))− τ(d(x0, x1)). (2.21)

From (F4), one can write F (d(y1, Tx1)) = inf{F (d(y1, z)) : z ∈ Tx1}. This implies that
from (2.21), there exists y2 ∈ Tx1 such that

F (d(y1, y2)) ≤ F (d(x0, x1))− τ(d(x0, x1))

2
. (2.22)

Following the proof of Theorem 2.2, we can construct two sequences {xn} ⊆ A0 and
{yn} ⊆ B0 such that, for all n = 1, 2, . . .

(i) α(xn, xn+1) ≥ 1, xn 6= xn+1;
(ii) yn ∈ Txn−1, yn 6∈ Txn;

(iii) d(xn, yn) = d(A,B) and

F (d(xn, xn+1)) ≤ F (d(yn, yn+1)) ≤ F (d(xn−1, xn))− τ(d(xn−1, xn))

2
.

Also {xn} is a Cauchy sequence in A and {yn} is a Cauchy sequence in B. Since A and
B are closed subsets of the complete metric space (X, d), there exist x? ∈ A and y? ∈ B
such that xn → x? and yn → y? as n→∞. As in the proof of Theorem 2.2, we conclude
that x? is a best proximity point of T .

In the next results, we replace the continuity hypothesis by the following condition in
A:

(H): if {xn} is a sequence in A such that α(xn, xn+1) ≥ 1 for all n and xn →
x ∈ A as n → ∞, then there exists a subsequence {xn(k)} of {xn} such that
α(xn(k), x) ≥ 1 for all k.

Theorem 2.5. Let A and B be nonempty closed subsets of a complete metric space (X, d)
such tat A0 6= ∅. Let T : A→ K(B) be an α− F -proximal contraction. Suppose that

(i) for each x ∈ A0, we have Tx ⊆ B0 and (A,B) satisfies the weak P -property;
(ii) there exist elements x0, x1 ∈ A0 and y1 ∈ Tx0 such that

d(x1, y1) = d(A,B) and α(x0, x1) ≥ 1;

(iii) T is an α-proximal admissible;
(iv) (H) holds.

Then T has a best proximity point.
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Proof. Following the proof of Theorem 2.2, there exists two sequences {xn} in A0 and
{yn} in B0 such that

(i) α(xn, xn+1) ≥ 1, xn 6= xn+1;
(ii) yn ∈ Txn−1, yn 6∈ Txn;

(iii) d(xn, yn) = d(A,B) and

F (d(xn, xn+1)) ≤ F (d(yn, yn+1)) ≤ F (d(xn−1, xn))− τ(d(xn−1, xn)).

Also, there exist x? ∈ A and y? ∈ B such that xn → x? and yn → y? as n → ∞ and
d(x?, y?) = d(A,B). We shall prove that x? is a best proximity point of T . If there exist
a subsequence {xnk

} of {xn} such that Txnk
= Tx? for all k, then we have

d(A,B) ≤ d(xnk+1, Txnk
) ≤ d(xnk+1, ynk+1) = d(A,B),

yields to

d(A,B) ≤ d(xnk+1, Tx
?) ≤ d(A,B), ∀k ≥ 0.

Letting k →∞ in above inequalities, we get

d(A,B) ≤ d(x?, Tx?) ≤ d(A,B),

that is x? is a best proximity point of T . So, without loss of generality, we may sup-
pose that Txn 6= Tu for all nonnegative integer n. By hypothesis (H), there exists a
subsequence {xn(k)} of {xn} such that α(xn(k), x

?) ≥ 1 for all k. From (1.1) and as
α(xn(k), x

?) ≥ 1 for all k ≥ 1, we get

F (H(Txn(k), Tx
?)) ≤ F (d(xn(k), x

?))− τ(d(xn(k), x
?)) < F (d(xn(k), x

?)).

From (F1)

H(Txn(k), Tx
?) < d(xn(k), x

?).

On the other hand, we have

d(y?, Tx?) ≤ d(y?, yn(k)+1) + d(yn(k)+1, Tx
?) ≤ d(y?, yn(k)+1) +H(Txn(k), Tx

?).

Then

d(y?, Tx?) ≤ d(y?, yn(k)+1) + d(xn(k), x
?).

Passing to limit as k → ∞, we obtain d(y?, Tx?) = 0. Hence, d(A,B) ≤ d(x?, Tx?) ≤
d(x?, y?) = d(A,B). Therefore, x? is a best proximity point of T .

Theorem 2.6. Let A and B be nonempty closed subsets of a complete metric space (X, d)
such tat A0 6= ∅. Let T : A→ Cb(B) be an α− F -proximal contraction. Suppose that

(i) for each x ∈ A0, we have Tx ⊆ B0 and (A,B) satisfies the weak P -property;
(ii) there exist elements x0, x1 ∈ A0 and y1 ∈ Tx0 such that

d(x1, y1) = d(A,B) and α(x0, x1) ≥ 1;

(iii) T is an α-proximal admissible;
(iv) (F4) holds;
(v) (H) holds.

Then T has a best proximity point.

Proof. The proof is similar to that of Theorem 2.5.
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Example 2.7. Let X = [0,∞) × [0,∞) endowed with the usual metric d. Take A =
{1} × [0,∞) and B = {0} × [0,∞). We mention that d(A,B) = 1, A0 = A and B0 = B.
Consider the mapping T : A→ Cb(B) as

T (1, x) =

{
{(0, 0), (0, x

2

2 )} if 0 ≤ x ≤ 1

{(0, 0), (0, x
x+1 )} if x > 1.

We have T (1, x) ⊆ B0 for each (1, x) ∈ A0. Take τ(t) = ln 2 and F (t) = ln t for all t > 0.
Define α : A×A→ [0,∞) as follows

α((1, x), (1, y)) =

{
1 if x = y = 0
1

x+y if not.

Let (1, x1), (1, x2), (1, u1), (1, u2) in A and (0, y1) ∈ T (1, x1), (0, y2) ∈ T (1, 2) such that
α((1, x1), (1, x2)) ≥ 1

d((1, u1), (0, y1)) = d(A,B) = 1,

d((1, u2), (0, y2)) = d(A,B) = 1.

Then, necessarily, x1 = x2 = 0 or 0 < x1 + x2 ≤ 1. Also, we have u1 = y1 and u2 = y2.

So y1 ∈ {0, x
2
1

2 } and y2 ∈ {0, x
2
2

2 }. Therefore, we have

α((1, u1), (1, u2)) = α((1, y1), (1, y2)) ≥ 1,

that is, T is an α-proximal admissible. Let (1, x), (1, y) ∈ A such that x 6= y and
α((1, x), (1, y)) ≥ 1. Then 0 < x+ y ≤ 1. In this case, we have

H(T (1, x), T (1, y)) = max{δ(T (1, x), T (1, y)), δ(T (1, y), T (1, x))}.

We have

δ(T (1, x), T (1, y)) = max{d((0, 0), {(0, 0), (0,
y2

2
)}), d((0,

x2

2
), {(0, 0), (0,

y2

2
)})}

= min{x
2

2
,
|x2 − y2|

2
} ≤ |x

2 − y2|
2

.

Similarly, we have

δ(T (1, y), T (1, x)) ≤ |x
2 − y2|

2
.

This yields that

H(T (1, x), T (1, y)) ≤ |x
2 − y2|

2
=

(x+ y)|x− y|
2

≤ |x− y|
2

=
(d(1, x), (1, y))

2
.

Then

τ(d((1, x), (1, y))) + F (H(T (1, x), T (1, y))) ≤ F (d((1, x), (1, y))).

So the condition contraction (1.1) holds. Furthermore, T is continuous. Moreover, the
condition (ii) of Theorem 2.4 is verified. Indeed, for x0 = (1, 1), x1 = (1, 0) and y1 =
(0, 0), we have

d(x1, y1) = d((1, 0), (0, 0)) = 1 = d(A,B) and α(x0, x1) = 1.

Hence all hypotheses of Theorem 2.4 are verified. So T has a best proximity point which
is u = (1, 0).
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Example 2.8. Let X = [0,∞) × [0,∞) endowed with the usual metric d. Take A =
{1} × [0,∞) and B = {0} × [0,∞). We mention that d(A,B) = 1, A0 = A and B0 = B.
Consider the mapping T : A→ Cb(B) as

T (1, x) =

{
{(0, 0), (0, x

2+1
4 )} if 0 ≤ x ≤ 1

{(0, 0), (0, 1x )} if x > 1.

We have T (1, x) ⊆ B0 for each (1, x) ∈ A0. Take τ(t) = e−t ln 2 and F (t) = ln t for all
t > 0. Define α : A×A→ [0,∞) as follows

α((1, x), (1, y)) =

{
1 if x, y ∈ [0, 1]

0 if not.

Let (1, x1), (1, x2), (1, u1), (1, u2) in A and (0, y1) ∈ T (1, x1), (0, y2) ∈ T (1, 2) such that
α((1, x1), (1, x2)) ≥ 1

d((1, u1), (0, y1)) = d(A,B) = 1,

d((1, u2), (0, y2)) = d(A,B) = 1.

Then, necessarily, x1, x2 ∈ [0, 1]. Also, we have u1 = y1 and u2 = y2. So y1 ∈ {0, x
2
1+1
4 }

and y2 ∈ {0, x
2
2+1
4 }. Therefore, we have

α((1, u1), (1, u2)) = α((1, y1), (1, y2)) ≥ 1,

that is, T is an α-proximal admissible. Let (1, x), (1, y) ∈ A such that x 6= y and
α((1, x), (1, y)) ≥ 1. Then x, y ∈ [0, 1]. In this case, we have

H(T (1, x), T (1, y)) = max{δ(T (1, x), T (1, y)), δ(T (1, y), T (1, x))}.
We have

δ(T (1, x), T (1, y))=max{d((0, 0), {(0, 0), (0, y
2 + 1

4
)}), d((0, x

2 + 1

4
), {(0, 0), (0, y

2 + 1

4
)})}

= min{x
2 + 1

4
,
|x2 − y2|

4
} ≤ |x

2 − y2|
4

.

Similarly, we have

δ(T (1, y), T (1, x)) ≤ |x
2 − y2|

4
.

This yields that

H(T (1, x), T (1, y)) ≤ |x
2 − y2|

4
=

(x+ y)|x− y|
2

≤ |x− y|
2

=
(d(1, x), (1, y))

2
.

Then

ln 2 + F (H(T (1, x), T (1, y))) ≤ F (d((1, x), (1, y))).

This leads to

τ(d((1, x), (1, y))) + F (H(T (1, x), T (1, y))) ≤ F (d((1, x), (1, y))).

So the condition contraction (1.1) holds. Furthermore, (H) holds. Indeed, let {(1, xn)} is a
sequence in A such that α((1, xn), (1, xn+1)) ≥ 1 for all n and (1, xn)→ (1, x) ∈ A. Then,
xn ∈ [0, 1] for all n and xn → x . Thus, x ∈ [0, 1] and so α((1, xn), (1, x)) ≥ 1 for all n.
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Moreover, the condition (ii) of Theorem 2.6 is verified. In fact, for x0 = (1, 0), x1 = (1, 1)
and y1 = (0, 0), we have

d(x1, y1) = d((1, 0), (0, 0)) = 1 = d(A,B) and α(x0, x1) = 1.

Hence all hypotheses of Theorem 2.6 are verified. So T has a best proximity point which
is u = (1, 0).

3. Consequences

In this paragraph, we present some consequences on our obtained results.

3.1. Some Classical Best Proximity Point Results

We have the following results.

Corollary 3.1. Let A and B be nonempty closed subsets of a complete metric space
(X, d) such tat A0 6= ∅. Let T : A→ B be an α− F -proximal contraction. Suppose that

(i) TA0 ⊆ B0 and (A,B) satisfies the weak P -property;
(ii) there exist elements x0, x1 ∈ A0 such that

d(x1, Tx0) = d(A,B) and α(x0, x1) ≥ 1;

(iii) T is an α-proximal admissible;
(iv) T is continuous or (H) holds.

Then T has a best proximity point.

Corollary 3.2. Let (X, d) be a complete metric space and T : X → K(X) be an α− F -
proximal contraction. Suppose that

(i) there exist elements x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1;
(ii) T is an α-admissible;

(iii) T is continuous or (H) holds.

Then T has a fixed point.

Corollary 3.3. Let (X, d) be a complete metric space and T : X → Cb(X) be an α− F -
proximal contraction. Suppose that

(i) there exist elements x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1;
(ii) T is an α-admissible;

(iii) (F4) holds;
(iv) T is continuous or (H) holds.

Then T has a fixed point.

3.2. Some Best Proximity Results on Metric Spaces Endowed with

a Partial Order

Let (X, d) a partial metric space endowed with a partial order �. We introduce the
following definition.
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Definition 3.4. Let A and B be nonempty subsets of a metric space (X, d) and � a
partial order on X. T : A→ B is named a proximal nondecresing mapping if

x1 � x2
p(u1, y1) = d(A,B),

p(u2, y2) = d(A,B)

⇒ u1 � u2

where x1, x2, u1, u2 ∈ A, y1 ∈ Tx1 and y2 ∈ Tx2.

Wa also need the following hypothesis.

(H1): if {xn} is a sequence in A such that xn � xn+1 for all n and xn → x ∈ A
as n → ∞, then there exists a subsequence {xn(k)} of {xn} such that xn(k) � x
for all k.

We state the following.

Corollary 3.5. Let A and B be nonempty closed subsets of a complete metric space
(X, d) such that A0 6= ∅ and � be a partial order on X. Let T : A → K(B) be a
given multi-valued mapping. Suppose that there exists τ : (0,∞) → (0,∞) for which
lim inft→s+ τ(t) > 0, for all s ≥ 0, such that

τ(d(x, y)) + F (H(Tx, Ty)) ≤ F (d(x, y)), (3.1)

for all x, y ∈ A satisfying H(Tx, Ty) > 0 and x � y. Also, suppose that

(i) for each x ∈ A0, we have Tx ⊆ B0 and (A,B) satisfies the weak P -property;
(ii) there exist elements x0, x1 ∈ A0 and y1 ∈ Tx0 such that

d(x1, y1) = d(A,B) and x0 � x1;

(iii) T is proximal nondecresing;
(iv) T is continuous or (H1) holds.

Then T has a best proximity point.

Proof. It suffices to consider α : A×A→ [0,∞) such that

α(x, y) =

{
1 if x � y
0 if not.

All hypotheses of Theorem 2.2 (resp. Theorem 2.5) are satisfied. This completes the
proof.

Corollary 3.6. Let A and B be nonempty closed subsets of a complete metric space
(X, d) such that A0 6= ∅ and � be a partial order on X. Let T : A → Cb(B) be a
given multi-valued mapping. Suppose that there exists τ : (0,∞) → (0,∞) for which
lim inft→s+ τ(t) > 0, for all s ≥ 0, such that

τ(d(x, y)) + F (H(Tx, Ty)) ≤ F (d(x, y)), (3.2)

for all x, y ∈ A satisfying H(Tx, Ty) > 0 and x � y. Also, suppose that

(i) for each x ∈ A0, we have Tx ⊆ B0 and (A,B) satisfies the weak P -property;
(ii) there exist elements x0, x1 ∈ A0 and y1 ∈ Tx0 such that

d(x1, y1) = d(A,B) and x0 � x1;

(iii) T is proximal nondecresing;
(iv) (F4) holds;
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(v) T is continuous or (H1) holds.

Then T has a best proximity point.

3.3. Some Best Proximity Results on a Metric with a Graph

Let (X, d) be a metric space and let G = (V (G), E(G)) be a directed graph such that
V (G) = X and E(G) contains all loops, i.e., ∆ := {(x, x) : x ∈ X} ⊂ E(G). We need in
the sequel the following hypothesis:

(HG): if {xn} is a sequence in A such that (xn, xn+1) ∈ E(G) for all n and
xn → x ∈ A as n→∞, then there exists a subsequence {xn(k)} of {xn} such that
(xn(k), x) ∈ E(G) for all k.

Again, we introduce the following definition.

Definition 3.7. Let A and B be nonempty subsets of a metric-like space (X, d) endowed
with a graph G. T : A→ B is named a G-proximal mapping if

(x1, x2) ∈ E(G)

d(u1, y1) = d(A,B),

d(u2, y2) = d(A,B)

⇒ (u1, u2) ∈ E(G)

where x1, x2, u1, u2 ∈ A, y1 ∈ Tx1 and y2 ∈ Tx2.

We have the following best proximity point results on a metric space endowed with a
graph.

Corollary 3.8. Let A and B be nonempty closed subsets of a complete metric space (X, d)
endowed with a graph G such that A0 6= ∅. Let T : A → K(B) be a given multi-valued
mapping. Suppose that there exists τ : (0,∞) → (0,∞) for which lim inft→s+ τ(t) > 0,
for all s ≥ 0, such that

τ(d(x, y)) + F (H(Tx, Ty)) ≤ F (d(x, y)), (3.3)

for all x, y ∈ A satisfying H(Tx, Ty) > 0 and (x, y) ∈ E(G). Also, suppose that

(i) for each x ∈ A0, we have Tx ⊆ B0 and (A,B) satisfies the weak P -property;
(ii) there exist elements x0, x1 ∈ A0 and y1 ∈ Tx0 such that

d(x1, y1) = d(A,B) and (x0, x1) ∈ E(G);

(iii) T is G-proximal;
(iv) T is continuous or (HG) holds.

Then T has a best proximity point.

Proof. It suffices to consider α : A×A→ [0,∞) such that

α(x, y) =

{
1 if (x, y) ∈ E(G)

0 if not.

All hypotheses of Theorem 2.2 (resp. Theorem 2.5) are satisfied. This completes the
proof.

Corollary 3.9. Let A and B be nonempty closed subsets of a complete metric space (X, d)
endowed with a graph G such that A0 6= ∅. Let T : A → Cb(B) be a given multi-valued
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mapping. Suppose there exists τ : (0,∞)→ (0,∞) for which lim inft→s+ τ(t) > 0, for all
s ≥ 0, such that

τ(d(x, y)) + F (H(Tx, Ty)) ≤ F (d(x, y)), (3.4)

for all x, y ∈ A satisfying H(Tx, Ty) > 0 and (x, y) ∈ E(G). Also, suppose that

(i) for each x ∈ A0, we have Tx ⊆ B0 and (A,B) satisfies the weak P -property;
(ii) there exist elements x0, x1 ∈ A0 and y1 ∈ Tx0 such that

d(x1, y1) = d(A,B) and (x0, x1) ∈ E(G);

(iii) T is G-proximal;
(iv) (F4) holds;
(v) T is continuous or (HG) holds.

Then T has a best proximity point.

4. Conclusion

We recall that we managed in this paper to propose some new best proximity points for
multi-valued α−F -proximal contractive mappings. This was achieved by introducing the
notion α-proximal admissibility which is an extension and a generalization for the case of
multi-valued contractive mappings. As applications, we have obtained many known best
proximity results on metric spaces endowed with a partial order and many best proximity
results on a metric with a graph. In this paper the hypothesis (A,B) satisfies the weak
P -property is very important. Also If we take Cb(B) instead of K(B) in Theorem 2.2, the
existence of best proximity point for T is not guaranteed. In fact by adding the condition
(F4) on F we have obtained a partial answer for this problem. We wonder is there the
same result under other conditions.
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