Thai Journal of **Math**ematics Volume 21 Number 1 (2023) Pages 111–117

http://thaijmath.in.cmu.ac.th

In memoriam Professor Charles E. Chidume (1947-2021)

Absolute C*-Embedding of P'-Spaces

Chang II Kim and Gil Jun Han*

Department of Mathematics Education, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, 16890, Korea e-mail : kci206@hanmail.net (C.I. Kim); gilhan@dankook.ac.kr (G.J. Han)

Abstract In this paper, we first show that for any non-real compact P'-space X, X is C^* -embedded in each P'-space in which X is embedded if and only if |vX - X| = 1. Using this, for any non-realcompact P'-space X, we show that |vX - X| = 1 if and only if X is C^* -embedded in each compactification of X, equivalently, X is an almost Lindelöf space and that if |vX - X| = 1, then vX is a Lindelöf space.

MSC: 54C45; 54G05 Keywords: C-embedding; C*-embedding; P'-spaces

Submission date: 30.01.2022 / Acceptance date: 20.04.2022

1. INTRODUCTION

All spaces in this paper are Tychonoff spaces and $\beta X(vX, \text{ resp.})$ denotes the Stone-Čech compactification(Hewitt realcompactification, resp.) of a space X.

Hewitt([1]) proved that a space X is C^* -embedded in each space in which X is embedded if and only if X is an almost compact space, that is, $|\beta X - X| \leq 1$ and that if X is an almost compact space, then X is a pseudocompact space. Aull([2]) proved that a P-space X is C^* -embedded in each P-space in which X is embedded if and only if X is an almost Lindelöf space, that is, for any two disjoint zero-sets in X, at least one of them is Lindelöf. Moreover, Dow and Förster([3]) showed that an F-space X is C^* -embedded in each F-space in which X is embedded if and only if X is an almost compact space. Veksler([4]) introduced the concept of P'-spaces which is a generalization of the concept of P-spaces.

In this paper, we first show that for any non-realcompact P'-space X, X is C^* -embedded in each P'-space in which X is embedded if and only if | vX - X | = 1. Using this, for any non-realcompact P'-space X, we show that | vX - X | = 1 if and only if X is C^* -embedded in each compactification of X, equivalently, X is an almost Lindelöf space and that if | vX - X | = 1, then vX is a Lindelöf space.

For the terminology, we refer to [5] and [6].

^{*}Corresponding author.

2. P'-Spaces

The ring of real valued continuous functions on a space X is denoted by C(X) and $C^*(X)$ denotes the subring of bounded functions of C(X). For any $f \in C(X)$, $f^{-1}(0)$ is called a zero-set in X and $X - f^{-1}(0)$ is called a cozero-set in X

Recall that a space X is called a *P*-space if every zero-set in X is open in X. Veksler([4]) introduced the concept of P'-spaces which is a generalization of the concept of *P*-spaces.

Definition 2.1. A space X is called a P'-space if every zero-set in X is a regular closed set in X.

Veksler([4]) showed that for any locally compact realcompact space X, $\beta X - X$ is a P'-space. Let \mathbb{R} be the set of all real numbers with the usual topology. Then $\beta \mathbb{R} - \mathbb{R}$ is a P'-space but not P-space.

For any zero-set Z in a space X, $cl_{vX}(Z)$ is a zero-set in vX and for any non-empty zero-set A in vX, $A \cap X \neq \emptyset([5])$. Hence X is a P'-space if and only if vX is a P'-space.

A subspace S of a space X is called $C(C^*, \text{resp.})$ -embedded in X if for any $f \in C(X)(C^*(X), \text{ resp.})$, there is a $g \in C(X)(C^*(X), \text{ resp.})$ such that $g|_X = f$ and S is called *z*-embedded in X if for any zero-set Z in S, there is a zero-set A in X such that $Z = A \cap S$.

It is well-known that a space X is a P-space if and only if every cozero-set in X is C-embedded in X([5]). We can get the following results similar to P-spaces.

Proposition 2.2. Let X be a space. Then the following are equivalent :

(1) X is a P'-space.

(2) For any zero-set Z in X with $int_X(Z) = \emptyset$, $Z = \emptyset$.

(3) If $f \in C(X)$ and $pos(f) = \{x \in X | f(x) > 0\}$ contains a dense subset of X, then pos(f) = X.

(4) Every dense z-embedded subspace of X is C-embedded.

(5) Every dense cozero-set in X is C-embedded.

(6) If $f \in C(X)$ and $X - f^{-1}(0)$ is dense in X, then f has the inverse element in C(X).

Proof. $(1) \Rightarrow (2)$ is tirvial.

 $(2) \Rightarrow (3)$ Let $f \in C(X)$ such that pos(f) contains a dense subset of X. Then $cl_X(pos(f)) = X$. Since pos(f) is a cozero-set in $X, X - pos(f) = g^{-1}(0)$ for some $g \in C(X)$. Since pos(f) is dense in $X, int_X(g^{-1}(0)) = \emptyset$. By the assumption, $g^{-1}(0) = \emptyset$ and so pos(f) = X.

 $(3) \Rightarrow (4)$ Let S be a dense z-embedded subspace of X. Take any disjoint zero-sets A, B in S. Then there are $f, g \in C(X)$ such that $A = f^{-1}(0) \cap S$ and $B = g^{-1}(0) \cap S$. Since S is dense in X, $int_X(f^{-1}(0) \cap g^{-1}(0)) = \emptyset$. Let $h = f^2 + g^2$. Then $h^{-1}(0) = f^{-1}(0) \cap g^{-1}(0)$ and so pos(h) is dense in X. By the assumption, $h^{-1}(0) = \emptyset$ and by Urysohn's extension theorem, S is C^{*}-embedded in X.

Let $l \in C(X)$ with $S \cap l^{-1}(0) = \emptyset$ and $l(x) \ge 0$ for all $x \in X$. Since S is dense in X and $S \subseteq pos(l), pos(l) = X$ and so $l^{-1}(0) = \emptyset$. Hence S and $l^{-1}(0)$ are completely separated in X. Thus S is C-embedded in X.

 $(4) \Rightarrow (5)$ is trivial.

 $(5) \Rightarrow (6)$ Let $f \in C(X)$ such that $X - f^{-1}(0)$ is dense in X. Then $X - f^{-1}(0)$ is C-embedded in X and since $(X - f^{-1}(0)) \cap f^{-1}(0) = \emptyset$, $X - f^{-1}(0)$ and $f^{-1}(0)$ are completely separated in X and hence $f^{-1}(0) = \emptyset$. Thus f has the inverse element in C(X).

(6) ⇒ (1) Let $f \in C(X)$. Suppose that $x \in X - cl_X(int_X(f^{-1}(0)))$. Then there is a $g \in C(X)$ such that $x \in int_X(g^{-1}(0))$ and $int_X(f^{-1}(0)) \cap int_X(g^{-1}(0)) = \emptyset$. Note that $int_X(f^{-1}(0)) \cap int_X(g^{-1}(0)) = int_X(f^{-1}(0) \cap g^{-1}(0)) = int_X((f^2 + g^2)^{-1}(0)) = \emptyset$. By the assumption, $f^2 + g^2$ has the inverse element in C(X) and $(f^2 + g^2)^{-1}(0) = f^{-1}(0) \cap g^{-1}(0) = \emptyset$. Since $x \notin f^{-1}(0), f^{-1}(0) = cl_X(int_X(f^{-1}(0)))$ and so X is a P'-space.

A space X is called a weakly Lindelöf space if for any open cover \mathcal{U} of X, there is a countable subfamily \mathcal{V} of \mathcal{U} such that $\cup \mathcal{V}$ is dense in X. Every Lindelöf space is a weakly Lindelöf space.

Proposition 2.3. Let X be a weakly Lindelöf P'-space. Then X is a Lindelöf space.

Proof. Let \mathcal{U} be an open cover of X such that for any $U \in \mathcal{U}$, U is a cozero-set in X. Then there is a countable subfamily \mathcal{V} of \mathcal{U} such that $cl_X(\cup \mathcal{V}) = X$. Since $\cup \mathcal{V}$ is a dense cozero-set in X and X is a P'-space, by Proposition 2.2, $\cup \mathcal{V} = X$. Hence \mathcal{V} is a countable subcover of \mathcal{U} and so X is a Lindelöf space.

It is well-known that a countable P-space is a discrete space([5]).

Proposition 2.4. Let X be a countable P'-space. Then X is a discrete space.

Proof. Let $x \in X$. For any $y \in X$ with $x \neq y$, there is a zero-set Z_y in X such that $y \notin Z_y$ and $x \in Z_y$. Let $Z = \cap \{Z_y \mid y \in X - \{x\}\}$. Since X is a countable set, Z is a zero-set in X and $Z = \{x\}$. Since X is a P'-space, $int_X(Z) \neq \emptyset$. Hence $int_X(Z) = \{x\}$ and so $\{x\}$ is open in X.

3. Absolute C^* -Embedding of P'-Spaces

In this section, for P'-spaces, we will show results similar to those proved by Hewitt([1]), Aull([2]), and Dow and Förster([3]).

We recall that a space X is called an F-space if every cozero-set in X is C^{*}-embedded in X. Let X be an F-space and S a subspace of βX such that $X \subseteq S \not\subseteq vX$. Let $t \in S - vX$. Then there is a zero-set Z in βX such that $t \in Z$ and $Z \cap vX = \emptyset$. Since X is a dense subspace of S, $int_S(Z \cap S) = \emptyset$ and since $Z \cap S \neq \emptyset$, S is not a P'-space.

Lemma 3.1. Let X be a P'-subspace of a space Y. Suppose that there is an onto continuous map $f: vX \longrightarrow Y$ such that for any $x \in X$, f(x) = x. Then Y is a P'-space.

Proof. Take any non-empty zero-set Z in Y. Then $f^{-1}(Z)$ is a non-empty zero-set in vXand hence $f^{-1}(Z) \cap X = Z \cap X$ is a zero-set in X. Since X is a P'-space, $int_X(Z \cap X) \neq \emptyset$ and since $cl_X(int_X(Z \cap X)) = cl_Y(int_Y(Z)) \cap X$, $int_Y(Z) \neq \emptyset$. Hence Y is a P'-space.

Let X be a space and \mathcal{F} a z-filter on X. Then \mathcal{F} is called *free(fixed*, resp.) if $\cap \{F \mid F \in \mathcal{F}\} = \emptyset(\cap \{F \mid F \in \mathcal{F}\} \neq \emptyset$, resp.) and \mathcal{F} is called *real* if it is closed under the countable intersection property.

For any dense subspace X of a space T, X is C-embedded in T if and only if every point of T is the limit point of the unique real z-ultrafilter on X([5]). For a subspace X of a space Y, $vX \subseteq vY$ means that there is an embedding $h: vX \longrightarrow vY$ such that $h \circ v_X = v_Y \circ j$, where $j: X \hookrightarrow Y$ is the inclusion map.

Theorem 3.2. Let X be a P'-space. Then $|vX - X| \le 1$ if and only if for any P'-space Y in which X is embedded, $vX \subseteq vY$.

Proof. (⇒) Let Y be a P'-space in which X is embedded. If X is a realcompact space, then we have the result. Suppose that | vX - X | = 1. Then there is a unique free real z-ultrafilter \mathcal{F} on X and there is an $y \in vY$ such that $y \in \cap \{cl_{vY}(F) \mid F \in \mathcal{F}\}$. Let $T = X \cup \{y\}$. Since \mathcal{F} is the unique real z-ultrafilter on X which converges to y in T, every point of T is a limit point of a unique real z-ultrafilter on X. Hence X is C-embedded in T and vX = vT([5]). Since vX is a P'-space, T is also a P'-space. Let \mathcal{G} be a real z-ultrafilter on T. Since X is C-embedded in T, $\mathcal{G}_X = \{G \cap X \mid G \in \mathcal{G}\}$ is a real z-ultrafilter on X. By the assumption, $\mathcal{G}_X = \mathcal{F}$ or \mathcal{G}_X is fixed and so $\cap \{cl_T(G \cap X) \mid G \in \mathcal{G}\} = \cap \{G \mid G \in \mathcal{G}\} \neq \emptyset$. Hence T is a realcompact space and thus $vX \subseteq vY$.

(⇐) Suppose that $|vX - X| \ge 2$. Pick $a, b \in vX - X$ with $a \ne b$. Let $R = \{(x, x) | x \in vX\} \cup \{(a, b), (b, a)\}, Y = vX/R$ be the quotient space and $q : vX \longrightarrow Y$ the quotient map.

Take any open set U in X. Then there is an open set V in vX such that $U = V \cap X$ and $\{a, b\} \cap V = \emptyset$. Since V is open in Y, X is a dense subspace of Y. By Lemma 3.1, Y is a P'-space. By the assumption, there is an embedding $h : vX \longrightarrow vY$ such that $h \circ v_X = v_Y \circ j$, where $j : X \hookrightarrow Y$ is a dense embedding. Since $v_X : X \longrightarrow vX$ is a dense embedding, $h = v_Y \circ q$ and h(a) = h(b). This is a contradiction, because h is an one-to-one map.

Corollary 3.3. Let X be a non-realcompact P'-space. Then the following are equivalent: (1) |vX - X| = 1.

(2) For any P'-space Y in which X is embedded, X is C^* -embedded in Y.

(3) For any P'-space Y in which X is dense embedded, X is C^* -embedded in Y.

Proof. (1) \Rightarrow (2) Let $vX = X \cup \{p\}$ and Y a P'-space in which X is embedded. By the above theorem, $vX \subseteq vY$. Suppose that X is not C^* -embedded in Y. Then there are disjoint zero-sets A, B in X such that $cl_Y(A) \cap cl_Y(B) \neq \emptyset$. Pick $k \in cl_Y(A) \cap cl_Y(B)$. Let $R = \{(x, x) \mid x \in X\} \cup \{(k, k), (p, p), (k, p), (p, k)\}$ and $T = (X \cup \{k, p\})/R$ be the quotient space. Since there is an onto continuous map from vX to T, by Lemma 3.1, T is a P'-space and by Theorem 3.2, there is an embedding $h : vX \longrightarrow vT$ such that $v_T \circ j = h \circ v_X$, where $q : X \cup \{k, p\} \longrightarrow T$ is the quotient map and $j : X \hookrightarrow T$ is the inclusion map.

Let \mathcal{G} be a real z-ultrafilter on T. Let $Z \in \mathcal{G}$. Since $h^{-1}(cl_{vT}(Z))$ is a non-empty zero-set in vX, $h^{-1}(cl_{vT}(Z)) \cap X = Z \cap X \neq \emptyset$. Hence $\mathcal{G}_X = \{G \cap X \mid G \in \mathcal{G}\}$ is a real z-ultrafilter on X and by $(1), \cap\{G \cap X \mid G \in \mathcal{G}\} \neq \emptyset$ or $p \in \cap\{cl_{vX}(G \cap X) \mid G \in \mathcal{G}\}$. For any $G \in \mathcal{G}$, $h(cl_{vX}(G \cap X)) \subseteq cl_T(h(G \cap X)) = cl_T(G \cap X) \subseteq G$. Hence $\cap\{G \mid G \in \mathcal{G}\} \neq \emptyset$ and T is a realcompact space. Moreover, T = vX and X is C^* -embedded in T. Since A, B are disjoint zero-sets in $X, cl_T(A) \cap cl_T(B) = \emptyset$. This is a contradiction, because $q(p) = q(k) \in cl_T(A) \cap cl_T(B)$. Hence X is C^* -embedded in Y.

 $(2) \Rightarrow (3)$ It is trivial.

 $(3) \Rightarrow (1)$ Take any P'-space Y in which X is embedded. Then there is a continuous map $f: vX \longrightarrow vY$ such that $f \circ v_X = v_Y \circ j$, where $j: X \hookrightarrow Y$ is the inclusion map. Let T = f(vX). Note that $cl_T(X) = cl_{vY}(X) \cap T = cl_{vY}(f(X)) \cap T \supseteq f(vX) \cap T = T$. Hence X is dense in T. By Lemma 3.1, T is a P'-space and by (3), X is C^* -embedded in T. Take any zero-set Z in T such that $X \cap Z = \emptyset$. Then $f^{-1}(Z)$ is a zero-set in vX and $X \cap f^{-1}(Z) = \emptyset$. Since X is C-embedded in vX, $f^{-1}(Z) = \emptyset$ and so $Z = \emptyset$. Hence X is C-embedded in T. Let \mathcal{G} be a real *z*-ultrafilter on *T*. Since *X* is a dense *C*-embedded in *T* and *T* is a P'-space, \mathcal{G}_X is a real *z*-ultrafilter on *X*. Hence $\cap \{cl_{vX}(G \cap X) \mid G \in \mathcal{G}\} \neq \emptyset$. Pick $p \in \cap \{cl_{vX}(G \cap X) \mid G \in \mathcal{G}\}$. For any $G \in \mathcal{G}$, $f(p) \in G$ and so $\cap \{G \mid G \in \mathcal{G}\} \neq \emptyset$. Hence *T* is a realcompact space and T = vX. Thus $f : vX \longrightarrow vY$ is an embedding and $vX \subseteq vY$.

By Proposition 2.2 and Corollary 3.3, we have the following :

Corollary 3.4. Let X be a non-realcompact space. Then |vX - X| = 1 if and only if for any P'-space Y in which X is embedded, X is C-embedded in Y.

Proposition 3.5. Let X be a non-realcompact P'-space. Then |vX - X| = 1 if and only if for any compactification K of X, X is C^* -embedded in K.

Proof. (\Rightarrow) Let (K, j) be a compactification of X and $vX = X \cup \{p\}$. Suppose that X is not C^* -embedded in K. Then there are disjoint zero-sets A, B in X such that $cl_K(A) \cap cl_K(B) \neq \emptyset$. Pick $k \in cl_K(A) \cap cl_K(B)$. Note that there is a continuous map $f: vX \longrightarrow K$ such that $f \circ v_X = j$.

Suppose that f(p) = k. By Lemma 3.1, $X \cup \{k\}$ is a P'-subspace of K. Since |vX - X| = 1, by Corollary 3.3, X is C^* -embedded in $X \cup \{k\}$ and so $\emptyset = cl_{X \cup \{k\}}(A) \cap cl_{X \cup \{k\}}(B) = cl_K(A) \cap cl_K(B) \cap (X \cup \{k\})$. Hence $k \notin cl_K(A) \cap cl_K(B)$ which is a contradiction. Thus $f(p) \neq k$.

Let $T = X \cup \{f(p), k\}$ and Y = T/R the quotient space, where $R = \{(x, x) \mid x \in X\} \cup \{(f(p), k), (k, f(p)), (f(p), f(p)), (k, k)\}$. Similar to the proof of Corollary 3.3, we have a contradiction. Thus one have the result.

 (\Leftarrow) Let Y be a P'-space in which X is dense embedded. Since $cl_{\beta Y}(X)$ is a compactification of X, X is C*-embedded in $cl_{\beta Y}(X)$. Since $cl_{\beta Y}(X)$ is C*-embedded in βY , X is C*-embedded in βY . Hence X is C*-embedded in Y.

A space X is C^* -embedded in each compactification of X if and only if X is an almost Lindelöf space([7]). Hence we have the following :

Corollary 3.6. Let X be a non-realcompact P'-space. Then |vX - X| = 1 if and only if X is an almost Lindelöf space.

If $|\beta X - X| \le 1$, then X is a pseudo-compact space, that is, vX is a compact space([5]). A space X with a dense weakly Lindelöf subspace is a weakly Lindelöf sapce.

Proposition 3.7. Let X be a P'-space with |vX - X| = 1. Then vX is a Lindelöf sapee.

Proof. Suppose that vX is not a Lindelöf space. Then there is a z-filter \mathcal{F} on vX such that it has the countable intersection property and $\cap \{F \mid F \in \mathcal{F}\} = \emptyset$. Let $vX = X \cup \{p\}$. Then there is a $B \in \mathcal{F}$ such that $p \notin B$ and so there is a zero-set A in X such that $p \in cl_{vX}(A)$ and $A \cap B = \emptyset$. Since |vX - X| = 1, by Corollary 3.6, A or $B \cap X$ is Lindelöf.

Suppose that A is Lindelöf. Let \mathcal{G} be a free real z-ultrafilter on X such that $p \in \cap \{cl_{vX}(G) \mid G \in \mathcal{G}\}$. Then $A \in \mathcal{G}$ and $\mathcal{G}_A = \{Z \cap A \mid Z \in \mathcal{G}\}$ is a z-filter on A with the countable intersection property. Since A is Lindelöf, $\cap \{Z \cap A \mid Z \in \mathcal{G}\} \neq \emptyset$ and hence $\cap \{Z \mid Z \in \mathcal{G}\} \neq \emptyset$. This is a contradiction.

Suppose that $B \cap X$ is Lindelöf. Since X is a P'-space, vX is a P'-space. Since $B = cl_{vX}(B \cap X)$, B is weakly Lindelöf. Since $\cap \{F \mid F \in \mathcal{F}\} = \emptyset$, $\cap \{F \cap B \mid F \in \mathcal{F}\} = \emptyset$ and since B is weakly Lindelöf, there is a sequence (F_n) in \mathcal{F} such that $cl_B(int_B) \cap \{F_n \cap B \mid F \in \mathcal{F}\}$

 $n \in N$)) = \emptyset . Since $cl_B(int_{vX}((\cap \{F_n \mid n \in N\}) \cap B)) \subseteq cl_B(int_B(\cap \{F_n \cap B \mid n \in N\}))$, $cl_{vX}(int_{vX}((\cap \{F_n \mid n \in N\}) \cap B)) = \emptyset$. Since vX is a P'-space and $(\cap \{F_n \mid n \in N\}) \cap B$ is a zero-set vX, $(\cap \{F_n \mid n \in N\}) \cap B = \emptyset$. Since \mathcal{F} has the countable intersection property, it is a contradiction.

We give an example of a non-real compact P'-space X with |vX - X| = 1.

Example 3.8. Let W be the space of all countable ordinals and $W^* = W \cup \{w_1\}$ the one-point compactification of W([5]), where w_1 is the first uncountable ordinal. Let D be a discrete space of cardinality \aleph_1 and $p \notin D$. Let $S = D \cup \{p\}$, topologized as follows: Each point of D is isolated and a subset G of S that contains p is open in S if and only if $|S - G| \leq \aleph_0$. Let $K = W^* \times S - \{(w_1, p)\}$ and $K^* = W^* \times S$. Then clearly, K^* is a Lindelöf space.

Take any $f \in C(K)$. Note that the subspace $A = \{m \mid m \text{ is a finite ordina}\} \cup \{w_0\}$ of W^* is homeomorphic to \mathbb{N}^* , where w_0 is the fist countable ordinal and \mathbb{N}^* is the onepoint compactification of the discrete space \mathbb{N} . Hence there is a subset U of S such that $\mid S - U \mid \leq \aleph_0$ and for any $m \in A$, f is constant on $\{m\} \times U([6])$. For any $s \in U$, the sequence $\{(m, s)\}$ converges to (w_1, s) in K^* and $\{f((m, s))\}$ is convergent to $f((w_1, s))$ in \mathbb{R} with the usual topology. For any $s, t \in U$ and any $m \in A$, f((m, s)) = f((m, t)) and hence $f((w_1, s)) = f((w_1, t))$. Define a map $h : K^* \longrightarrow \mathbb{R}$ by h(x) = f(x) if $x \in K$ and $h((w_1, p)) = f((w_1, \alpha))$ for some $\alpha \in U$. Then h is a continuous extension of f to K^* . Hence $vK = K^*$.

Now, we will show that vK is a P'-space. Take any non-empty zero-set Z = Z(g) in vK and $(x, y) \in Z$. Then there is a finite ordinal n such that g is constant on $\{\alpha \mid n \leq \alpha\} \times \{y\}([5]).$

<u>Case.1</u> $x \le n$:

If $p \neq y$, then $\{(x, y)\}$ is open in vK and $int_{vK}(Z) \neq \emptyset$. Suppose that p = y. Then there is a subset G of S such that $p \in G$, $|S - G| \leq \aleph_0$, and for any $m \in A$, g is constant on $\{m\} \times G$ and so $\{x\} \times G \subseteq Z$. Since $\{x\} \times G$ is open vK, $int_{vK}(Z) \neq \emptyset$. Case.2 x > n:

If $p \neq y$, then $\{\alpha \mid n \leq \alpha\} \times \{y\}$ is open in vK, $\{\alpha \mid n \leq \alpha\} \times \{y\} \subseteq Z(g)$, and so $int_{vK}(Z) \neq \emptyset$. Suppose that p = y. Then there is a subset V of S such that $p \in V$, $|S - V| \leq \aleph_0$, and for any $m \in A$, g is constant on $\{m\} \times V$. If x is not a limit ordinal, then $\{x\} \times V \subseteq int_{vK}(Z)$ and hence $int_{vK}(Z) \neq \emptyset$. Suppose that x is a limit ordinal. Then $w_0 \leq x$ and

$$\{\alpha \mid n \leq \alpha\} \times \{p\} \subseteq Z(g), \ \{(m,s) \mid s \in V \text{ and } n \leq m < w_0\} \subseteq Z(g),$$

By the property of W^* , $\{(\alpha, s) \mid s \in V \text{ and } n \leq \alpha\} \subseteq Z(g)$ and so $int_{vK}(Z) \neq \emptyset$. Thus vK is a P'-space.

AUTHOR CONTRIBUTIONS

All authors contributed equally to the writing of this paper.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

ACKNOWLEDGEMENTS

We appreciate the reviewers' valuable comments on our article. All of the reviewers' comments are helpful for us to improve our manuscript.

References

- E. Hewitt, A note on extensions of continuous functions, An. Acad. Brasil. Ci. 21 (1949) 175–179.
- [2] C.E. Aull, Absolute C^* -embedding of P-spaces, Bull. Acad. Pol. Soc. 26 (6-9) (1978) 831–836.
- [3] A. Dow, O. Förster, Absolute C*-embedding of F-spaces, Pacific J. Math. 98 (1) (1982) 63–71.
- [4] A.I. Veksler, P'-points, P'-sets, P'-spaces: A new class of order-continuous measure and functionals, Sov. Math. Dokl. 14 (5) (1973) 1445–1450.
- [5] L. Gillman, M. Jerison, Rings of Continuous Functions, Princeton: Van Nostrand, 1960.
- [6] J.R. Porter, R.G. Woods, Extensions and Absolutes of Hausdorff Spaces, Springer, Berlin, 1988.
- [7] R.L. Blair, Spaces in which special sets are Z-embedded, Canad. J. Math. 28 (4) (1976) 673–690.