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Abstract In this paper, we introduce a new iterative method for finding the common element of the set of
solutions of a finite family of split generalized equilibrium problems, finite variational inequality problems,
and the set of common fixed points of a countable family of a nonexpansive mapping in Hilbert spaces.
Under appropriate conditions imposed on the parameters, strong convergence theorems are obtained. An

example is given to demonstrate the main result of this paper.

MSC: 47TH09; 47H10

Keywords: split generalized equilibrium problem; fixed point problem; firmly nonexpansive mapping

Submission date: 07.04.2022 / Acceptance date: 20.09.2022

1. INTRODUCTION

Let H; and Hso be two infinite dimensional real Hilbert spaces with inner product and
norm denoted by (-,-) and || - ||, respectively. Let C and @ be a nonempty closed convex
subset of H; and Hs, respectively.

Definition 1.1. An element x € C is said to be a fized point of a mapping S : C — C'if
Sx =z.

We denote the set of solutions of fixed point problem by Fix(.S), that is, Fix(S) = {z €
C: Sz =ux}.
Definition 1.2. A mapping S : C — C is said to be

(i) nonexpansive if

Sz — Syl| < [l —yl,Vz,y € C;
(ii) firmly nonexpansive if
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It is well known that every nonexpansive operator S : H1 — H; satisfies the following
inequality;
1
(I —-8)x— (- 8)y,Sy— Sx) < §||(I — Sy — (I — S8)x||*,Va,y € Hy where I is a

Identity operator. Therefore, for all x € H; and y € Fix(S), we have
1
(I =Sz —y—Sy,y —Tz) < S|I(S = Dl (1.1)

We also know that Fix(S) of nonexpansive mapping S is closed and convex. The fixed
point problem for the mapping S is to find x € C such that Sz = x. Many iterative
algorithms have been introduced for finding fixed points of nonexpansive mappings.

Definition 1.3. Let B : C' — H; be a nonlinear mapping. B is said to be
(i) monotone, if
(Bx — By,z —y) >0, Va,y € C.
(ii) strongly monotone, if there exists a constant § > 0 such that

(B — By,z —y) = Bllz —y|? Y,y € C.
In such a case, B is said to be g-strongly monotone.
(iil) inverse strongly monotone, if there exists a constant « > 0 such that

(Bx — By,x — ) > B||Bx — Byl||?, Va,y € C.
In such a case, B is said to be S-inverse strongly monotone (for short, S—ism).
Recall that the classical variational inequality problem is to find = € C' such that

(Bx,y —z) > 0,Vy € C. (1.2)

We denote the set of solutions to the problem (1.2) by VI(C, B). One can easily see that
the variational inequality problem is equivalent to a fixed point problem. It is well known
that if B is strongly monotone and Lipschitz continuous mapping on C, then 1.2 has a
unique solution. There are several different approaches to solving this problem in finite
dimensional and infinite dimensional spaces, see, for example, [1-3] and the research in
this direction is intensively continued.

On the other hand, an equilibrium problem for a bifunction g : C x C — R is to find
x € C such that

g(z,y) = 0,Vy € C. (1.3)
The set of solutions of 1.3 is denoted by EP(g), that is,
EP(g9) ={z € C:g(z,y) 20, Vy € C}.

It is easy to see that EP(g) = VI(C, B) when g(z,y) = (Bx,y —x) > 0, for all z,y € C.
Let h : C x C — R be a nonlinear bifunction, then the generalized equilibrium problem
(for short, GEP) is to find z* € C such that

gla*,x) + h(z*,x) > 0,Vy € C. (1.4)

We denote the solution set of generalized equilibrium problem 1.4 by GEP(g,h). Note
that this problem reduces to the equilibrium problem when the bifunction A is a zero
mapping; this problem reduces to the mixed equilibrium problem when the bifunction
h(z*,z) = p(x) — p(x*), where ¢ : C - RU {400} and ¢ : Q — RU {400} are proper
lower semicontinuous and convex functions. Next, let () be a nonempty closed convex
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subset of a real Hilbert space Ho, and A : Hy; — Hs is a linear and bounded operator.
Kazmi and Rizvi [1] proposed the split generalized equilibrium problem (SGEP, for short):
SGEP is to find z* € C such that

glx*,x) + h(z*,x) > 0,Vx € C, (1.5)
and such that
y* = Az™ € Qsolves G(y*,y) + H(y",y) > 0,Vy € Q, (1.6)

where g,h : CxC — R and G, H : Q X Q — R are four nonlinear bifunctions. We denote
the solution set of SGEP (1.5) and (1.6) by GEP(C, g, h) and GEP(Q, G, H), respectively.
The solution set of SGEP is denoted by

I'={z € C:ze GEP(C,g,h)such that Az € GEP(Q, g, H)}.

Notice that (i) If H = 0 and G = 0, then the split generalized equilibrium problem reduces
to the generalized equilibrium problem considered by Cianciaruso et al. [2].

(ii) If h = 0 and H = 0, then the split generalized equilibrium problem reduces to the
split equilibrium problem introduced in 2011 by Moudafi [3].

(iii) If h = (-, ) and H = ¢(-,-), where ¢ : C' — RU{+o0c} and ¢ : @ = RU{+o0} are
proper lower semicontinuous and convex functions, then the split generalized equilibrium
problem reduces to the split mixed equilibrium problem.

In this paper, we are interested in finding the common solution for a finite family of
the split generalized equilibrium problems, that is, find a * € C, such that

gi(x*,x) + hi(z*,x) > 0,Vx € C, (1.7)
and such that
y* = A € Qsolves Gi(y™,y) + Hi(y",y) > 0,Vy € Q, (1.8)

where g;,h; : C x C — R and G;, H; : @ X  — R are nonlinear bifunctions and
A; : Hy — Hs is a bounded linear operator, for 1 < i < Nj.

In 2016 Wang et al. [4] proposed iterative algorithm for a family of split equilibrium
problems and fixed point problems in Hilbert spaces with applications and in 2019, Qing-
ging Cheng [5] proposed a new parallel hybrid viscosity method for fixed point prob-
lem, variational inequality problems and split generalized equilibrium problems in Hilbert
spaces.

Motivated by the work of Wang et al. [4], Qingging Cheng [5] and through the ongoing
research in this direction, we propose a new iterative method for finding a common element
of the set of solutions of a finite family of split generalized equilibrium problems, finite
variational inequality problems and the set of common fixed points of a countable family of
a nonexpansive mapping in Hilbert spaces. Moreover, strong convergence of the iterative
method is obtained in the framework of Hilbert space.

2. PRELIMINARIES

Throughout the paper, we denote weak convergence and strong convergence by nota-
tions — and —, respectively.

Let C be a nonempty closed convex subset of a Hilbert space H. Then for each point
x € H, there exists a unique nearest point in C, denoted by Pcox, such that

o — Poa|l < o —yll, Wy e C.
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P is called the (nearest point or metric) projection of H onto C.
It is well known that Pg is a firmly nonexpansive mapping of H onto C' and satisfies

|Pox — Pey||* < (x —y, Pox — Poy), Yo,y € H. (2.1)
Moreover, Pox is characterized by the following properties:
(x — Pox,y — Pox) <0,Vz € H,y € C. (2.2)

Let S : C' — C be a mapping. It is well known that S is nonexpansive if and only if the

complement [ — S is %-inverse strongly monotone. Assume that Fix(S) # (). Then we

have
1Sz —z||* < 2(x — Sz, 2 — p) (2.3)

for all x € C' and p € Fix(S).
The following lemmas will be useful for proving the convergence result of this paper.

Lemma 2.1. ([4]) Let C be a nonempty closed convex subset of a Hilbert space H and
let S: C'— H be a nonexpansive mapping with Fix(S) # (. Then Fix(PcS) =Fix(S) =
Fix(SPc).

Lemma 2.2. ([1]) Let C be a nonempty closed convex subset of a Hilbert space H and
let {B; }é\le be a finite family of inverse strongly monotone mappings from C to H with
the constants {3;}7 and assume that NI, VI(C, B;) # 0. Let B = Z;Vﬂ v;B; with
{vj f;l C (0,1) and Zfil v; = 1. Then B : C — H is a (-inverse strongly monotone
mapping with 8 = min{A, ..., An} and VI(C, B) = N;L, VI(C, By).

Lemma 2.3. ([0]) Let C be a nonempty closed convex subset of a Hilbert space H. Let

a>0and let A: C — H be a—inverse strongly monotone. If 0 < A\ < 2q, then [ — \A
is a nonexpansive mapping of C' into H.

Lemma 2.4. ([6]) Let C be a nonempty closed convex subset of a Hilbert space H and
let A be a mapping of C' into H. Let uw € C. Then for A > 0,
u € VI(C,A) <= u = Po(I — A\A)u.

Lemma 2.5. ([7]) Assume A is a strongly positive linear bounded operator on a Hilbert
space H with coefficient 5 > 0 and 0 < p < ||A||~!. Then [|[I — pA|| <1 — p7.

Lemma 2.6. ([7]) Let C be a nonempty closed convex subset of a Hilbert space H and
let f:H — H be a contraction with coefficient 0 < o < 1, and A be a strongly positive
linear bounded operator with coefficient ¥ > 0. Then, for 0 < v < g,

(@ =y, (A=7f)z — (A=~ )y) > (7 —ra)|lz = y|?, @,y €H.
That is, A — v f is strongly monotone with coefficient ¥ — va.
Lemma 2.7. [8] Let g : C' x C — R be a bifunction satisfying the following assumptions:
(i) g(z,z) > 0 for all z € C;

(ii) ¢ is monotone, that is, g(z,y) + g(y,z) <0 for all z,y € C;
(iii) g is upper hemicontinuous, that is, for each z,y,z € C,

limsupg(tz + (1 —t)z,y) < g(z,y);
t—0

(iv) for each z € C fixed, the funtion y — g(z,y) is convex and lower semicontinuous.
Suppose that i : C' x C — R is a bifunction satisfying the following assumptions:
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(i) h(z,z) > 0, for all z € C;

(ii) for each y € C fixed, the function z — h(z,y) is upper semicontinuous,;

(iii) for each x € C fixed, the function y — h(z,y) is convex and lower semicontinuous.
Then, for fixed » > 0 and z € C,there exists a nonempty compact convex subset K of H;
and z € C'N K such that

1
g(xay) +h(ya‘r) + ;<y*I,ZL' - Z> < O7Vy € C\K

Lemma 2.8. [8] Assume that g,h : C x C' — R satisfying Lemma 2.7. Let » > 0 and
u € Hi, then there exists w € C such that

1
g(w,v) + h(w,v) + ;(v—w,w—u} >0,vv e C.

Lemma 2.9. [8] Assume that the bifunctions g,h : C x C — R satisfying Lemma 2.7
and h is monotone. For r and = € H;, define the mapping T,Sg’h) : H1 — C as follows:

1
T (z) = {z €C:g(zy) +h(zy) + (y—22-2)20, Vye C}~

Then, the following hold:
. A
(i) T () # 0.
(i) 77" is single-valued.
(iii) T js firmly nonexpansive, i.e., for any z,y € H1,

70 = TPy 2 < (10 = Ty, —y).

(iv) Fix(T ") = GEP(C, g, h).
(v) GEP(C, g, h) is compact and convex.

Let G, H : Q x Q — R satisfying Lemma 2.7. From the previous lemma, we can define
; G.H . )
a mapping 75" : Hy — @ as follows:

TEH (w) := {deQ:F(d,e)+H(d,e)+i(e—d7d—w) >0,V66Q},

where s > 0 and w € Hy. Then TEH : Hy — Q also satisfies the same properties in
Lemma 2.9.

Lemma 2.10. ([9]) Let g,h: C x C — R satisfying Lemma 2.7 and h is monotone. Let

Tr(g’h) and Ts(g’h) be defined as in Lemma 2.9 with r, s > 0. Then, for any x,y € H;, one
has <
Tz = TODy) < fz -yl + |1 = 2|ITEMz — o).
r

Lemma 2.11. ([9]) Let g,h : C x C' — R satisfying Lemma 2.7 and h is monotone. Let
Tr(g’h) and Ts(g’h) be defined as in Lemma 2.9 with r;s > 0. Then the following holds:
T oM — Tlemg)® < T8 iplah)y _ plah)y oy g
r s = r r r st ’
for all z € H;.

Lemma 2.12. (Demiclosedness principle) Let S be a nonexpansive mapping on a closed
convex subset C' of a real Hilbert space H. Then I — S is demiclosed at any point y € H,
that is, if z,, = z and z,, — Sz, — y € H, that z — Sz = y; inparticular, if y = 0, then
z € Fix(9).
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Lemma 2.13. ([10]) Assume {a,} is a sequence of nonnegative real numbers such that
Gn41 S (]- - Un)an + bn7

for each n > 0, where {0, } is a sequence in (0,1) and {b,} is a sequence in R such that

(1) Xplion= Og)f
(2) limsup,,_, . U—" <0or Y2 |bn| < oc.

Then lim,, yo an, = 0.

3. MAIN RESULTS

Now, we give the main results of this paper.

Theorem 3.1. Let H1,H2 be two real Hilbert spaces and C' C H1,Q C Hs be nonempty
closed convex subsets. For each i = 1,...,N; with Ny € N, let A; : H1 — Hs be
a bounded linear operator and A} : He — H; be the adjoint of A,;. Assume that
gi,hi : CxC — R and G;,H; : Q x Q — R are bifunctions satisfying Lemma 2.7;
h;, H; is monotone and G; is upper semicontinuous for 1 < ¢ < N; with N; € N
and B; : C — H; be a ;-inverse strongly monotone operator for each j = 1,...,Ns
with No € N. Let {Sx} be a countable family of nonexpansive mappings from C' into
C. Assume that @ = ©NTNA # 0, where © = (2, Fix(S;),[ = {z € C: 2z €
GEP(C, g;, h;) such that A;z € GEP(Q,G;, H;),i = 1,...,N1} and A;z € EP(G;)} and
A= ﬂjvjl VI(C,By). Let {71, ....,vn,} C (0,1) with 25\21 v; = 1. Let {z,} be a sequence
generated from an arbitrary v,z; € C by the following algorithm:

o = T (1= 43~ T A,
Up = Un i, In = AZMAX1<i< Ny { [Un,i — Tnll},

Yn = Pc(I — )\n(Z;vzzl Vi B;))un
Tn+1 = QplV + 2221(0%71 - ak)Skyn

(3.1)

for each i = 1,..., Ny and n € N where {r, ;} C (0,00),7 € (0, %], L = max{L1, ..., Ln, }
and L; is the spectral radius of the operator A A; and A is the adjoint of A; for each
ie{l,...., N1}, { .} C (0,28) with 8 = min{p1, ..., On,} and {a,} C (0,1) is a strictly
decreasing sequence. Let g = 1 and assume that the following conditions are satisfied:

(C1) limy, o0 @, = 0 and Y | @, = 00;

(C2) limy o0 A = A >0 and Y07 [Ny — An| < 005

(C3) 0 < liminf, o Ay < limsup,, . An < 28;

(C4) liminf, o0 15, > 0.
Then the sequence {z,} defined by (3.1) converges strongly to a point z = Pqu.

Proof. First we show that, for each ¢ € {1,2,..., N1} and n € N, A} (I — T,,GnH)Al is a
1
BY7) -inverse strongly monotone mapping. In fact, since Trci l:HZ is firmly nonexpansive
i

N
and [ — T, g’HZ is -inverse strongly monotone, we have
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|AF (I — TS o) Ay — Af (I — TSHH0) Ay
= (AR - TS0 (A — Awy), AL(T — TSHH) (A — Agy))
= ((I- TG“HZ')(A»x — Ayy), A AL (T — Tgf;Hi)(Aix — Ay))

< LHI - TS M) (Aiw — A), (I — TS (Aiw — Aw))
= L3I - TS M) (A — Ay)||”

< 2L2<Azx - zZ/, (I - TGl;Hl)(Ax - Azy)>

= 2L} (w—y, A; (I = T2 M) Aje — AF (T =T, Asy),

for all z,y € Hy, which implies that A} (1 TG“H i)A;is a 2L2

mapping. Since v € (0, L12] Then I — vA*( TG“H )A is nonexpansive for each

i=1,.., Ny and n € N. We devide the proof into five steps as follows.

Step 1. We first show that the sequences {x,} is bounded. Let p € Q. Then for each
1€{1,2,...,N1}, we have p = Tﬂ“hp and (I —vyA: (I — TTGni;Hi)Ai)p = p. Therefore we
have

- inverse strongly monotone

lna =Pl = |20 = AT = TS A, = TS (T =7 AT (= TS5 A
< | —vara - TS A — (1 - AL - TS A
< lzn —pll, (3.2)

for each i € {1,2,..., N1 }.
From (3.1) and (3.2), we obtain
[tn = Pl = luni, —pll < [lzn —pl- (3.3)

Let B = Zj 17;Bj, by Lemma 2.2, we know that B is f—ism, and from the condition
0 < A\, < 28, we see that I — A, B is nonexpansive, and Px(I — A, B) is also nonexpansive.
We have p € Q, that is, p € nj\/:zl VI(C, Bj). Then from 3.3 we have

lyn =2l = [P = AnB)un — pl|
= ”PC(I_)‘nB)un_PC(I_)‘nB)p”
< lun = pl|
< lzn = p. (3.4)

It follows from 3.4 that
QnlV + Z(Oékﬂ — @) SkYn — P

01— pll =
k=1
n
= [lonr — anp + Z(ak—l — ) (Skyn — Skp)||
k=1
< anflv = pl+ (-1 — i)y — pl
k=1

< anllv = pll+ D (er—1 — )|z —pll

k=1
= an”V _pH + (1 - an)”a:n —p||
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< max{||v = pl|, [ln — pll},

for all n € N, which implies that {z,} is bounded. Since {z,} is bounded. So from 3.3

and 3.4, we get {u,;} and {y,} are bounded.

Step 2. We show that lim, oo || Znt+1 — Zn|| = 0 and limy, o || Ui nt1 — i n]| = 0 for each
t=1,...,N;. Since the mapping I — yA*(I — Tgi;H'i)A is nonexpensive. Then for each

i=1,...,N; by Lemmas 2.10 and 2.11, we have

[win+1 — winl

- ’ Trn41,i Tn,i

Tn41,i

< [ = A (1= T A wag - (1= 247 (1= TEH™) Ai)a,

TIM (T — A (I —TE ) Ay g — T

(I —~A; (1

|rn+l7i - rn,i| 5

|Tn+1,i - rn,i' 5

Tn+1,i
[Pnt1i = Tnsil Tgishi (1 _ Sy A*(] — TGH) A,
+ Tral Tn+1,i( -7 Z( - Tn+1,i) Z)x”JFl
(1 =747 (1= TG A |
< Nansr = wall 4[| (1= A7 (1= TS A — (1= 2 A7 (1= TG 4y)
+7|Tn+1’i — Tn’i|5n+1,i
Tn+1,i
= fontr = wall + |yAL TS Ay — TS Az
= N@ng1 =zl + VAT || T Ay — T A,
Trgli = Tnyi H,
< N = ol 4 g et =Pl g g,
Tn+1,i '

—T M Ay, T T Ay, — Aiy)

Tn41,i

|7"n+1,z' —Tn,i
Inrle Tl

< Noar —aall+9) 47 -

S ||$n+1 - xn” + 77n+1,i»

where
Onsti = sup (TS0 A, — T pige TCHi A — Ay,
n+l,e — EI Trt1,i Lrebn T yi 1vny L g hetn 1n/ |y
ne
. _ gi,hi * G, H; . *
On+1,i = sup T (I —yA; (I = 1,707 ) Ad) g — (I — v A7 (
ne
and
3
_ [Tn41,i—Tn,il [Tn41,i—Tn,il
Nn41,i —’YHAf el oy, e O

Note that for each i = 1,..., N7, we obtain

: + |rn+1,i - rn,i|6
Tn+1,i

_|_

1
2
\T'n+1,i

)Ai)xnﬂ H
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H(I - )\nJrlB)unJrl,i - (I - )‘TLB)UTLJ”

(T = X1 B)uns1i — (I = X1 B)tn i + (A — A1) Bup i |

< T = Mg1B)ungii — (I = A1 B)tin|| + || (A — Ans1) Bun |
= || = As1B)uny1i — (I = A1 Buin|| + [An = Mg ||| Bua,i|
S HunJrl,i - un,z” + |)\n - )\n+1|HBun,z|| (36)

Now for each ¢ = 1,..., Ny, let M; = sup,,cy || Bun i|| by (3.1), (3.5) and (3.6), we have

Yn+1 = Yall HPC'(I = An+1B)uny1,i — Po(I — /\nB)un,iH

< | = X1B)tng1,i — (I = A\ B)uni|

< w1, — il + [An — /\n+1|HB“n,iH

= |#nt1 — zall + Nint1 + [An — Ansa || Bwnl|

< @pgr — 2ol + Nigngr + [An — A1 [ M. (3.7)

Since {ay,} strictly decreasing, by using (3.7), we have

[#n41 — n
n—1
= (anV =+ Z(ak—l — ) SkYn + (a1 — an)Snyn)
k=1
n—1
_(anfly +D (a1 — Oék)Skynq)
k=1
n—1 n—1
= o —an v+ (a1 — a)Skyn Y (k1 — ) Skyn—1 + (n—1 — @) Snyn
k=1 k=1
n—1
= (an - an71>V + Z(akfl - ak:)(skyn - Skynfl) + (an,1 - an)snyn
i=k
< (an = an—a)v] + Z 1= ) (Sk¥n — Skyn—1)|| + [l(@n—1 — @) Suyall
k=1
n—1
< (ano1 = a)llvll + Y (k-1 — @) 1Skyn — Styn-1ll + (@n-1 — @)l Saynl
k=1
n—1
< (o1 —on)llv] + Z(ak,1 = ) [yn = Yn—1ll + (an—1 — an) | Snynll
k=1

= (an-1 =)V + (1 = an—1)[yn = Yn—1ll + (an—1 — )| Snynl|

< (1_057171)(”%1 — Tp-1|l 4+ Min + [An1 _)‘n‘Ml)

F(an—1 = ) (| Snynll + [I¥]))
< (1- an—l)(”zn — ZTp—1ll + Min + [An—1 — )‘n‘Ml) + (an—1 — an)Mp
< (A =ap—1)|zn = 21|l + i + [Ane1 — A | M1+ (-1 — o) Mo,
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where My = sup{||Shynl + ||| : n € N} by (C1) and (C2) in Lemma 2.13 we conclude
that

nhﬁngo |€nt1 — znll = 0. (3.8)
Moreover, by (3.5) and (3.7), we have
Jim lynsr = yall =0, lim flugner —winll =0, @€ {1, N} (3.9)

Step 3. We show that lim, o ||Skzn — || — 0 for each k € N.
First we will show that lim,, . |lu;, " — Z,|| = 0 for each i € {1,..., N1}
Since for each A} (1 TG“H i)A; is -inverse strongly monotone,

by (3.1), we have

2L2

2
T9M (I =y AL (1 = TEM) Ay — TN (T = AT = TEH1) A Z-)pH

Tn,i Tn,i Tn Tn,i

Juns = pl? = |

< H(I AL = TG A — (1~ AT~ TSP A
2
— H VA = TS0 Ay, — A7 (I — T, Aip) ’
= lzn — pH? = 2y(wn — p, Af(I = T M) A, — A7 (1 = T7H0) Ap)
+72HA;*(1 — TN Ay, — AF(I - TS0 A
< Jan—p|? — L2 (I = TGH) Az, — AT — TCH) A, pH

|| A2 (1 = TS A — A7 - Tfj;Hi)AipH

1 N 7 N 7 2
o = oI+ (7 = 73 )|| A5 = TS s — 431 = TS A

2

1 » H,
lon = ol + (7 = 75 ) |41 (T = TS ) Asa (3.10)

Now, from (3.1) and (3.10) it follows that

n 2

an(v =p)+ > (ar-1— ) (Skyn —p)

k—1

[Znss —pl* =

2

IN

an(v—p

n
Zak 1 — ;) (Skyn — p)
—1
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n

< anlly =l + ) (ek—1 — @)[|(Skyn — p)II?
k—1
n

< anllv =l + ) (ek-1 — ak)llyn — plI?
k—1

_ 2 2

= aplv—pl" + (1 —an)llyn — pll

< v _p”2 + (1 = an)un —p||2

= apllv —pl* + (1 = an)|uns, —pl°

< anlv—pl

+(1 - an)

1 * G, Hi
lzn = pI* + 7(7 - LT) HA” (I =T ) Aiy n

2]
which implies that

2

in

1 * G, H;
(1- an)’Y(W - LT) HA (I - Trn,?ﬂ,H ") A, T

anllv = pl* + lzn = pl* = llznt1 — plf?

anllv _pH2 +l|zn = 2nall([|2n — pll + (|20 — pll)-

INIA

Since ay, — 0 and ||z, — 2p41]] = 0, as n — oo, we obtain

nh_)rr;o ‘Afn (I- Tfji;ﬁH’;")Ainxn =0 for each i € {1,...,N1}. (3.11)
Therefore
. G, JH; .
11_>m H(I =T, ) A, x| = 0 for each i € {1,..., Ni}. (3.12)

Since T7! hl is firmly nonexpansive and p = Trgl}“ p , we have

Tn+1,i

2
fumi =l = [Tl (7= A7 (1 = T Ay ]

- |

<un,i — P, Tp + 'YA:‘ (T»ﬁl;HI - I)Azxn - p>

T9i:hi (zn + WA;‘(TG“Hi —DAx,) — T9:hip

Tn,i Tni Tn,i

:

IN

1 H.
5 { s =PI + o + 7 A (TS = 1) Aszy — )

—ltn s = 20 = YA (TS = 1) Ao}
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1 L,
= §{Ilun,i = plPP + llen = pl* + A 1AF (T = 1) Ay

—[tni = all® + V2 AF(TE = 1) Ay |

Tn,i

2y {tn i — T, AL = D) Asz)] |

Tn,i
1 2 2 2
= 3{lluns = I+ llow = pI? = s —

Tn

IN

1
S{llni =PI + = I = s = 2

2y Astin i — ApllIl(TE5™ — D) Asaal

Tn,i

which implies that

luni =plI* < llzn =PI = luni — zal?

T

Now, from (3.1), (3.4) and (3.13), it follows that

Jonis = pl? < anlly = ol + (1= an) v — pI?
< anlly = pl? + (1 = an)lfun = pI?
< anlv—plP + (1= an) [ln = ol = llun — 0
G, H;
29| iy — A pIl[[(T55 = 1A ]
Thus
(1= an)un =zl < anlly = pl* + an = b = ns1 ol
Gi H,;
+(1 = an) 29[| A, un — Ai,pl| H(Trn,?n "= I)Ainan
< anlly=pl? + 20 = wusr| (I =l + l2ns1 —pl)

(3.13)

(3.14)

F(1 = an)29]| Aiyun — A p|||(Tn i — D Ay 2,

Trnin

Since ay, — 0, ||zn — Zpy1|| — 0 and ”(TanzﬂHm

in

~ DA

in
|, — zp]| = 0 as n — oco.

Next, we show that
limy, o0 ||Yn — un|| = 0 where u,, = up 4, , i, = arg maxi<i<n, {||tn,i — znll}-

Zn|| = 0 as n — oo , we have

(3.15)
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Since p = Po(I — A\, B)p. By (3.1) we have

41 =Pl

IN N

IN

IN

which implies that

1 — ap)|un — A\ Buy, —p — M\ Bp||?

1 —ap)|lun —p — An(Buy, — Bp)||2

anllv = pl* + (1 — o

(Iltn = pII® = 220 (. = p, Bun = Bp) + X2 Bun — Bpl”)

anllv —pl* +

anllv = pl* + (1 = an)lyn —pll?
anllv = pl* + (1 = an)llyn — Pe(I — X B)pl|®
an v —p||2 + (1 = an)||Pe(I = AnB)uy — Po(I — )\nB)p”Z
anllv = pl* + (
(
(

)
)
)
1= an)llZ = AaB)un = (I = A\ B)p|®
)
anllv —pl* + )
)

+(1 = an) (Jlun = pI* = 28| Buy, — Bl + A2 | Bus, — Bpl?)

2 2 2
+(1 = @) (lon = 2l = 20B1Bu, = Byl + A2[|Bu, — Byl

anlv = pl* + (1 = an)|2n — pl?
+(1 = )M (A — 28)|| Buy, — Bp|)?,

(1 - O‘n))\n(zﬁ - )\n)HBun - Bp”2

< anlly = pl* + llzn — @ntall(lzn — pll + llznrs = pI)-

Since ay, — 0 and 0 < limy, 00 Ay = A < 23, by (3.8) we have

ILm ||Bu, — Bpl|| = 0. (3.16)

Since P is firmly nonexpansive and (I — A, B) is nonexpansive, by (3.1), we have

[y — pl|?

IN

IN

IN

||PC(un - AnBUn) — Pc(p— )\an)||2
(Yn — P, Un — AnBuyn — (p — AnBp))

3 (o =Dl 417 = AuBJun — (7 = A Bl

~ [y = ttn + An(Bur, = Bp)||?)

2 (o = DI+ = I = [l — i+ An(Bu — Bp)?)
2 (I = I + Nt = I — g — 2 = X2 B — Bol?
=2 (Yn — Un, Bu,, — Bp))

2 (I =1 + ot = 9 — 1 — 2 = X2 B — Bol?

2y = tnl| Bun — Byl
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which implies that
2lyn — 21> < Ny — 2I? + lun — pI* = lyn — unll® = A2|| Bu,, — Bp|?
+2/\nHyn - u7,||||Bun - Bp||
1yn —2II° < llun = plI* = llyn — uall* = A2 || Bun, — Bp||?
+2/\nHyn - UnH”Bun - Bp||
< len = 2P = 1Yn — uall®
2|y — un ||| Bun, — Bpl|. (3.17)
From (3.1) and (3.17), we have
anllv = pl? + (1 = ow)llyn — pII
anllv—plI* + (1 — an)
(Il =PI = llyn = wnl* + 27a g = wall| Bun — Bpl|)
< anHV —p||2 + ”xn _pH2 - (1 - an)”yn - “nH2
+2(1 - O‘n))‘nHyn - UnH”B“n - Bpll'

1 Znt1 _pHZ <
<

Hence, we have
(1= an)llyn —wal® < anlly = pl + v = 2nsall (a1 = pll + o = pl)
+2(1 = an)An (llgnll = lunl) 1 Bun — Bpl.

Since lim, 00 @, = 0 and {y,}, {un} are bounded, by (3.8) and (3.16),
we have

lim ||y, — un| = 0. (3.18)
n—oo
Moreover, it follows that
[ns1 —wnll < llzngr —2nll + 20 — unll + [lun = ynll,

by (3.8), (3.15) and (3.18), we obtain

nh_{rgo |Zn+1 — Yyl = 0. (3.19)
Next, from (3.1), we have
Z(O&k,1 - ak)(skyn - yn) =Tn+1 — Yn — an(y - yn) (320)

k=1
Since {ay,} is strictly decreasing, for each k € N, by (2.3) and (3.20), we have

n

(k-1 = an)l1Skgm — vnl* < Y (k-1 — ) [[Skyn — vl
k’l
< 2> (k-1 — %) (SkYn — Yn>P — Un)
k=1
== 2<xn+1 *yn7yn7p> 72an<v7yn7p7yn>
< QHxn—i-l - ynH”yn - p“ + 20¢n||v - yn”Hyn _p”'
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Since lim,,—, 0 @, = 0 and {y,} are bounded by (3.19), we have
lim ||Skyn —yn|| =0 for all k€ N. (3.21)
n—oo

Moreover, it follows that

[Skxn — 2l < 1Sk@n — Skynll + [1Skyn — Ynll + [lyn — 2|
< Mlzn = yall + 1Skyn — ynll + lyn — @a|
= 2[yn — zall + ISkyn — ynll
< 2llyn = zngall + [#n41 = zall) + [1Skyn — ynll

2l|yn — Tnall + 2[[ng1 = znll + 1Skyn — ynll,
by (3.8), (3.19) and (3.21), we have
li_>m |1Skzy, — x| = 0,Vk € N. (3.22)

Step 4. We will show that limsup,, , (v — 2,2, — 2) <0.
Let z = Pqu. Since {z,} is bounded, we can choose a subsequence {z,,} of {z,} such
that

lim sup(v — z,2, — 2) = lim (v — z,2,;, — 2). (3.23)
n—oo j—o0

Since {z,, } is bounded, there exists a subsequence {z,; } of {z,;} converging weakly to
a point w € C. Without loss of generality, we can assume that z,, — w.

Now, we will show that w € Q. First of all, we show that w € © = ;- Fix(S}). From
the fact that z,, — Sgz, — 0 for each k € N and z,,;, — w, therefore by Lemma 2.12, we
obtain w € (o, Fix(S;) = ©.

Next, we show that w € T'ji.e., w € GEP(g;,h;) and A;w € GEP(G;, H;) for all
xS {1, ey Nl}

From (3.1) and (3.15), we have

lltn,; — xnl| = 0 as n— 00,1 <i < Ny

and from (3.12), we obtain
H(T,,Cii;H'i — I)Aian —0asn— 00,1 <7< Ny
Let uy,; = Trgnfum where i =z, + 'yA;‘(T,fLi;Hi — I)A;x,, and we have
”,un,i - l‘nH = ||7A;k (T'r(zl;Hl - I)Azan
< fy||Al||||(rl’GH — I)Aian — 0, (n — ).

— Tn,i

Since [[tn,; — tnill < lJtni — Tnll + |fn,s — Tn||. Then we have

|tni — ponill = 0asn — 00,1 < i < Nj.

Since uy, ; = Tgi’hwn,i, we get

Tn,i
9i(tn iy ) + Pi(tn iy w) + 2= (U = Ui, Ui = pin i) >0, Yu € C,
which implies that ,
Ri(Unis ) + 5 (U = U, g = fngi) = = Gi(tn,i,w) > fiu, up),Yu € C.
Since ||y, — tn,il] = 0,un; — ¢, g; is lower semicontinuous in the second argument and



134 Thai J. Math. Vol. 21 (2023) /K. Rattanaseeha

h; is upper semicontinuous in the first argument, we obtain
hi(w,u) > gi(u,w), Yu € C.
Then we have
gi(uvw) + hl(u7w) < gi(uaw) - hz(wvu) < O,VU eC.
Let & =tu+ (1 —t)w € C, we have @& € C and g¢;(4, w) + h; (4, w) < 0. Notice that

0 = g(a,a)+ hy(a,a)
= t[gi(G,u) + hi(@,u)] + (1 =) [gi (G, w) + hi (i1, w)]
< t[gi(ﬁ,u) + hz(ﬁ7u)]

Hence g; (i, u) + hi(@,u) > 0,Yu € C.
Since g; is upper hemicontinuous and h; is upper semicontinuous in the first argument,
we have

gi(w,u) + hi(w,u) > 0,Yu € C.

That is, w € GEP(g;, h;) for all ¢ € {1,..., Ny }.

Next, we show that A;w € GEP(G,, H;). Since x,, — ¢ and continuity of A4;, we have
Aixy, = Ajw. Let ¥, ; = Ajzy, — Tfif;HiAi;vm from (3.15), we have lim,,_, o ¥,,; = 0 for
all i € {1,..., N1}. And since T.5" Az, = Ay, — 7y for all € € Q, we have

Gl(A’an - ﬁn,ia 6)

+H1(All’n — 197171‘,5) + r: p <€ — (Azl’n — 197“'), (Aliin — 19”1) — Az$n> Z 0.

Since G; and H; are uppér semicontinuous in the first argument, we have

Gi(Aiw,s) + Hi(Aiw,s) >0,Ve € Q.

Then we obtain A;w € GEP(G,, H;), for all i € {1, ..., N1 }. Therefore, w € T.

Finally, we will show that w € A = ﬂjN:Ql VI(C,By) by demiclosedness principle, that
is, we only need to show that w = Po(w — AB;w), where A = lim,, oo Ay, By (3.1) and
(3.18), one has ||uy, — Po(I — A, B)uy|| — 0 where wy, = tp 4, , i, = arg maxy<i<n, {||tn,i —
Zn||}. Thus, we have

|un — Pc(I = AB)uy|| < |lup — Po(I — A B)uy||
+||[Pc(I — AB)uy, — Po(I — Ay B)uy ||
< lun = Po(I = A B)un|| + [[(I = A B)un — (I = AB)un|
<t = Po(T = MaB)un|| + A = Anl | Bun]- (3.24)

Since A, = A > 0, {Bu,} are bounded and ||u,, — Pc(I — AB)uy,| — 0, we have

lim [Jun — Pe(I — AB)uy|| = 0. (3.25)
n— o0

On the other hand, since {\,} C (0,23), one has A € (0,23]. Thus I — AB is nonexpan-
sive and, further, we have Po (I —AB) is nonexpansive. Noting that u,, — w as j — oo, by

Lemma 2.12, we get w = Po(I — AB)w. By Lemma 2.1, we get w € A = ﬂjNil VI(C,By).
Therefore, w € €. By the property on Po (2.2), we have

lim sup(v — z,2, — 2) = lim (v — 2,2, — 2) = (v — 2,w — 2) < 0. (3.26)
n—00 j—o0 ’
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Step 5. We show that z,, = z = Pov as n — co. By (3.1), we get
2

n
anl + Z(ak—l — ag)SkYn — 2
k=1

lzns1 = 2l =

n

= ap(V—2,p41—2)+ Z(ak—l — ap)(Sk¥Yn — 2, Tng1 — 2)

k=1
n
1 Og—1 — Ok
S anly =z )+ DLW g, e
+lzntr — 2I1%)
n
1 Og—1 — Ok
< aplv—z,Tpe1 —2) + 2k=1 5 )(Hxnszz
+znt1 — 2I1%)
_ 1—a, 9 9
S P N . (A P
— Qn 2, 1 2
< oV —2,Tnq1 — 2) + B) lzn — 2| —|—§||acn+1—z|| )

which implies that
Jenss =2l < (1= an)llan — 22 + 200 (v — 2, 2011 — 2).

By Lemma 2.13 and (3.26), we can conclude that lim, o ||z, — 2| = 0. Hence {z,}
converges strongly to z = Pqv. This completes the proof. L]

Remark 3.2. We present several corollaries of Theorem 3.1, that is, we can think out
the following cases:

(i) h; =0and H; =0, forall s € {1,..., N1 };

(ii) H;=0and G; =0, for all i € {1,..., N1 };

(ifi) Ny = Ny = 1.

Next, we give an example to demonstrate Theorem 3.1 as follows.
Example 3.3. We consider the case that Ny =1 and Ny = 2.

Let Hy = Ho =R,C = @Q = [-5,5]. Let Ay : H1 — Ha be defined by A;(x) = z for
each z € H;. Then, we have Ajy = y for each y € Ha. For each x,y € C, define the
bifunction gi,h1: C x C — R by fi(z,9) = y? + 3zy — 422, and hy(z,y) = y*> — 22 for
all z,y € C. For each z,y € @, define the bifunction Gy, Hy: C x C — R by Fi(z,y) =
3y? + 22y — 52% and Hy(z,y) =0 for all 2,y € Q. For j=1,2 , let Bj: C — H; be defined
by Bi(z) = 2z and Ba(z) = 6z for each x € C. Then it is easy to see that By and B, are
% and %—inverse strongly monotone operator from C' into Hy, respectively. It follows that

A =3_, VI(C,B;) = {0}. For each k € N, let S: C — C' defined by

1
—, x € [-5,0
z, x € 10,5].
Then {S;} is a countable family of nonexpansive mappings from C into C and it easy
to see that © = (2, Fix(S;) = [0,5]. Put oy, = 5=, Ay = f and v =71 = 32 = 3. It is
easy to verify that g1, h1, Gy, H1, A1, B, Ba, ap, A, 7y, v1 and 7o satisfy all the conditions
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of Theorem 3.1. Therefore, by Lemma 2.9, we see that 79" and 791 single-value
mappings on H; and Hso, respectively. Hence, for r, =r > 0,z € H; and = € Hs, there
exist z; € C' and z5 € ) such that

1
9(2’1, )+h1(21, )+;<y_21721—33>207 Vy€C7

and )
G1(2z2,y) + Hi(z2,y )+;<y—zg,z2—m>20, Yy € Q.

We can reform the above inequalities to standard quadratic form in the variable y as
follows:

Li(y) = 2ry* 4+ (3rz1 + 21 — 2)y + (21 — 5128 — 22) >0, Yy € C,
and

Lo(y) = 3ry* 4+ (2rz0 + 20 — )y + (z20 — 5125 — 25) >0, Yy € Q.
It is easy to verify that the discriminants of the above two quadratic inequalities are
nonnegative. And since Li(y) > 0 for all y € C and Lo(y) > 0 for all y € @, we see

that the discriminant must be zero. Then we obtain z; = T (z) = 7 and 2z =
TE (7)) = 15+ By Theorem 3.1, let @ = ©NT NA # (), where © = ;2 Fix(S),T' =

{z € C: z € GEP(C, g1, h1) such that A,z € GEP(Q,G1,H;)} and Az € EP(G;)} and
A =(j_; VI(C,B;). Then Q@ = {0}.

1
Now, take v = 3 and z1 = 5 and define the sequence {x,} by (3.1). We get

(I —yAT (I =TS M) Az, = @, — AT (1= TE,™) Az,
= (Alacn — Tfill’HlAlx )
i T e
= A n
— A (e — )
= 2 — (2 — o' ). (3.27)
14 8r
1
Let r = 3 Then from (3.27), we obtain
(1 =731~ TS Ay, = 2
Therefore,
3z 2x
’h n _ n
Unp —Unl—Trgill 1 —?
Next, we compute the sequence y,,. By the definition of y, in (3.1), we obtain
B B
yn = Po (I - /\nm>un = Po(0) =0
for all n € N.
Finally, we compute the sequence z.,,. By the following iteration:
= 1
Tpal = QpU + Z(ak,l — ) SkYn = Qpv = o (3.28)

k=1



A New Iterative Methods for a Finite Family ... 137

Thus from (3.28), we obtain
1
Tpt1 — 0= FPov = P{0}§

as n — oo as shown by Theorem 3.1.

ACKNOWLEDGEMENTS

The author would like to thank the referees for their comments and suggestions. This
work was supported by Faculty of Science and Technology, Loei Rajabhat University,
Thailand.

REFERENCES

[1] K.R. Kazmi, S.H. Rizvi, Iterative approximation of a common solution of a split
equilibrium problem, a variational inequality problem and fixed point problem, J.
Egypt. Math. Soc. 21 (2013) 44-51.

[2] F. Cianciaruso, G. Marino, L. Muglia, Y. Yao, A hybrid projection algorithm for
finding solutions of mixed equilibrium problem and variational inequality problem,
Fixed Point Theory and Applications 2010 (2009) Article ID 383740.

[3] A. Moudafi, Split monotone variational inclusions, J. Optim. Theory 150 (2) (2011)
275-283.

[4] S. Wang, X. Gong, A.A. Abdou, Y.J. Cho, Iterative algorithm for a family of split
equilibrium problems and fixed point problems in Hilbert spaces with applications,
Fixed Point Theory Appl. 2016 (2016) Article no. 4.

[5] Q. Cheng, Parallel hybrid viscosity method for fixed point problems, variational
inequality problems and split generalized equilibrium problems, J. Inequal. Appl.
2019 (2019) Article no. 169.

[6] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publish-
ers, Yokohama, 2009.

[7] G.Marino, H.K. Xu, A general iterative method for nonexpansive mapping in Hilbert
spaces, J. Math. Anal. Appl. 318 (2006) 43-52.

[8] Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in
product space, Numer. Algorithms 8 (1994) 221-239.

[9] Z. He, The split equilibrium problem and its convergence algoithms, J. Inequal. Appl.
2012 (2012) Article no. 162.

[10] H.K. Xu, Viscosity approximation methods for nonexpansive mappings. J. Math.
Anal. Appl. 298 (2004) 279-291.



	Introduction
	Preliminaries
	Main Results

