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Abstract In this paper, we first show that for any non-real compact P’-space X, X is C*-embedded in
each P’-space in which X is embedded if and only if | vX — X |= 1. Using this, for any non-realcompact
P’-space X, we show that | vX — X |= 1 if and only if X is C*-embedded in each compactification of X,
equivalently, X is an almost Lindel6f space and that if | vX — X |= 1, then vX is a Lindelof space.
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1. INTRODUCTION

All spaces in this paper are Tychonoff spaces and X (vX, resp.) denotes the Stone-
Cech compactification(Hewitt realcompactification, resp.) of a space X .

Hewitt([1]) proved that a space X is C*-embedded in each space in which X is em-
bedded if and only if X is an almost compact space, that is, [3X — X| < 1 and that if X
is an almost compact space, then X is a pseudocompact space. Aull([2]) proved that a
P-space X is C*-embedded in each P-space in which X is embedded if and only if X is an
almost Lindelof space, that is, for any two disjoint zero-sets in X, at least one of them is
Lindel6f. Moreover, Dow and Forster([3]) showed that an F-space X is C*-embedded in
each F-space in which X is embedded if and only if X has no P-cover or X is an almost
compact space. Veksler([1]) introduced the concept of P’-spaces which is a generalization
of the concept of P-spaces.

In this paper, we first show that for any non-realcompact P’-space X, X is C*-
embedded in each P’-space in which X is embedded if and only if | vX — X |= 1.
Using this, for any non-realcompact P’-space X, we show that | vX — X |=1 if and only
if X is C*-embedded in each compactification of X, equivalently, X is an almost Lindelof
space and that if | vX — X |=1, then vX is a Lindel6f space.

For the terminology, we refer to [5] and [0].
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2. P'-SPACES

The ring of real valued continuous functions on a space X is denoted by C(X) and
C*(X) denotes the subring of bounded functions of C(X). For any f € C(X), f~1(0) is
called a zero-set in X and X — f~1(0) is called a cozero-set in X

Recall that a space X is called a P-space if every zero-set in X is open in X. Veksler([4])
introduced the concept of P’-spaces which is a generalization of the concept of P-spaces.

Definition 2.1. A space X is called a P’-space if every zero-set in X is a regular closed
set in X.

Veksler([4]) showed that for any locally compact realcompact space X, fX — X is a
P’-space. Let R be the set of all real numbers with the usual topology. Then SR — R is
a P’-space but not P-space.

For any zero-set Z in a space X, cl,x(Z) is a zero-set in vX and for any non-empty
zero-set A in vX, ANX # (O([5]). Hence X is a P’-space if and only if vX is a P’-space.

A subspace S of a space X is called C(C*yresp.)-embedded in X if for any f €
C(X)(C*(X), resp.), there is a g € C(X)(C*(X), resp.) such that g|x = f and S is
called z-embedded in X if for any zero-set Z in S, there is a zero-set A in X such that
Z=ANS.

It is well-known that a space X is a P-space if and only if every cozero-set in X is
C-embedded in X ([5]). We can get the following results similar to P-spaces.

Proposition 2.2. Let X be a space. Then the following are equivalent :

(1) X is a P'-space.

(2) For any zero-set Z in X with intx(Z) =0, Z = .

(8) If f € C(X) and pos(f) = {x € X|f(x) > 0} contains a dense subset of X, then
pos(f) = X.

(4) Every dense z-embedded subspace of X is C-embedded.

(5) Every dense cozero-set in X is C-embedded.

(6) If f € C(X) and X — f=1(0) is dense in X, then f has the inverse element in C(X).

Proof. (1) = (2) is tirvial.

(2) = (3) Let f € C(X) such that pos(f) contains a dense subset of X. Then
clx(pos(f)) = X. Since pos(f) is a cozero-set in X, X — pos(f) = g~*(0) for some
g € C(X). Since pos(f) is dense in X, intx(g~(0)) = (. By the assumption, g=1(0) = ()
and so pos(f) = X.

(3) = (4) Let S be a dense z-embedded subspace of X. Take any disjoint zero-sets A, B
in S. Then there are f, g € C'(X) such that A = f~1(0)NS and B = g~(0)NS. Since S is
dense in X, intx(f~1(0)Ng=1(0)) = 0. Let h = f2+g. Then h=1(0) = f~1(0)Ng~1(0)
and so pos(h) is dense in X. By the assumption, A=1(0) = @) and by Urysohn’s extension
theorem, S is C*-embedded in X.

Let [ € C(X) with SNI7*(0) = 0 and I(z) > 0 for all # € X. Since S is dense in
X and S C pos(l), pos(l) = X and so [71(0) = (). Hence S and [~1(0) are completely
separated in X. Thus S is C-embedded in X.

(4) = (5) is trivial.

(5) = (6) Let f € C(X) such that X — f~1(0) is dense in X. Then X — f~1(0) is
C-embedded in X and since (X — f71(0)) N f~1(0) = 0, X — f71(0) and f~1(0) are
completely separated in X and hence f~1(0) = (). Thus f has the inverse element in
C(X).
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a g € C(X) such that x € intx(g=1(0)) and intx(f~1(0)) Nintx(g~1(0)) = 0. Note
that intx (f~1(0)) Nintx (971(0)) = intx (f~1(0) N g~ (0)) = intx ((f* + ¢°)”1(0)) = 0.
By the assupmtion, f? 4+ g% has the inverse element in C(X) and (f% + ¢?)71(0) =
f7H0)ng=1(0) = 0. Since x ¢ f=1(0), f~1(0) = clx(intx(f~1(0))) and so X is a
P’-space. n

(6) = (1) Let f € C(X). Suppose that z € X — clx(intx(f~1(0))). Then there is
(

A space X is called a weakly Lindelof space if for any open cover U of X, there is a
countable subfamily V of U such that UV is dense in X. Every Lindelof space is a weakly
Lindelof space.

Proposition 2.3. Let X be a weakly Lindelof P'-space. Then X is a Lindelof space.

Proof. Let U be an open cover of X such that for any U € U, U is a cozero-set in X.
Then there is a countable subfamily V of U such that clx(UV) = X. Since UV is a dense
cozero-set in X and X is a P’-space, by Proposition 2.2, UV = X. Hence V is a countable
subcover of i and so X is a Lindelof space. [

It is well-known that a countable P-space is a discrete space([5]).
Proposition 2.4. Let X be a countable P'-space. Then X is a discrete space.

Proof. Let x € X. For any y € X with « # y, there is a zero-set Z, in X such that
y¢ Z,and x € Z,. Let Z =n{Z, | y € X — {«}}. Since X is a countable set, Z is a
zero-set in X and Z = {z}. Since X is a P’-space, intx(Z) # (. Hence intx(Z) = {z}
and so {z} is open in X.

3. ABSOLUTE C*-EMBEDDING OF P’-SPACES

In this section, for P’-spaces, we will show results similar to those proved by Hewitt([1]),
Aull([2]), and Dow and Forster([3]).

We recall that a space X is called an F-space if every cozero-set in X is C*-embedded
in X. Let X be an F-space and S a subspace of X such that X C S Z vX. Let
t € S —vX. Then there is a zero-set Z in BX such that t € Z and ZNvX = (. Since X
is a dense subspace of S, ints(Z N S) =0 and since ZN S # 0, S is not a P’-space.

Lemma 3.1. Let X be a P’'-subspace of a space Y. Suppose that there is an onto con-
tinuous map f:vX — Y such that for any x € X, f(x) =x. ThenY is a P’'-space.

Proof. Take any non-empty zero-set Z in Y. Then f~1(Z) is a non-empty zero-set in v.X
and hence f~1(Z)NX = ZNX is a zero-set in X. Since X is a P'-space, intx(ZNX) # ()
and since clx (intx(Z N X)) = cly (inty (Z2)) N X, inty (Z) # (. Hence Y is a P’-space. m

Let X be a space and F a z-filter on X. Then F is called free(fized, resp.) if N{F |
FeF}=0n{F|FeF} #0, resp.) and F is called real if it is closed under the
countable intersection property.

For any dense subspace X of a space T, X is C-embedded in T if and only if every
point of T is the limit point of the unique real z-ultrafilter on X ([5]). For a subspace
X of a space Y, vX C vY means that there is an embedding h : vX — vY such that
howvx = vy oj, where j : X — Y is the inclusion map.

Theorem 3.2. Let X be a P'-space. Then |[vX — X| <1 if and only if for any P’-space
Y in which X is embedded, vX C vY.
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Proof. (=) Let Y be a P’-space in which X is embedded. If X is a realcompact space,
then we have the result. Suppose that | vX — X |= 1. Then there is a unique free
real z-ultrafilter F on X and there is an y € vY such that y € N{cl,v(F) | F € F}.
Let T = X U{y}. Since F is the unique real z-ultrafilter on X which converges to y
in T, every point of T" is a limit point of a unique real z-ultrafilter on X. Hence X is
C-embedded in T and vX = vT'([5]). Since vX is a P'-space, T is also a P’-space. Let G
be a real z-ultrafilter on T. Since X is C-embedded in T, Gx = {GNX | G € G} is a real
z-ultrafilter on X. By the assumption, Gx = F or Gy is fixed and so N{clr(GN X)|G €
G} =n{G| G e G} +#0. Hence T is a realcompact space and thus vX C vY.

(«<=) Suppose that | vX —X |> 2. Pick a,b € vX — X witha #b. Let R = {(z,z) |z €
vX}U{(a,b),(b,a)}, Y = vX/R be the quotient space and ¢ : vX — Y the quotient
map.

Take any open set U in X. Then there is an open set V' in vX such that U =V NX
and {a,b} NV = (. Since V is open in Y, X is a dense subspace of Y. By Lemma 3.1,
Y is a P’-space. By the assumption, there is an embedding h : vX — vY such that
howvx = vy oj, where j : X — Y is a dense embedding. Since vy : X — vX is a
dense embedding, h = vy o ¢ and h(a) = h(b). This is a contradiction, because h is an
one-to-one map. [

Corollary 3.3. Let X be a non-realcompact P’-space. Then the following are equivalent :
(1) [vX — X| =1.

(2) For any P’-space Y in which X is embedded, X is C*-embedded in'Y .

(8) For any P'-space Y in which X is dense embedded, X is C*-embedded in'Y .

Proof. (1) = (2) Let vX = X U {p} and Y a P’-space in which X is embedded. By the
above theorem, vX C vY. Suppose that X is not C*-embedded in Y. Then there are
disjoint zero-sets A, B in X such that cly (A) Necly (B) # 0. Pick k € cly (A) N cly (B).
Let R = {(z,2) | 2 € X} U {(k,k), (p.p), (5:p), (p, k)} and T = (X U {k,p})/R be the
quotient space. Since there is an onto continuous map from vX to T, by Lemma 3.1,
T is a P’-space and by Theorem 3.2, there is an embedding h : vX — ©T such that
vpoj = howvy, where ¢ : X U {k,p} — T is the quotient map and j : X — T is the
inclusion map.

Let G be a real z-ultrafilter on T. Let Z € G. Since h=!(cl,r(Z)) is a non-empty
zero-set in vX, h™(cl,r(Z))NX =ZNX #0. Hence Gx = {GNX | G € G} is a real
z-ultrafilter on X and by (1), ({GNX |G € G} #Dorpe N{cl,x(GNX) |G € G}. For
any G € G, h(clyx(GNX)) C cr(h(GNX)) =clr(GNX) CG. Hence N{G |G € G} #10
and T is a realcompact space. Moreover, T' = vX and X is C*-embedded in T'. Since
A, B are disjoint zero-sets in X, clp(A) Nelp(B) = @. This is a contradiction, because
q(p) = q(k) € clp(A) Nelp(B). Hence X is C*-embedded in Y.

(2) = (3) It is trivial.

(3) = (1) Take any P’-space Y in which X is embedded. Then there is a continuous
map f:vX — vY such that fovx = vy oj, where j : X — Y is the inclusion map.
Let T = f(vX). Note that clp(X) =clyy (X)NT =clyy (f(X)NT D f(vX)NT =T.
Hence X is dense in T. By Lemma 3.1, T is a P’-space and by (3), X is C*-embedded in
T. Take any zero-set Z in T such that X N Z = ). Then f~1(Z) is a zero-set in vX and
XN fYZ)=0. Since X is C-embedded in vX, f~*(Z) = 0 and so Z = (). Hence X is
C-embedded in T
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Let G be a real z-ultrafilter on 7. Since X is a dense C-embedded in T and T is a
P’-space, Gx is a real z-ultrafilter on X. Hence N{cl,x(GN X) | G € G} # 0. Pick
p € {elyx(GNX) | G € G}. Forany G € G, f(p) € G and so N{G | G € G} # 0.
Hence T is a realcompact space and "= vX. Thus f : vX — vY is an embedding and
vX CvY. ]

By Proposition 2.2 and Corollary 3.3, we have the following :

Corollary 3.4. Let X be a non-realcompact space. Then |[vX — X| =1 if and only if for
any P'-space Y in which X is embedded, X is C-embedded in'Y .

Proposition 3.5. Let X be a non-realcompact P'-space. Then |vX — X| =1 if and only
if for any compactification K of X, X is C*-embedded in K.

Proof. (=) Let (K,j) be a compactification of X and vX = X U {p}. Suppose that
X is not C*-embedded in K. Then there are disjoint zero-sets A, B in X such that
cg(A)Nelg(B) # 0. Pick k € clg(A) Nclg(B). Note that there is a continuous map
f:vX — K such that foux = j.

Suppsoe that f(p) = k. By Lemma 3.1, XU{k} is a P’-subspace of K. Since [vX—X| =
1, by Corollary 3.3, X is C*-embedded in X U{k} and so 0 = clxygi} (A) Nelxugry (B) =
crg(A)Nelg(B)N(X U{k}). Hence k ¢ clx(A) Neclx(B) which is a contradiction. Thus
f(p) # k.

Let T = X U{f(p),k} and Y = T/R the quotient space, where R = {(z,z) | = €
XY U{(f(p),k), (k, f(p)), (f(p), f(p)), (k,k)}. Similar to the proof of Corollary 3.3, we
have a contradiction. Thus one have the result.

(<) Let Y be a P’-space in which X is dense embedded. Since clgy (X) is a compact-
ification of X, X is C*-embedded in clgy (X). Since clgy (X) is C*-embedded in Y, X
is C*-embedded in Y. Hence X is C""*-embedded in Y. [

A space X is C*-embedded in each compactification of X if and only if X is an almost
Lindelof space([7]). Hence we have the following :

Corollary 3.6. Let X be a non-realcompact P’-space. Then |[vX — X| =1 if and only if
X is an almost Lindelof space.

If | BX—X |< 1, then X is a pseudo-compact space, that is, vX is a compact space([5]).
A space X with a dense weakly Lindelof subspace is a weakly Lindelof sapce.

Proposition 3.7. Let X be a P’-space with |[vX —X| =1. Then vX is a Lindelof sapce.

Proof. Suppose that v.X is not a Lindelof space. Then there is a z-filter 7 on vX such that
it has the countable intersection property and N{F | F' € F} = (). Let vX = X U {p}.
Then there is a B € F such that p ¢ B and so there is a zero-set A in X such that
p € clyx(A) and AN B = (. Since | vX — X |= 1, by Corollary 3.6, A or BN X is
Lindelof.

Suppose that A is Lindelof. Let G be a free real z-ultrafilter on X such that p €
Melox(G) | G €G}. Then A€ Gand Ga ={ZNA|Z e G} is a zfilter on A with the
countable intersection property. Since A is Lindelof, "{Z N A | Z € G} # 0 and hence
N{Z | Z € G} # 0. This is a contradiction.

Suppose that B N X is Lindelof. Since X is a P’-space, vX is a P’-space. Since
B =cl,x(BNX), Bis weakly Lindelof. Since {F |F e F}=0,n{FNB|FeF}=10
and since B is weakly Lindel6f, there is a sequence (F,) in F such that clg(int g (N{F,NB |
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n € N})) = 0. Since clg(int,x ((N{F, |n € N})NB)) C cp(intg(N{F, NB|neN})),
clyx (inty,x ((M{F, | n € N})NB)) = 0. Since vX is a P'-space and (N{F,, |[n € N})NB
is a zero-set vX, (N{F, | n € N}) N B = (. Since F has the countable intersection
property, it is a contradiction. [

We give an example of a non-realcompact P’-space X with |[vX — X| = 1.

Example 3.8. Let W be the space of all countable ordinals and W* = W U {w, } the
one-point compactification of W ([5]), where w; is the first uncountable ordinal. Let D
be a discrete space of cardinality X; and p ¢ D. Let S = D U {p}, topologized as follows:
Each point of D is isolated and a subset GG of S that contains p is open in S if and only
if | S—G|<Rg. Let K =W* xS — {(wy,p)} and K* = W* x S. Then clearly, K* is a
Lindelof space.

Take any f € C(K). Note that the subspace A = {m | m is a finite ordinal} U {wg}
of W* is homeomorphic to N*, where wy is the fist countable ordinal and N* is the one-
point compactification of the discrete space N. Hence there is a subset U of S such that
| S —U |< Ry and for any m € A, f is constant on {m} x U([6]). For any s € U, the
sequence {(m, s)} converges to (wq,s) in K* and {f((m,s))} is conevrgent to f((wi,s))
in R with the usual topology. For any s,t € U and any m € A, f((m,s)) = f((m,t)) and
hence f((wi,s)) = f((wy,t)). Define a map h : K* — R by h(z) = f(x) if z € K and
h((w1,p)) = f((w1,)) for some o € U. Then h is a continuous extension of f to K*.
Hence vK = K*.

Now, we will show that vK is a P’-space. Take any non-empty zero-set Z = Z(g)
in vK and (x,y) € Z. Then there is a finite ordinal n such that g is constant on
{a|n < a}x {y}().

Case.l z < n:

If p # y, then {(z,y)} is open in vK and int,x(Z) # . Suppose that p =y. Then there
is a subset G of S such that p € G, | S — G |< N, and for any m € A, g is constant on
{m} x G and so {z} x G C Z. Since {z} x G is open vK, int,x(Z) # 0.

Case.2 z > n:

If p £ y, then {a | n < a} x {y} is open in vK, {a | n < a} x {y} C Z(g), and so
intyi(Z) # 0. Suppose that p = y. Then there is a subset V of S such that p € V,
| S —V |< R, and for any m € A, g is constant on {m} x V. If z is not a limit ordinal,
then {z} X V C int,x(Z) and hence int,x(Z) # 0. Suppose that x is a limit ordinal.
Then wy < x and

{a|n<a} x{p} CZ(g), {(ms)]|seVandn<m<wy} C Z(g).

By the property of W*, {(a,s) | s € V and n < a} C Z(g) and so int,x(Z) # 0. Thus
vK is a P’-space.
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