Thai Journal of **Math**ematics Volume 21 Number 1 (2023) Pages 101–110

http://thaijmath.in.cmu.ac.th

Common Fixed Point Theorems for Generalized Rational F_R -Contractive Pairs of Mappings

Mahmoud Bousselsal and Mostefa Debba*

Department of Mathematics, ENS-Kouba, Algiers, Algeria e-mail: bousselsal55@gmail.com (M. Bousselsal); debbamos60@gmail.com (M. Debba)

Abstract In this paper, we prove some common fixed point theorems for a pair of mappings satisfying a condition of $F_{\mathcal{R}}$ -contraction type on a complete metric space endowed with a binary relation, and we will give examples to support our result.

MSC: 47H10; 54H25

Keywords: common fixed point; binary relation; generalized rational $F_{\mathcal{R}}$ -contraction

Submission date: 03.11.2021 / Acceptance date: 29.05.2022

1. Introduction

In [1], D. Wardowski introduced a new type of contraction; called F-contractions that generalize the famous Banach contraction principle and prove a fixed point theorem. Later, many authors give fixed point theorems for maps satisfying such contraction type. In [2], K. Sawangsup and al. introduced the notion of $F_{\mathcal{R}}$ -contraction where \mathcal{R} is a binary relation on a complete metric space and established some fixed point results. Recently M.B. Zada and al. [3], modified the definition of $F_{\mathcal{R}}$ -contraction introduced by Sawangsup for two maps, namely rational $F_{\mathcal{R}}$ -contractive pairs of mappings and prove a common fixed point theorem for such pairs of maps.

In this work, inspired by M.B. Zada and al. [3], we prove some common fixed point theorems for a pair of mappings satisfying a condition of rational $F_{\mathcal{R}}$ -contraction type and we give examples to support our results.

Preliminaries

Throughout this paper, \mathbb{R}_+ denotes the set of nonnegative real numbers and \mathbb{R}_+^* the set of positive real numbers.

We start with some definitions and properties that we need in our results.

Definition 1.1. ([1]) we call \mathcal{F} the following set,

$$\mathcal{F} = \{F : [0, +\infty[\rightarrow \mathbb{R} \text{ satisfying } (F_1), (F_2), (F_3)] \}$$

^{*}Corresponding author.

where

- (F_1) F is strictly increasing i.e. $\forall s; t \in \mathbb{R}_+$ with s < t, we have F(s) < F(t).
- (F_2) for each sequence $(s_n)_n \subset \mathbb{R}_+^*$: $\lim_{n \to +\infty} s_n = 0 \iff F(s_n) \xrightarrow{n \to +\infty} -\infty$. (F_3) There exists $\mu \in]0,1[$ such that: $\lim_{n \to +\infty} s^{\mu}F(s) = 0$.

Example 1.2. ([2]) examples of functions belonging to \mathcal{F} .

$$F_1(s) = lns, \quad s > 0.$$

$$F_1(s) = lns, \quad s > 0.$$

 $F_2(s) = -\frac{1}{\sqrt{s}}, \quad s > 0.$

Definition 1.3. ([1]) Let (E,d) be a metric space. A mapping $T: E \to E$ is said to be an F-contraction if there exists $\tau > 0$ and $F \in \mathcal{F}$ such that

$$\forall x, y \in E: d(Tx, Ty) > 0 \Longrightarrow \tau + F(d(Tx, Ty)) \le F(d(x, y)).$$

Definition 1.4. ([4]) Given a mapping $T: E \to E$, a binary relation \mathcal{R} defined on E is called T-closed if

$$\forall x, y \in E : (x, y) \in \mathcal{R} \Longrightarrow (Tx, Ty) \in \mathcal{R}.$$

Remark 1.5. The previous property is equivalent to say that T is nondecreasing

$$(x\mathcal{R}y \Longrightarrow Tx\mathcal{R}Ty).$$

Definition 1.6. ([5]) Let $x_1, x_2 \in E$ and \mathcal{R} be a binary relation on a nonempty set E. A path (of length $n \in \mathbb{N}$) in \mathcal{R} from x_1 to x_2 is a sequence $\{t_0, t_1, t_2, \cdots, t_n\} \subset E$ such that:

$$t_0 = x_0, \dots, t_n = x_2, \quad (t_j, t_{j+1}) \in \mathcal{R}, \quad \forall j = 0, 1, \dots, n-1.$$

 $\Gamma(x_1, x_2, \mathcal{R})$ represents the class of all paths from x_1 to x_2 in \mathcal{R} .

Remark 1.7. t_j are not necessarily distinct.

Definition 1.8. ([6]) A metric space (E, d) equipped with a binary relation \mathcal{R} is \mathcal{R} -nondecreasing-regular if for all sequences $(x_n)_n$; we have :

$$((x_n, x_{n+1}) \in \mathcal{R}, \ \forall n \in \mathbb{N} \ and \ x_n \to x) \Longrightarrow (x_n, x) \in \mathcal{R}, \forall n \in \mathbb{N}.$$

Definition 1.9. ([2]) Let (E,d) be a metric space, \mathcal{R} a binary relation on E and let $T: E \to E$ be a mapping. Let $\mathcal{W} = \{(x, y) \in \mathcal{R}: d(Tx, Ty) > 0\}.$

T is said to be an $F_{\mathcal{R}}$ -contraction if there exists $\delta > 0, F \in \mathcal{F}$ such that:

$$\forall (x, y) \in \mathcal{W}: \quad \delta + F(d(Tx, Ty)) < F(d(x, y)).$$

M.B. Zada and al. [3] modified the definition 1.4 ([4]) for two maps as follows.

Definition 1.10. Let $E \neq \emptyset$. Let T, S be two self mappings on E and \mathcal{R} a binary relation on E. Then, \mathcal{R} is (T,S)-closed if for all $x,y \in E$:

$$(x,y) \in \mathcal{R} \Longrightarrow (Tx,Sy) \in \mathcal{R}, (Sx,Ty) \in \mathcal{R}.$$

And they introduced the concept of rational $F_{\mathcal{R}}$ —contractive pair of mappings.

Definition 1.11. Let (E,d) be a metric space and T,S be self-mappings on E and let \mathcal{R} be a binary relation on E. Put

$$\mathcal{X} = \{(x, y) \in \mathcal{R}: \quad d(Tx, Sy) > 0\}.$$

We say that (T, S) is a rational $F_{\mathcal{R}}$ -contractive pair of mappings if there exist $\delta > 0$ and $F \in \mathcal{F}$ such that:

$$\delta + F(d(Tx, Ty)) \le F\left(d(x, y) + \frac{d(y, Tx) \cdot d(x, Sy)}{1 + d(x, y)}\right), \text{ for all } (x, y) \in \mathcal{X}.$$

Denote by $E((T,S),\mathcal{R})$ the set of all order pairs $(x,y) \in E \times E$ such that $(Tx,Sy) \in \mathcal{R}$.

M.B. Zada and al. [3] proved the following theorem:

Theorem 1.12. ((3.3) in [3]): Let (E, d) be a complete metric space; \mathcal{R} be a binary relation on E and $T, S : E \to E$, two mappings. Suppose that the following conditions hold:

- (C_1) $E((T,S),\mathcal{R})$ is nonempty.
- (C_2) \mathcal{R} is (T,S)-closed.
- (C_3) T and S are continuous.
- (C_4) The pair (T,S) is rational $F_{\mathcal{R}}$ -contractive.

Then there is a common fixed point of T and S.

Our goal in this work is to introduce a new type of rational $F_{\mathcal{R}}$ -contraction for a pair of mappings and we prove fixed point results.

Definition 1.13. Let (E,d) be a metric space and $T,S:E\to E$ two mappings and let \mathcal{R} be a binary relation on E. We say that (T,S) is a generalized rational $F_{\mathcal{R}}$ - contractive pair of mappings if there exist $\delta > 0$ and $F \in \mathcal{F}$ such that: $\forall (x,y) \in \mathcal{X}$

$$\delta + F(d(Tx, Sy)) \le F(\max\{d(x, y) + \frac{d(y, Tx) \cdot d(x, Sy)}{1 + d(x, y)}; \alpha d(x, Tx); \beta d(y, Sy)\})$$
(1.1)

where $\alpha, \beta \in [0, 1]$.

Let remember that $\mathcal{X} = \{(x, y) \in \mathcal{R}, d(Tx, Sy) > 0\}$ and $E((T, S), \mathcal{R}) = \{(x, y) \in E^2 : (Tx, Sy) \in \mathcal{R}\}.$

2. Main Results

Now we present our main result.

Theorem 2.1. Let (E,d) be a complete metric space; \mathcal{R} a binary relation on E and $T,S:E\to E$ two mappings. Suppose that the following conditions hold:

- (1) $E((T,S),\mathcal{R})$ is non empty.
- (2) \mathcal{R} is (T,S)-closed.
- (3) T and S are continuous.
- (4) The pair (T, S) is generalized rational $F_{\mathcal{R}}$ -contractive in the sense of (1.1).

Then T and S have a common fixed point.

Proof. by (1): Let $(a,b) \in E((T,S),\mathcal{R})$, then $(Ta,Sb) \in \mathcal{R}$. Put $x_1 = Ta, x_2 = Sb$ and define $(x_n)_{n \in \mathbb{N}}$ by

$$\begin{cases} x_{2n+1} = Tx_{2n}, & n \ge 1 \\ x_{2n+2} = Sx_{2n+1} \end{cases}$$

if $x_{2N} = x_{2N+1}$ for some $N \in \mathbb{N}^*$, then we have necessarily $d(Tx_{2N}, Sx_{2N+1}) = 0$, otherwise $d(Tx_{2N}, Sx_{2N+1}) > 0$ which implies $(x_{2N}, x_{2N+1}) \in \mathcal{X}$. So, by (1.1)

$$\delta + F(d(Tx_{2N}, Sx_{2N+1})) \leq F[\max\{d(x_{2N}, x_{2N+1}) + \frac{d(x_{2N+1}, Tx_{2N}) \cdot d(x_{2N}, Sx_{2N+1})}{1 + d(x_{2N}, x_{2N+1})};$$

$$\alpha d(x_{2N}, Tx_{2N}); \beta d(x_{2N+1}, Sx_{2N+1})\}]$$

$$\delta + F(d(x_{2N+1}, x_{2N+2})) \leq F[\max\{0; 0; 0; \beta d(x_{2N+1}, x_{2N+2})\}]$$

$$\delta + F(d(x_{2N+1}, x_{2N+2})) \leq F(\beta d(x_{2N+1}, x_{2N+2})).$$

Since F is strictly increasing and $\beta \leq 1$, we get:

$$\delta + F(d(x_{2N+1}, x_{2N+2})) \le F(d(x_{2N+1}, x_{2N+2}))$$

which implies $\delta \leq 0$, that is a contradiction.

Hence $d(Tx_{2N}, Sx_{2N+1}) = 0$ and so : $Tx_{2N} = Sx_{2N+1}$,

finally: $x_{2N} = x_{2N+1} = Tx_{2N} = Sx_{2N+1}$ and x_{2N} is a fixed point of T, x_{2N+1} is a fixed point of S. Then $x_{2N} = x_{2N+1}$ is a common fixed point of T and S.

That is we can assume $x_{2n} \neq x_{2n+1}, \forall n \in \mathbb{N}^*$ and so $d(Tx_{2n}, Sx_{2n+1}) > 0$. Using assumption (2) we have:

$$(x_1, x_2) = (Ta, Sb) \in \mathcal{R}$$

 $(x_2, x_3) = (Sx_1, Tx_2) \in \mathcal{R}$
 $(x_3, x_4) = (Tx_2, Sx_3) \in \mathcal{R}$
:

by induction $(x_{2n}, x_{2n+1}) = (Sx_{2n-1}, Tx_{2n}) \in \mathcal{R}$ thus $(x_{2n}, x_{2n+1}) \in \mathcal{X}, \forall n \in \mathbb{N}$. Put $x = x_{2n}, y = x_{2n-1}$ in (1.1) we obtain:

$$F(d(x_{2n}, x_{2n+1})) = F(d(x_{2n+1}, x_{2n})) = F(d(Tx_{2n}, Sx_{2n-1}))$$

$$\leq F[\max\{d(x_{2n}, x_{2n-1}) + \frac{d(x_{2n-1}, Tx_{2n})d(x_{2n}, Sx_{2n-1})}{1 + d(x_{2n}, x_{2n-1})}; \alpha d(x_{2n}, Tx_{2n}); \beta d(x_{2n-1}, Sx_{2n-1})\}] - \delta$$

$$\leq F[\max\{d(x_{2n}, x_{2n-1}); \alpha d(x_{2n}, x_{2n+1})\}] - \delta$$

If $\max\{d(x_{2n}, x_{2n-1}); \alpha d(x_{2n}, x_{2n+1})\} = \alpha d(x_{2n}, x_{2n+1})$, we get

$$F(d(x_{2n}, x_{2n+1})) \le F(\alpha d(x_{2n}, x_{2n+1})) - \delta \le F(d(x_{2n}, x_{2n+1})) - \delta$$

which is a contradiction (since $\delta > 0$). So

$$F(d(x_{2n}, x_{2n+1})) \le F(d(x_{2n}, x_{2n-1})) - \delta, \quad \forall n \ge 1.$$
(2.1)

Similarly, setting $x = x_{2n}, y = x_{2n+1}$ in (1.1), we obtain

$$F(d(x_{2n+1}, x_{2n+2})) = F(d(Tx_{2n}, Sx_{2n+1}))$$

$$\leq F[\max\{d(x_{2n}, x_{2n+1}) + \frac{d(x_{2n+1}, Tx_{2n})d(x_{2n}, Sx_{2n+1})}{1 + d(x_{2n}, x_{2n+1})};$$

$$\alpha d(x_{2n}, Tx_{2n}); \beta d(x_{2n+1}, Sx_{2n+1})\}] - \delta$$

$$\leq F[\max\{d(x_{2n}, x_{2n+1}); \beta d(x_{2n+1}, x_{2n+2})\}] - \delta$$

If $\max\{d(x_{2n}, x_{2n+1}); \beta d(x_{2n+1}, x_{2n+2})\} = \beta d(x_{2n+1}, x_{2n+2})$, we have

$$F(d(x_{2n+1}, x_{2n+2})) \le F(\beta d(x_{2n+1}, x_{2n+2})) - \delta \le F(d(x_{2n+1}, x_{2n+2})) - \delta$$

(2.5)

which is a contradiction. Hence

$$F(d(x_{2n+1}, x_{2n+2})) \le F(d(x_{2n}, x_{2n+1})) - \delta, \tag{2.2}$$

with (2.1) and (2.2) we deduce that

$$F(d(x_n, x_{n+1})) \le F(d(x_{n-1}, x_n)) - \delta, \quad \forall n \ge 1.$$
 (2.3)

Using (2.3), we obtain

$$F(d(x_{n}, x_{n+1})) \leq F(d(x_{n-1}, x_{n})) - \delta$$

$$\leq F(d(x_{n-2}, x_{n-1})) - 2\delta$$

$$\leq F(d(x_{n-3}, x_{n-2})) - 3\delta$$

$$\vdots \leq F(d(x_{1}, x_{2})) - (n-1)\delta$$
(2.4)

Thus $\lim_{n\to+\infty} F(d(x_n,x_{n+1})) = -\infty$, by condition (F_2) in definition of \mathcal{F} , we get

$$\lim_{n \to +\infty} d(x_n, x_{n+1}) = 0. \tag{2.6}$$

From condition (F_3) in definition of \mathcal{F} , we can find $\mu \in]0,1[$ such that

$$\lim_{n \to +\infty} (d(x_n, x_{n+1}))^{\mu} F(d(x_n, x_{n+1})) = 0.$$
(2.7)

Using (2.4), we have

$$(d(x_n, x_{n+1})^{\mu} [F(d(x_n, x_{n+1})) - F(d(x_1, x_2))] \le -(n-1)\delta(d(x_n, x_{n+1})^{\mu})$$
 (2.8)

take $n \to +\infty$ in (2.8) and using (2.6),(2.7)

$$(d(x_n, x_{n+1})^{\mu} [F(d(x_n, x_{n+1})) - F(d(x_1, x_2))] \le -(n-1)\delta(d(x_n, x_{n+1})^{\mu})$$

 $n \to +\infty$, we get $\lim_{n \to +\infty} (n-1)(d(x_n, x_{n+1})^{\mu} = 0$ which implies, that there exists $n_0 \in \mathbb{N}$ such that $\forall n \geq n_0 : (n-1)(d(x_n, x_{n+1}))^{\mu} \leq 1$ thus

$$d(x_n, x_{n+1}) \le \frac{1}{(n-1)^{\frac{1}{\mu}}}, \quad \forall n \ge n_0 > 1$$

Now, we show that $(x_n)_{n\in\mathbb{N}}$ is a Cauchy sequence. Let $n, m \in \mathbb{N}, m > n \geq n_0$

$$d(x_n, x_m) \leq d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{m-1}, x_m) = \sum_{k=n}^{m-1} d(x_k, x_{k+1})$$

$$\leq \sum_{k=n}^{m-1} \frac{1}{(k-1)^{\frac{1}{\mu}}} = \sum_{k=n-1}^{m-2} \frac{1}{(k')^{\frac{1}{\mu}}} < \sum_{k=n-1}^{\infty} \frac{1}{(k')^{\frac{1}{\mu}}}.$$

Since $\sum_{k=n-1}^{\infty} \frac{1}{(k')^{\frac{1}{\mu}}}$ is the remainder of the convergent series $\sum_{k\geq 1} \frac{1}{(k')^{\frac{1}{\mu}}}$, we obtain

$$R_{n-1} = \sum_{k=n-1}^{\infty} \frac{1}{(k')^{\frac{1}{\mu}}} \xrightarrow{n \to +\infty} 0$$
 that is $d(x_n, x_m) \xrightarrow[(m \to +\infty)]{n \to +\infty} 0$. And hence $(x_n)_{n \in \mathbb{N}}$ is

a Cauchy sequence in (E,d). Since E is complete, there exists $u \in E$ such that:

.

$$x_n \xrightarrow{n \to +\infty} u$$
.

Next we show that T(u) = S(u) = u.

Since T and S are continuous and $x_{2n} \xrightarrow{n \to +\infty} u$, $x_{2n-1} \xrightarrow{n \to +\infty} u$.

$$x_{2n+1} = Tx_{2n} \to Tu,$$

$$x_{2n} = Sx_{2n-1} \to Su.$$

So we obtain Tu = Su = u and hence u is a common fixed point of T and S.

Example 2.2. Let $E = \{1, 2, 3\}$ with the usual metric d(x, y) = |x - y|, and let $T, S : E \to E$ the mappings defined by

$$T1 = 1, T2 = T3 = 2$$

 $S1 = S2 = S3 = 1$

and \mathcal{R} the binary relation on E:

$$\mathcal{R} = \{(1,1); (1,2); (1,3); (2,1)\}$$

we have:

- (E, d) is a complete metric space $(E \text{ is closed in the usual complete metric space } \mathbb{R}).$
- $((T, S), \mathcal{R})$ is nonempty $((1, 1) \in E((T, S), \mathcal{R}))$.
- \mathcal{R} is (T,S)-closed. Indeed:

$$(1,1) \in \mathcal{R} \implies (T1,S1) = (1,1) \in \mathcal{R}, (S1,T1) = (1,1) \in \mathcal{R}$$

 $(1,2) \in \mathcal{R} \implies (T1,S2) = (1,1) \in \mathcal{R}, (S1,T2) = (1,2) \in \mathcal{R}$
 $(1,3) \in \mathcal{R} \implies (T1,S3) = (1,1) \in \mathcal{R}, (S1,T3) = (1,2) \in \mathcal{R}$
 $(2,1) \in \mathcal{R} \implies (T2,S1) = (2,1) \in \mathcal{R}, (S2,T1) = (1,1) \in \mathcal{R}$

- T and S are continuous on E (Endowed with the induced topology).
- $\mathcal{X} = \{(2,1)\}.$
- The pair (T, S) is generalized rational $F_{\mathcal{R}}$ –contractive in the sense of (1, 1). Indeed:

$$- \mathcal{X} = \{(2,1)\}$$
$$- (x,y) \in \mathcal{X} \iff (x,y) = (2,1)$$
$$-$$

$$\begin{array}{lcl} \delta + F(d(Tx,Sy)) & \leq & F(\max\{d(x,y) + \frac{d(x,Sy).d(y,Tx)}{1+d(x,y)};\alpha d(x,Tx);\beta d(y,Sy)\}) \\ \delta + F(d(T2,S1)) & \leq & F(\max\{d(2,1) + \frac{d(2,S1).d(1,T2)}{1+d(2,1)};\alpha d(2,T2);\beta d(1,S1)\}) \\ \delta + F(1) & \leq & F(\max\{1 + \frac{1}{2};0;0\}) \\ \delta + F(1) & \leq & F(\frac{3}{2}), \quad F \in \mathbb{F}, \end{array}$$

we choose:
$$F(t) = \ln(t)$$
 we get $\delta + \ln(1) \le \ln(\frac{3}{2})$.
That is $\exists \delta > 0 : \delta = \frac{1}{2}\ln(\frac{3}{2})$ such that (1.1) is satisfied.
Hence T and S have a common fixed point u (here $u = 1$).

Now we give a result that ensures the uniqueness of the common fixed point found in the previous theorem.

Theorem 2.3. Let (E, d) be a complete metric space, and \mathcal{R} be a transitive binary relation on E. Assume that $T, S : E \to E$ are two mappings such that:

$$(U_1) \ \forall (x,y) \in \mathcal{X}, \exists \delta > 0, \exists F \in \mathcal{F} \ such \ that$$

$$\delta + F(d(Tx, Sy)) \le F(\lambda \max\{d(x, y) + \frac{d(y, Tx) \cdot d(x, Sy)}{1 + d(x, y)}; \alpha d(x, Tx); \beta d(y, Sy)\})$$

$$(2.9)$$

where $\alpha; \beta \in [0,1]$ and $\lambda \in]0,\frac{1}{2}]$.

 (U_2) $E((T,S),\mathcal{R}),\Gamma(x,y,\mathcal{R})$ are non empty, $\forall x,y\in\mathcal{X}$.

 (U_3) \mathcal{R} is (T,S)-closed.

 (U_4) T and S are continuous.

Then T and S have a unique common fixed point.

Proof. Following the same steps as in the proof of Theorem 2.1, we can easily prove that T and S have a common fixed point, thus we have to show that this common fixed point is unique.

Assume that u and v are two distinct common fixed point of T and S.

$$Tu = Su = u$$
, $Tv = Sv = v$, $d(u, v) > 0$.

Let $\{w_0, w_1, \dots, w_p\}$ a path from u and v

$$w_0 = u, w_p = v, \quad (w_j, w_{j+1}) \in \mathcal{R}; \quad j = 0, 1, \dots, p - 1.$$

Since \mathcal{R} is transitive

$$(u, w_1), (w_1, w_2), \cdots, (w_{p-1}, v) \in \mathcal{R} \Rightarrow (u, v) \in \mathcal{R}.$$

Put in contraction condition (U_1) : x = u, y = v we get

$$\delta + F(d(Tu, Sv)) \le F(\lambda \max\{d(u, v) + \frac{d(v, Tu) \cdot d(u, Sv)}{1 + d(u, v)}; \alpha d(u, Tu); \beta d(v, Sv)\})$$

so

$$\delta + F(d(u,v)) \le F(\max\{\lambda d(u,v) + \lambda \frac{(d(u,v))^2}{1 + d(u,v)}; 0; 0)\}).$$

Since
$$\frac{\lambda(d(u,v))^2}{1+d(u,v)} < \lambda d(u,v)$$
, we obtain $\delta + F(d(u,v)) < F(\max\{\lambda d(u,v) + \lambda d(u,v)\})$

and hence : $\delta + F(d(u, v)) \leq F(2\lambda d(u, v))$. Since F is strictly increasing, we get

$$\delta + F(d(u, v)) \le F(d(u, v))$$

which is a contradiction and hence u = v, then the common fixed point is unique.

Example 2.4. Let E = [0,1] equipped with d(x,y) = |x-y| and $T,S: E \to E$ defined by

$$Tx = \frac{x}{2}, \quad Sx = \frac{x}{4}.$$

And let \mathcal{R} the binary relation defined on E by $\mathcal{R} = \{(0, \frac{1}{n}), n \geq 1)\}$. Remark that \mathcal{R} is transitive. We claim that (T, S) satisfies Theorem 2.3. Indeed:

- (E,d) is complete.
- $E((T,S),\mathcal{R})$ is nonempty $((0,\frac{1}{2}) \in E((T,S),\mathcal{R})$ for example).
- \mathcal{R} is (T,S)-closed.

$$(0, \frac{1}{n}) \in \mathcal{R} \implies (T0, S\frac{1}{n}) = (0, \frac{1}{4n}) = (0, \frac{1}{n'}) \in \mathcal{R};$$

$$(S0, T\frac{1}{n}) = (0, \frac{1}{2n}) = (0, \frac{1}{n''}) \in \mathcal{R}$$

- T and S are continuous on E.
- The pair (T, S) is generalized rational $F_{\mathcal{R}}$ —contractive in the sense of (1.10) — $\mathcal{X} = \mathcal{R} = \{(0, \frac{1}{n}), n \geq 1\}$

$$\begin{split} (x,y) &\in \mathcal{X} \Longleftrightarrow (x,y) &= (0,\frac{1}{n}), \quad n \geq 1 \\ d(Tx,Sy) &= d(0,\frac{1}{4n}) = \frac{1}{4n} > 0 \\ M_{(x,y)} &= \max\{d(x,y) + \frac{d(x,Sy).d(y,Tx)}{1+d(x,y)}; \alpha d(x,Tx); \beta d(y,Sy)\} \\ &= \max\{\frac{1}{n} + \frac{\frac{1}{4n} \cdot \frac{1}{n}}{1+\frac{1}{n}}; \alpha.0; \beta \frac{3}{4n}\} \\ &= \frac{1}{n} + \frac{1}{4n(n+1)}. \end{split}$$

Let
$$F(t) = \ln(t) \in \mathbb{F}$$
, we can choose $\delta > 0$ and $\lambda = \frac{1}{2}$ such that

$$\begin{split} \delta + F(\frac{1}{4n}) & \leq & F(\frac{1}{2}.(\frac{1}{n} + \frac{1}{4n(n+1)})) \\ & \leq & F(\frac{4n+5}{8n(n+1)}) - F(\frac{1}{4n}) = \ln(\frac{4(n+1)+1}{8n(n+1)}) - \ln(\frac{1}{4n}) \\ & \leq & \ln(4n+5) - \ln(8n(n+1)) - \ln(\frac{1}{4n}) \\ & \leq & \ln(4n+5) - \ln(8n) - \ln(n+1) + \ln(4n) \\ & \leq & \ln(4n+5) - \ln(2) - \ln(4n) - \ln(n+1) + \ln(4n) \\ & \leq & \ln(4+\frac{1}{n+1}) - \ln(2) \end{split}$$

since
$$\ln(4+\frac{1}{n+1}) - \ln(2) \ge \ln(4) - \ln(2) = \ln(2) > \frac{1}{2}\ln(2)$$
 then we can choose $\delta = \frac{1}{2}\ln(2)$ such that (1.10) is satisfied.

Hence T and S have a unique common fixed point in E (here u = 0 is the fixed point required).

Remark 2.5. Note that the results existing in the literature are not applicable in Examples 2.2 and 2.4.

Remark 2.6. If we take $\alpha = \beta = 0$ in Theorem 2.1, we obtain Theorem 3.3 in [3] and if we consider $\alpha = \beta = 0, \lambda = \frac{1}{2}$ in Theorem 2.3, we get Theorem 3.4 in [3].

Now we get some corollaries: Put T = S in Theorem 2.1, we get

Corollary 2.7. Let (E,d) be a complete metric space; \mathcal{R} a binary relation on E and $T: E \to E$ be a mapping. Assume that

(1) $\forall (x,y) \in \mathcal{X}, \exists F \in \mathcal{F} \text{ such that }$

$$\delta + F(d(Tx, Ty)) \le F(\max\{d(x, y) + \frac{d(y, Tx) \cdot d(x, Ty)}{1 + d(x, y)}; \alpha d(x, Tx); \beta d(y, Ty)\})$$

where $\delta > 0$.

- (2) $E(T, \mathcal{R})$ is nonempty.
- (3) \mathcal{R} is T-closed.
- (4) T is continuous.

Then T has a fixed point.

And if we take T = S in Theorem 2.3, we obtain

Corollary 2.8. Let (E,d) be a complete metric space; \mathcal{R} a transitive binary relation on E and $T: E \to E$ be a mapping. Assume that

$$(U_1') \ \forall (x,y) \in \mathcal{X}, \exists \delta > 0, \exists F \in \mathcal{F} \ such \ that$$

$$\delta + F(d(Tx, Ty)) \le F(\lambda \max\{d(x, y); \frac{d(y, Tx) \cdot d(x, Ty)}{1 + d(x, y)}; d(x, Tx); d(y, Ty)\}).$$

- (U_2') $E(T, \mathcal{R}), \Gamma(x, y, \mathcal{R})$ are non empty, $\forall (x, y) \in \mathcal{X}$.
- (U_3') \mathcal{R} is T-closed.
- (U_4') T is continuous.

Then T has a unique fixed point in E.

ACKNOWLEDGEMENTS

We are grateful to the anonymous referee for his suggestions and precise remarks, which greatly improved the presentation of the paper.

FUNDING

This research received no external funding.

References

- [1] D. Wardowski, Fixed points for a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012 (2012) Article no. 94.
- [2] K. Sawangsup, W. Sintunavarat, A.F. Roldan Lopez de Hierro, Fixed point theorems for $F_{\mathcal{R}}$ -contractions with applications to solution of nonlinear matrix equations, J. Fixed Point Theory Appl. 19 (2017) 1711–1725.
- [3] M.B. Zada, M. Sarwar, Common fixed point theorems for rational $F_{\mathcal{R}}$ -contractive pairs of mappings with applications, J. Inequal. Appl. 2019 (2019) Article no. 11.
- [4] A. Alam, M. Imdad, Relation-theoretic contraction principle, J. Fixed Point Theory Appl. 17 (2015) 693–702.
- [5] B. Kolman, R.C. Busby, S. Ross, Discrete Mathematical Structures (3rd ed.), PHI Pvt. Ltd., New Delhi, 2000.
- [6] A.F. Roldán-López-de-Hierro, A unified version of Ran and Reuring's theorem and Nieto and Rodríguez-López's theorem and low-dimensional generalizations, Appl. Math. Inf. Sci. 10 (2) (2016) 383–393.