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1. Introduction

All spaces in this paper are Tychonoff spaces and βX(υX, resp.) denotes the Stone-
Čech compactification(Hewitt realcompactification, resp.) of a space X .

Hewitt([1]) proved that a space X is C∗-embedded in each space in which X is em-
bedded if and only if X is an almost compact space, that is, |βX −X| ≤ 1 and that if X
is an almost compact space, then X is a pseudocompact space. Aull([2]) proved that a
P -space X is C∗-embedded in each P -space in which X is embedded if and only if X is an
almost Lindelöf space, that is, for any two disjoint zero-sets in X, at least one of them is
Lindelöf. Moreover, Dow and Förster([3]) showed that an F -space X is C∗-embedded in
each F -space in which X is embedded if and only if X has no P -cover or X is an almost
compact space. Veksler([4]) introduced the concept of P ′-spaces which is a generalization
of the concept of P -spaces.

In this paper, we first show that for any non-realcompact P ′-space X, X is C∗-
embedded in each P ′-space in which X is embedded if and only if | υX − X |= 1.
Using this, for any non-realcompact P ′-space X, we show that | υX −X |= 1 if and only
if X is C∗-embedded in each compactification of X, equivalently, X is an almost Lindelöf
space and that if | υX −X |= 1, then υX is a Lindelöf space.

For the terminology, we refer to [5] and [6].
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2. P ′-Spaces

The ring of real valued continuous functions on a space X is denoted by C(X) and
C∗(X) denotes the subring of bounded functions of C(X). For any f ∈ C(X), f−1(0) is
called a zero-set in X and X − f−1(0) is called a cozero-set in X

Recall that a space X is called a P -space if every zero-set in X is open in X. Veksler([4])
introduced the concept of P ′-spaces which is a generalization of the concept of P -spaces.

Definition 2.1. A space X is called a P ′-space if every zero-set in X is a regular closed
set in X.

Veksler([4]) showed that for any locally compact realcompact space X, βX − X is a
P ′-space. Let R be the set of all real numbers with the usual topology. Then βR− R is
a P ′-space but not P -space.

For any zero-set Z in a space X, clυX(Z) is a zero-set in υX and for any non-empty
zero-set A in υX, A∩X 6= ∅([5]). Hence X is a P ′-space if and only if υX is a P ′-space.

A subspace S of a space X is called C(C∗,resp.)-embedded in X if for any f ∈
C(X)(C∗(X), resp.), there is a g ∈ C(X)(C∗(X), resp.) such that g|X = f and S is
called z-embedded in X if for any zero-set Z in S, there is a zero-set A in X such that
Z = A ∩ S.

It is well-known that a space X is a P -space if and only if every cozero-set in X is
C-embedded in X([5]). We can get the following results similar to P -spaces.

Proposition 2.2. Let X be a space. Then the following are equivalent :
(1) X is a P ′-space.
(2) For any zero-set Z in X with intX(Z) = ∅, Z = ∅.
(3) If f ∈ C(X) and pos(f) = {x ∈ X|f(x) > 0} contains a dense subset of X, then
pos(f) = X.

(4) Every dense z-embedded subspace of X is C-embedded.
(5) Every dense cozero-set in X is C-embedded.
(6) If f ∈ C(X) and X − f−1(0) is dense in X, then f has the inverse element in C(X).

Proof. (1) ⇒ (2) is tirvial.
(2) ⇒ (3) Let f ∈ C(X) such that pos(f) contains a dense subset of X. Then

clX(pos(f)) = X. Since pos(f) is a cozero-set in X, X − pos(f) = g−1(0) for some
g ∈ C(X). Since pos(f) is dense in X, intX(g−1(0)) = ∅. By the assumption, g−1(0) = ∅
and so pos(f) = X.

(3)⇒ (4) Let S be a dense z-embedded subspace of X. Take any disjoint zero-sets A,B
in S. Then there are f, g ∈ C(X) such that A = f−1(0)∩S and B = g−1(0)∩S. Since S is
dense in X, intX(f−1(0)∩ g−1(0)) = ∅. Let h = f2 + g2. Then h−1(0) = f−1(0)∩ g−1(0)
and so pos(h) is dense in X. By the assumption, h−1(0) = ∅ and by Urysohn’s extension
theorem, S is C∗-embedded in X.

Let l ∈ C(X) with S ∩ l−1(0) = ∅ and l(x) ≥ 0 for all x ∈ X. Since S is dense in
X and S ⊆ pos(l), pos(l) = X and so l−1(0) = ∅. Hence S and l−1(0) are completely
separated in X. Thus S is C-embedded in X.

(4) ⇒ (5) is trivial.
(5) ⇒ (6) Let f ∈ C(X) such that X − f−1(0) is dense in X. Then X − f−1(0) is

C-embedded in X and since (X − f−1(0)) ∩ f−1(0) = ∅, X − f−1(0) and f−1(0) are
completely separated in X and hence f−1(0) = ∅. Thus f has the inverse element in
C(X).
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(6) ⇒ (1) Let f ∈ C(X). Suppose that x ∈ X − clX(intX(f−1(0))). Then there is
a g ∈ C(X) such that x ∈ intX(g−1(0)) and intX(f−1(0)) ∩ intX(g−1(0)) = ∅. Note
that intX(f−1(0)) ∩ intX(g−1(0)) = intX(f−1(0) ∩ g−1(0)) = intX((f2 + g2)−1(0)) = ∅.
By the assupmtion, f2 + g2 has the inverse element in C(X) and (f2 + g2)−1(0) =
f−1(0) ∩ g−1(0) = ∅. Since x /∈ f−1(0), f−1(0) = clX(intX(f−1(0))) and so X is a
P ′-space.

A space X is called a weakly Lindelöf space if for any open cover U of X, there is a
countable subfamily V of U such that ∪V is dense in X. Every Lindelöf space is a weakly
Lindelöf space.

Proposition 2.3. Let X be a weakly Lindelöf P ′-space. Then X is a Lindelöf space.

Proof. Let U be an open cover of X such that for any U ∈ U , U is a cozero-set in X.
Then there is a countable subfamily V of U such that clX(∪V) = X. Since ∪V is a dense
cozero-set in X and X is a P ′-space, by Proposition 2.2, ∪V = X. Hence V is a countable
subcover of U and so X is a Lindelöf space.

It is well-known that a countable P -space is a discrete space([5]).

Proposition 2.4. Let X be a countable P ′-space. Then X is a discrete space.

Proof. Let x ∈ X. For any y ∈ X with x 6= y, there is a zero-set Zy in X such that
y /∈ Zy and x ∈ Zy. Let Z = ∩{Zy | y ∈ X − {x}}. Since X is a countable set, Z is a
zero-set in X and Z = {x}. Since X is a P ′-space, intX(Z) 6= ∅. Hence intX(Z) = {x}
and so {x} is open in X.

3. Absolute C∗-Embedding of P ′-Spaces

In this section, for P ′-spaces, we will show results similar to those proved by Hewitt([1]),
Aull([2]), and Dow and Förster([3]).

We recall that a space X is called an F -space if every cozero-set in X is C∗-embedded
in X. Let X be an F -space and S a subspace of βX such that X ⊆ S 6⊆ υX. Let
t ∈ S − υX. Then there is a zero-set Z in βX such that t ∈ Z and Z ∩ υX = ∅. Since X
is a dense subspace of S, intS(Z ∩ S) = ∅ and since Z ∩ S 6= ∅, S is not a P ′-space.

Lemma 3.1. Let X be a P ′-subspace of a space Y . Suppose that there is an onto con-
tinuous map f : υX −→ Y such that for any x ∈ X, f(x) = x. Then Y is a P ′-space.

Proof. Take any non-empty zero-set Z in Y . Then f−1(Z) is a non-empty zero-set in υX
and hence f−1(Z)∩X = Z∩X is a zero-set in X. Since X is a P ′-space, intX(Z∩X) 6= ∅
and since clX(intX(Z ∩X)) = clY (intY (Z))∩X, intY (Z) 6= ∅. Hence Y is a P ′-space.

Let X be a space and F a z-filter on X. Then F is called free(fixed, resp.) if ∩{F |
F ∈ F} = ∅(∩{F | F ∈ F} 6= ∅, resp.) and F is called real if it is closed under the
countable intersection property.

For any dense subspace X of a space T , X is C-embedded in T if and only if every
point of T is the limit point of the unique real z-ultrafilter on X([5]). For a subspace
X of a space Y , υX ⊆ υY means that there is an embedding h : υX −→ υY such that
h ◦ υX = υY ◦ j, where j : X ↪→ Y is the inclusion map.

Theorem 3.2. Let X be a P ′-space. Then |υX −X| ≤ 1 if and only if for any P ′-space
Y in which X is embedded, υX ⊆ υY .
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Proof. (⇒) Let Y be a P ′-space in which X is embedded. If X is a realcompact space,
then we have the result. Suppose that | υX − X |= 1. Then there is a unique free
real z-ultrafilter F on X and there is an y ∈ υY such that y ∈ ∩{clυY (F ) | F ∈ F}.
Let T = X ∪ {y}. Since F is the unique real z-ultrafilter on X which converges to y
in T , every point of T is a limit point of a unique real z-ultrafilter on X. Hence X is
C-embedded in T and υX = υT ([5]). Since υX is a P ′-space, T is also a P ′-space. Let G
be a real z-ultrafilter on T . Since X is C-embedded in T , GX = {G∩X | G ∈ G} is a real
z-ultrafilter on X. By the assumption, GX = F or GX is fixed and so ∩{clT (G ∩X)|G ∈
G} = ∩{G | G ∈ G} 6= ∅. Hence T is a realcompact space and thus υX ⊆ υY .

(⇐) Suppose that | υX−X |≥ 2. Pick a, b ∈ υX−X with a 6= b. Let R = {(x, x) | x ∈
υX} ∪ {(a, b), (b, a)}, Y = υX/R be the quotient space and q : υX −→ Y the quotient
map.

Take any open set U in X. Then there is an open set V in υX such that U = V ∩X
and {a, b} ∩ V = ∅. Since V is open in Y , X is a dense subspace of Y . By Lemma 3.1,
Y is a P ′-space. By the assumption, there is an embedding h : υX −→ υY such that
h ◦ υX = υY ◦ j, where j : X ↪→ Y is a dense embedding. Since υX : X −→ υX is a
dense embedding, h = υY ◦ q and h(a) = h(b). This is a contradiction, because h is an
one-to-one map.

Corollary 3.3. Let X be a non-realcompact P ′-space. Then the following are equivalent :
(1) |υX −X| = 1.
(2) For any P ′-space Y in which X is embedded, X is C∗-embedded in Y .
(3) For any P ′-space Y in which X is dense embedded, X is C∗-embedded in Y .

Proof. (1) ⇒ (2) Let υX = X ∪ {p} and Y a P ′-space in which X is embedded. By the
above theorem, υX ⊆ υY . Suppose that X is not C∗-embedded in Y . Then there are
disjoint zero-sets A,B in X such that clY (A) ∩ clY (B) 6= ∅. Pick k ∈ clY (A) ∩ clY (B).
Let R = {(x, x) | x ∈ X} ∪ {(k, k), (p, p), (k, p), (p, k)} and T = (X ∪ {k, p})/R be the
quotient space. Since there is an onto continuous map from υX to T , by Lemma 3.1,
T is a P ′-space and by Theorem 3.2, there is an embedding h : υX −→ υT such that
υT ◦ j = h ◦ υX , where q : X ∪ {k, p} −→ T is the quotient map and j : X ↪→ T is the
inclusion map.

Let G be a real z-ultrafilter on T . Let Z ∈ G. Since h−1(clυT (Z)) is a non-empty
zero-set in υX, h−1(clυT (Z)) ∩X = Z ∩X 6= ∅. Hence GX = {G ∩X | G ∈ G} is a real
z-ultrafilter on X and by (1), ∩{G∩X | G ∈ G} 6= ∅ or p ∈ ∩{clυX(G∩X) | G ∈ G}. For
any G ∈ G, h(clυX(G∩X)) ⊆ clT (h(G∩X)) = clT (G∩X) ⊆ G. Hence ∩{G | G ∈ G} 6= ∅
and T is a realcompact space. Moreover, T = υX and X is C∗-embedded in T . Since
A,B are disjoint zero-sets in X, clT (A) ∩ clT (B) = ∅. This is a contradiction, because
q(p) = q(k) ∈ clT (A) ∩ clT (B). Hence X is C∗-embedded in Y .

(2) ⇒ (3) It is trivial.
(3) ⇒ (1) Take any P ′-space Y in which X is embedded. Then there is a continuous

map f : υX −→ υY such that f ◦ υX = υY ◦ j, where j : X ↪→ Y is the inclusion map.
Let T = f(υX). Note that clT (X) = clυY (X) ∩ T = clυY (f(X)) ∩ T ⊇ f(υX) ∩ T = T .
Hence X is dense in T . By Lemma 3.1, T is a P ′-space and by (3), X is C∗-embedded in
T . Take any zero-set Z in T such that X ∩ Z = ∅. Then f−1(Z) is a zero-set in υX and
X ∩ f−1(Z) = ∅. Since X is C-embedded in υX, f−1(Z) = ∅ and so Z = ∅. Hence X is
C-embedded in T .
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Let G be a real z-ultrafilter on T . Since X is a dense C-embedded in T and T is a
P ′-space, GX is a real z-ultrafilter on X. Hence ∩{clυX(G ∩ X) | G ∈ G} 6= ∅. Pick
p ∈ ∩{clυX(G ∩ X) | G ∈ G}. For any G ∈ G, f(p) ∈ G and so ∩{G | G ∈ G} 6= ∅.
Hence T is a realcompact space and T = υX. Thus f : υX −→ υY is an embedding and
υX ⊆ υY .

By Proposition 2.2 and Corollary 3.3, we have the following :

Corollary 3.4. Let X be a non-realcompact space. Then |υX −X| = 1 if and only if for
any P ′-space Y in which X is embedded, X is C-embedded in Y .

Proposition 3.5. Let X be a non-realcompact P ′-space. Then |υX −X| = 1 if and only
if for any compactification K of X, X is C∗-embedded in K.

Proof. (⇒) Let (K, j) be a compactification of X and υX = X ∪ {p}. Suppose that
X is not C∗-embedded in K. Then there are disjoint zero-sets A,B in X such that
clK(A) ∩ clK(B) 6= ∅. Pick k ∈ clK(A) ∩ clK(B). Note that there is a continuous map
f : υX −→ K such that f ◦ υX = j.

Suppsoe that f(p) = k. By Lemma 3.1, X∪{k} is a P ′-subspace ofK. Since |υX−X| =
1, by Corollary 3.3, X is C∗-embedded in X ∪{k} and so ∅ = clX∪{k}(A)∩ clX∪{k}(B) =
clK(A)∩ clK(B)∩ (X ∪ {k}). Hence k /∈ clK(A)∩ clK(B) which is a contradiction. Thus
f(p) 6= k.

Let T = X ∪ {f(p), k} and Y = T/R the quotient space, where R = {(x, x) | x ∈
X} ∪ {(f(p), k), (k, f(p)), (f(p), f(p)), (k, k)}. Similar to the proof of Corollary 3.3, we
have a contradiction. Thus one have the result.

(⇐) Let Y be a P ′-space in which X is dense embedded. Since clβY (X) is a compact-
ification of X, X is C∗-embedded in clβY (X). Since clβY (X) is C∗-embedded in βY , X
is C∗-embedded in βY . Hence X is C∗-embedded in Y .

A space X is C∗-embedded in each compactification of X if and only if X is an almost
Lindelöf space([7]). Hence we have the following :

Corollary 3.6. Let X be a non-realcompact P ′-space. Then |υX −X| = 1 if and only if
X is an almost Lindelöf space.

If | βX−X |≤ 1, then X is a pseudo-compact space, that is, υX is a compact space([5]).
A space X with a dense weakly Lindelöf subspace is a weakly Lindelöf sapce.

Proposition 3.7. Let X be a P ′-space with |υX−X| = 1. Then υX is a Lindelöf sapce.

Proof. Suppose that υX is not a Lindelöf space. Then there is a z-filter F on υX such that
it has the countable intersection property and ∩{F | F ∈ F} = ∅. Let υX = X ∪ {p}.
Then there is a B ∈ F such that p /∈ B and so there is a zero-set A in X such that
p ∈ clυX(A) and A ∩ B = ∅. Since | υX − X |= 1, by Corollary 3.6, A or B ∩ X is
Lindelöf.

Suppose that A is Lindelöf. Let G be a free real z-ultrafilter on X such that p ∈
∩{clυX(G) | G ∈ G}. Then A ∈ G and GA = {Z ∩ A | Z ∈ G} is a z-filter on A with the
countable intersection property. Since A is Lindelöf, ∩{Z ∩ A | Z ∈ G} 6= ∅ and hence
∩{Z | Z ∈ G} 6= ∅. This is a contradiction.

Suppose that B ∩ X is Lindelöf. Since X is a P ′-space, υX is a P ′-space. Since
B = clυX(B ∩X), B is weakly Lindelöf. Since ∩{F | F ∈ F} = ∅, ∩{F ∩B | F ∈ F} = ∅
and since B is weakly Lindelöf, there is a sequence (Fn) in F such that clB(intB(∩{Fn∩B |
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n ∈ N})) = ∅. Since clB(intυX((∩{Fn | n ∈ N}) ∩B)) ⊆ clB(intB(∩{Fn ∩B | n ∈ N})),
clυX(intυX((∩{Fn | n ∈ N})∩B)) = ∅. Since υX is a P ′-space and (∩{Fn | n ∈ N})∩B
is a zero-set υX, (∩{Fn | n ∈ N}) ∩ B = ∅. Since F has the countable intersection
property, it is a contradiction.

We give an example of a non-realcompact P ′-space X with |υX −X| = 1.

Example 3.8. Let W be the space of all countable ordinals and W ∗ = W ∪ {w1} the
one-point compactification of W ([5]), where w1 is the first uncountable ordinal. Let D
be a discrete space of cardinality ℵ1 and p /∈ D. Let S = D ∪ {p}, topologized as follows:
Each point of D is isolated and a subset G of S that contains p is open in S if and only
if | S −G |≤ ℵ0. Let K = W ∗ × S − {(w1, p)} and K∗ = W ∗ × S. Then clearly, K∗ is a
Lindelöf space.

Take any f ∈ C(K). Note that the subspace A = {m | m is a finite ordinal} ∪ {w0}
of W ∗ is homeomorphic to N∗, where w0 is the fist countable ordinal and N∗ is the one-
point compactification of the discrete space N. Hence there is a subset U of S such that
| S − U |≤ ℵ0 and for any m ∈ A, f is constant on {m} × U([6]). For any s ∈ U , the
sequence {(m, s)} converges to (w1, s) in K∗ and {f((m, s))} is conevrgent to f((w1, s))
in R with the usual topology. For any s, t ∈ U and any m ∈ A, f((m, s)) = f((m, t)) and
hence f((w1, s)) = f((w1, t)). Define a map h : K∗ −→ R by h(x) = f(x) if x ∈ K and
h((w1, p)) = f((w1, α)) for some α ∈ U . Then h is a continuous extension of f to K∗.
Hence υK = K∗.

Now, we will show that υK is a P ′-space. Take any non-empty zero-set Z = Z(g)
in υK and (x, y) ∈ Z. Then there is a finite ordinal n such that g is constant on
{α | n ≤ α} × {y}([5]).
Case.1 x ≤ n:
If p 6= y, then {(x, y)} is open in υK and intυK(Z) 6= ∅. Suppose that p = y. Then there
is a subset G of S such that p ∈ G, | S − G |≤ ℵ0, and for any m ∈ A, g is constant on
{m} ×G and so {x} ×G ⊆ Z. Since {x} ×G is open υK, intυK(Z) 6= ∅.
Case.2 x > n:
If p 6= y, then {α | n ≤ α} × {y} is open in υK, {α | n ≤ α} × {y} ⊆ Z(g), and so
intυK(Z) 6= ∅. Suppose that p = y. Then there is a subset V of S such that p ∈ V ,
| S − V |≤ ℵ0, and for any m ∈ A, g is constant on {m} × V . If x is not a limit ordinal,
then {x} × V ⊆ intυK(Z) and hence intυK(Z) 6= ∅. Suppose that x is a limit ordinal.
Then w0 ≤ x and

{α | n ≤ α} × {p} ⊆ Z(g), {(m, s) | s ∈ V and n ≤ m < w0} ⊆ Z(g).

By the property of W ∗, {(α, s) | s ∈ V and n ≤ α} ⊆ Z(g) and so intυK(Z) 6= ∅. Thus
υK is a P ′-space.
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