
ISSN 1686-0209

Thai Journal of Mathematics

Volume 21 Number 1 (2023)

Pages 101–110

http://thaijmath.in.cmu.ac.th

Common Fixed Point Theorems for Generalized

Rational FR-Contractive Pairs of Mappings

Mahmoud Bousselsal and Mostefa Debba∗

Department of Mathematics, ENS-Kouba, Algiers, Algeria
e-mail : bousselsal55@gmail.com (M. Bousselsal); debbamos60@gmail.com (M. Debba)

Abstract In this paper, we prove some common fixed point theorems for a pair of mappings satisfying

a condition of FR-contraction type on a complete metric space endowed with a binary relation, and we

will give examples to support our result.

MSC: 47H10; 54H25

Keywords: common fixed point; binary relation; generalized rational FR-contraction

Submission date: 03.11.2021 / Acceptance date: 29.05.2022

1. Introduction

In [1], D. Wardowski introduced a new type of contraction; called F -contractions that
generalize the famous Banach contraction principle and prove a fixed point theorem.
Later, many authors give fixed point theorems for maps satisfying such contraction type.
In [2], K. Sawangsup and al. introduced the notion of FR−contraction where R is a
binary relation on a complete metric space and established some fixed point results.
Recently M.B. Zada and al. [3], modified the definition of FR− contraction introduced by
Sawangsup for two maps, namely rational FR-contractive pairs of mappings and prove a
common fixed point theorem for such pairs of maps.
In this work, inspired by M.B. Zada and al. [3], we prove some common fixed point
theorems for a pair of mappings satisfying a condition of rational FR-contraction type
and we give examples to support our results.

Preliminaries

Throughout this paper, R+ denotes the set of nonnegative real numbers and R∗+ the
set of positive real numbers.
We start with some definitions and properties that we need in our results.

Definition 1.1. ([1]) we call F the following set,

F = {F : [0,+∞[→ R satisfying (F1), (F2), (F3)}
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where

(F1) F is strictly increasing i.e. ∀s; t ∈ R+ with s < t, we have F (s) < F (t).

(F2) for each sequence (sn)n ⊂ R∗+: lim
n→+∞

sn = 0⇐⇒ F (sn)
n→+∞−−−−−→ −∞.

(F3) There exists µ ∈]0, 1[ such that: lim
s→0+

sµF (s) = 0.

Example 1.2. ([2]) examples of functions belonging to F .
F1(s) = lns, s > 0.

F2(s) = − 1√
s
, s > 0.

Definition 1.3. ([1]) Let (E, d) be a metric space. A mapping T : E → E is said to be
an F -contraction if there exists τ > 0 and F ∈ F such that

∀x, y ∈ E : d(Tx, Ty) > 0 =⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)).

Definition 1.4. ([4]) Given a mapping T : E → E, a binary relation R defined on E is
called T−closed if

∀x, y ∈ E : (x, y) ∈ R =⇒ (Tx, Ty) ∈ R.

Remark 1.5. The previous property is equivalent to say that T is nondecreasing

(xRy =⇒ TxRTy).

Definition 1.6. ([5]) Let x1, x2 ∈ E and R be a binary relation on a nonempty set E.
A path ( of length n ∈ N) in R from x1 to x2 is a sequence {t0, t1, t2, · · · , tn} ⊂ E such
that:

t0 = x0, · · · , tn = x2, (tj , tj+1) ∈ R, ∀j = 0, 1, · · · , n− 1.

Γ(x1, x2,R) represents the class of all paths from x1 to x2 in R.

Remark 1.7. tj are not necessarily distinct.

Definition 1.8. ([6]) A metric space (E, d) equipped with a binary relation R
is R-nondecreasing-regular if for all sequences (xn)n; we have :

((xn, xn+1) ∈ R, ∀n ∈ N and xn → x) =⇒ (xn, x) ∈ R,∀n ∈ N.

Definition 1.9. ([2]) Let (E, d) be a metric space, R a binary relation on E and let
T : E → E be a mapping. Let W = {(x, y) ∈ R : d(Tx, Ty) > 0}.
T is said to be an FR-contraction if there exists δ > 0, F ∈ F such that:

∀(x, y) ∈ W : δ + F (d(Tx, Ty)) ≤ F (d(x, y)).

M.B. Zada and al. [3] modified the definition 1.4 ([4]) for two maps as follows.

Definition 1.10. Let E 6= ∅. Let T, S be two self mappings on E and R a binary relation
on E. Then, R is (T, S)−closed if for all x, y ∈ E:

(x, y) ∈ R =⇒ (Tx, Sy) ∈ R, (Sx, Ty) ∈ R.

And they introduced the concept of rational FR−contractive pair of mappings.

Definition 1.11. Let (E, d) be a metric space and T, S be self-mappings on E and let
R be a binary relation on E. Put

X = {(x, y) ∈ R : d(Tx, Sy) > 0} .
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We say that (T, S) is a rational FR-contractive pair of mappings if there exist δ > 0 and
F ∈ F such that:

δ + F (d(Tx, Ty)) ≤ F
(
d(x, y) +

d(y, Tx) · d(x, Sy)

1 + d(x, y)

)
, for all (x, y) ∈ X .

Denote by E((T, S),R) the set of all order pairs (x, y) ∈ E × E
such that (Tx, Sy) ∈ R.
M.B. Zada and al. [3] proved the following theorem:

Theorem 1.12. ((3.3) in [3]): Let (E, d) be a complete metric space; R be a binary
relation on E and T, S : E → E. two mappings. Suppose that the following conditions
hold:

(C1) E((T, S),R) is nonempty.
(C2) R is (T, S)−closed.
(C3) T and S are continuous.
(C4) The pair (T, S) is rational FR-contractive.

Then there is a common fixed point of Tand S.

Our goal in this work is to introduce a new type of rational FR-contraction for a pair
of mappings and we prove fixed point results.

Definition 1.13. Let (E, d) be a metric space and T, S : E → E two mappings and let
R be a binary relation on E. We say that (T, S) is a generalized rational FR- contractive
pair of mappings if there exist δ > 0 and F ∈ F such that: ∀(x, y) ∈ X

δ + F (d(Tx, Sy)) ≤ F (max{d(x, y) +
d(y, Tx) · d(x, Sy)

1 + d(x, y)
;αd(x, Tx);βd(y, Sy)})

(1.1)

where α, β ∈ [0, 1].

Let remember that X = {(x, y) ∈ R, d(Tx, Sy) > 0}
and E((T, S),R) = {(x, y) ∈ E2 : (Tx, Sy) ∈ R}.

2. Main Results

Now we present our main result.

Theorem 2.1. Let (E, d) be a complete metric space; R a binary relation on E and
T, S : E → E two mappings. Suppose that the following conditions hold:

(1) E((T, S),R) is non empty.
(2) R is (T, S)−closed.
(3) T and S are continuous.
(4) The pair (T, S) is generalized rational FR-contractive in the sense of (1.1).

Then T and S have a common fixed point.

Proof. by (1): Let (a, b) ∈ E((T, S),R), then (Ta, Sb) ∈ R.
Put x1 = Ta, x2 = Sb and define (xn)n∈N by{

x2n+1 = Tx2n, n ≥ 1
x2n+2 = Sx2n+1
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if x2N = x2N+1 for some N ∈ N∗, then we have necessarily d(Tx2N , Sx2N+1) = 0,
otherwise d(Tx2N , Sx2N+1) > 0 which implies (x2N , x2N+1) ∈ X . So, by (1.1)

δ + F (d(Tx2N , Sx2N+1)) ≤ F [max{d(x2N , x2N+1) +
d(x2N+1, Tx2N ) · d(x2N , Sx2N+1)

1 + d(x2N , x2N+1)
;

αd(x2N , Tx2N );βd(x2N+1, Sx2N+1)}]
δ + F (d(x2N+1, x2N+2)) ≤ F [max{0; 0; 0;βd(x2N+1, x2N+2)}]

δ + F (d(x2N+1, x2N+2)) ≤ F (βd(x2N+1, x2N+2)).

Since F is strictly increasing and β ≤ 1, we get:
δ + F (d(x2N+1, x2N+2)) ≤ F (d(x2N+1, x2N+2))
which implies δ ≤ 0,that is a contradiction.
Hence d(Tx2N , Sx2N+1) = 0 and so : Tx2N = Sx2N+1,
finally: x2N = x2N+1 = Tx2N = Sx2N+1 and x2N is a fixed point of T , x2N+1 is a fixed
point of S. Then x2N = x2N+1 is a common fixed point of T and S.
That is we can assume x2n 6= x2n+1,∀n ∈ N∗ and so d(Tx2n, Sx2n+1) > 0.
Using assumption (2) we have:

(x1, x2) = (Ta, Sb) ∈ R
(x2, x3) = (Sx1, Tx2) ∈ R
(x3, x4) = (Tx2, Sx3) ∈ R

...

by induction (x2n, x2n+1) = (Sx2n−1, Tx2n) ∈ R thus (x2n, x2n+1) ∈ X ,∀n ∈ N.
Put x = x2n, y = x2n−1 in (1.1) we obtain:

F (d(x2n, x2n+1)) = F (d(x2n+1, x2n)) = F (d(Tx2n, Sx2n−1))

≤ F [max{d(x2n, x2n−1) +

+
d(x2n−1, Tx2n)d(x2n, Sx2n−1)

1 + d(x2n, x2n−1)
;αd(x2n, Tx2n);βd(x2n−1, Sx2n−1)}]− δ

≤ F [max{d(x2n, x2n−1);αd(x2n, x2n+1)}]− δ

If max{d(x2n, x2n−1);αd(x2n, x2n+1)} = αd(x2n, x2n+1), we get

F (d(x2n, x2n+1)) ≤ F (αd(x2n, x2n+1))− δ ≤ F (d(x2n, x2n+1))− δ

which is a contradiction (since δ > 0). So

F (d(x2n, x2n+1)) ≤ F (d(x2n, x2n−1))− δ, ∀n ≥ 1. (2.1)

Similary, setting x = x2n, y = x2n+1 in (1.1), we obtain

F (d(x2n+1, x2n+2)) = F (d(Tx2n, Sx2n+1))

≤ F [max{d(x2n, x2n+1) +
d(x2n+1, Tx2n)d(x2n, Sx2n+1)

1 + d(x2n, x2n+1)
;

αd(x2n, Tx2n);βd(x2n+1, Sx2n+1)}]− δ
≤ F [max{d(x2n, x2n+1);βd(x2n+1, x2n+2)}]− δ

If max{d(x2n, x2n+1);βd(x2n+1, x2n+2)} = βd(x2n+1, x2n+2), we have

F (d(x2n+1, x2n+2)) ≤ F (βd(x2n+1, x2n+2))− δ ≤ F (d(x2n+1, x2n+2))− δ



Common Fixed Point Theorems for Generalized Rational ... 105

which is a contradiction. Hence

F (d(x2n+1, x2n+2)) ≤ F (d(x2n, x2n+1))− δ, (2.2)

with (2.1) and (2.2) we deduce that

F (d(xn, xn+1)) ≤ F (d(xn−1, xn))− δ, ∀n ≥ 1. (2.3)

Using (2.3), we obtain

F (d(xn, xn+1)) ≤ F (d(xn−1, xn))− δ
≤ F (d(xn−2, xn−1))− 2δ

≤ F (d(xn−3, xn−2))− 3δ

... ≤ F (d(x1, x2))− (n− 1)δ (2.4)

(2.5)

Thus lim
n→+∞

F (d(xn, xn+1)) = −∞, by condition (F2) in definition of F , we get

lim
n→+∞

d(xn, xn+1) = 0. (2.6)

From condition (F3) in definition of F , we can find µ ∈]0, 1[ such that

lim
n→+∞

(d(xn, xn+1))µF (d(xn, xn+1)) = 0. (2.7)

Using (2.4), we have

(d(xn, xn+1)µ[F (d(xn, xn+1))− F (d(x1, x2))] ≤ −(n− 1)δ(d(xn, xn+1)µ (2.8)

take n→ +∞ in (2.8) and using (2.6),(2.7)

(d(xn, xn+1)µ[F (d(xn, xn+1))− F (d(x1, x2))] ≤ −(n− 1)δ(d(xn, xn+1)µ

n → +∞, we get lim
n→+∞

(n − 1)(d(xn, xn+1)µ = 0 which implies, that there exists n0∈N
such that ∀n ≥ n0 : (n− 1)(d(xn, xn+1))µ ≤ 1 thus

d(xn, xn+1) ≤ 1

(n− 1)
1
µ

, ∀n ≥ n0 > 1

.

Now, we show that (xn)n∈N is a Cauchy sequence. Let n,m ∈ N, m > n ≥ n0

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm) =

m−1∑
k=n

d(xk, xk+1)

≤
m−1∑
k=n

1

(k − 1)
1
µ

=

m−2∑
k=n−1

1

(k′)
1
µ

<

∞∑
k=n−1

1

(k′)
1
µ

.

Since

∞∑
k=n−1

1

(k′)
1
µ

is the remainder of the convergent series
∑
k≥1

1

(k′)
1
µ

, we obtain

Rn−1 =

∞∑
k=n−1

1

(k′)
1
µ

n→+∞−−−−−→ 0 that is d(xn, xm)
n→+∞−−−−−−→

(m→+∞)
0. And hence (xn)n∈N is

a Cauchy sequence in (E, d). Since E is complete, there exists u ∈ E such that:
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xn
n→+∞−−−−−→ u.

Next we show that T (u) = S(u) = u.

Since T and S are continuous and x2n
n→+∞−−−−−→ u, x2n−1

n→+∞−−−−−→ u.

x2n+1 = Tx2n → Tu,

x2n = Sx2n−1 → Su.

So we obtain Tu = Su = u and hence u is a common fixed point of T and S.

Example 2.2. Let E = {1, 2, 3} with the usual metric d(x, y) = |x − y|, and let T, S :
E → E the mappings defined by

T1 = 1, T2 = T3 = 2

S1 = S2 = S3 = 1

and R the binary relation on E :

R = {(1, 1); (1, 2); (1, 3); (2, 1)}
we have:

• (E, d) is a complete metric space (E is closed in the usual complete metric
space R).
• ((T, S),R) is nonempty ((1, 1) ∈ E((T, S),R)).
• R is (T, S)−closed. Indeed:

(1, 1) ∈ R =⇒ (T1, S1) = (1, 1) ∈ R, (S1, T1) = (1, 1) ∈ R
(1, 2) ∈ R =⇒ (T1, S2) = (1, 1) ∈ R, (S1, T2) = (1, 2) ∈ R
(1, 3) ∈ R =⇒ (T1, S3) = (1, 1) ∈ R, (S1, T3) = (1, 2) ∈ R
(2, 1) ∈ R =⇒ (T2, S1) = (2, 1) ∈ R, (S2, T1) = (1, 1) ∈ R

• T and S are continuous on E (Endowed with the induced topology).
• X = {(2, 1)}.
• The pair (T, S) is generalized rational FR−contractive in the sense of (1, 1).
Indeed:

– X = {(2, 1)}

– (x, y) ∈ X ⇐⇒ (x, y) = (2, 1)

–

δ + F (d(Tx, Sy)) ≤ F (max{d(x, y) +
d(x, Sy).d(y, Tx)

1 + d(x, y)
;αd(x, Tx);βd(y, Sy)})

δ + F (d(T2, S1)) ≤ F (max{d(2, 1) +
d(2, S1).d(1, T2)

1 + d(2, 1)
;αd(2, T2);βd(1, S1)})

δ + F (1) ≤ F (max{1 +
1

2
; 0; 0})

δ + F (1) ≤ F (
3

2
), F ∈ F,
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we choose: F (t) = ln(t) we get δ + ln(1) ≤ ln(
3

2
).

That is ∃δ > 0 : δ =
1

2
ln(

3

2
) such that (1.1) is satisfied.

Hence T and S have a common fixed point u (here u = 1).

Now we give a result that ensures the uniqueness of the common fixed point found in
the previous theorem.

Theorem 2.3. Let (E, d) be a complete metric space, and R be a transitive binary relation
on E. Assume that T, S : E → E are two mappings such that:

(U1) ∀(x, y) ∈ X ,∃δ > 0,∃F ∈ F such that

δ + F (d(Tx, Sy)) ≤ F (λmax{d(x, y) +
d(y, Tx) · d(x, Sy)

1 + d(x, y)
;αd(x, Tx);βd(y, Sy)})

(2.9)

where α;β ∈ [0, 1] and λ ∈]0,
1

2
].

(U2) E((T, S),R),Γ(x, y,R) are non empty, ∀x, y ∈ X .
(U3) R is (T, S)-closed.
(U4) T and S are continuous.

Then T and S have a unique common fixed point.

Proof. Following the same steps as in the proof of Theorem 2.1, we can easily prove that
T and S have a common fixed point, thus we have to show that this common fixed point
is unique.
Assume that u and v are two distinct common fixed point of T and S.

Tu = Su = u, Tv = Sv = v, d(u, v) > 0.

Let {w0, w1, · · · , wp} a path from u and v

w0 = u,wp = v, (wj , wj+1) ∈ R; j = 0, 1, · · · , p− 1.

Since R is transitive

(u,w1), (w1, w2), · · · , (wp−1, v) ∈ R ⇒ (u, v) ∈ R.

Put in contraction condition (U1): x = u, y = v we get

δ + F (d(Tu, Sv)) ≤ F (λmax{d(u, v) +
d(v, Tu) · d(u, Sv)

1 + d(u, v)
;αd(u, Tu);βd(v, Sv)})

so

δ + F (d(u, v)) ≤ F (max{λd(u, v) + λ
(d(u, v))2

1 + d(u, v)
; 0; 0)}).

Since
λ(d(u, v))2

1 + d(u, v)
< λd(u, v), we obtain

δ + F (d(u, v)) ≤ F (max{λd(u, v) + λd(u, v)})
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and hence : δ + F (d(u, v)) ≤ F (2λd(u, v)).
Since F is strictly increasing, we get

δ + F (d(u, v)) ≤ F (d(u, v))

which is a contradiction and hence u = v, then the common fixed point is unique.

Example 2.4. Let E = [0, 1] equipped with d(x, y) = |x− y| and T, S : E → E defined
by

Tx =
x

2
, Sx =

x

4
.

And let R the binary relation defined on E by R = {(0, 1

n
), n ≥ 1)}.

Remark that R is transitive. We claim that (T, S) satisfies Theorem 2.3.
Indeed:

• (E, d) is complete.

• E((T, S),R) is nonempty ((0,
1

2
) ∈ E((T, S),R) for example).

• R is (T, S)−closed.

(0,
1

n
) ∈ R =⇒ (T0, S

1

n
) = (0,

1

4n
) = (0,

1

n′
) ∈ R;

(S0, T
1

n
) = (0,

1

2n
) = (0,

1

n′′
) ∈ R

• T and S are continuous on E.
• The pair (T, S) is generalized rational FR−contractive in the sense of (1.10)

– X = R = {(0, 1

n
), n ≥ 1}

(x, y) ∈ X ⇐⇒ (x, y) = (0,
1

n
), n ≥ 1

d(Tx, Sy) = d(0,
1

4n
) =

1

4n
> 0

M(x,y) = max{d(x, y) +
d(x, Sy).d(y, Tx)

1 + d(x, y)
;αd(x, Tx);βd(y, Sy)}

= max{ 1

n
+

1

4n
.
1

n

1 +
1

n

;α.0;β
3

4n
}

=
1

n
+

1

4n(n+ 1)
.
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Let F (t) = ln(t) ∈ F, we can choose δ > 0 and λ =
1

2
such that

δ + F (
1

4n
) ≤ F (

1

2
.(

1

n
+

1

4n(n+ 1)
))

≤ F (
4n+ 5

8n(n+ 1)
)− F (

1

4n
) = ln(

4(n+ 1) + 1

8n(n+ 1)
)− ln(

1

4n
)

≤ ln(4n+ 5)− ln(8n(n+ 1))− ln(
1

4n
)

≤ ln(4n+ 5)− ln(8n)− ln(n+ 1) + ln(4n)

≤ ln(4n+ 5)− ln(2)− ln(4n)− ln(n+ 1) + ln(4n)

≤ ln(4 +
1

n+ 1
)− ln(2)

since ln(4 +
1

n+ 1
) − ln(2) ≥ ln(4) − ln(2) = ln(2) >

1

2
ln(2) then we can

choose δ =
1

2
ln(2) such that (1.10) is satisfied.

Hence T and S have a unique common fixed point in E (here u = 0 is the fixed
point required).

Remark 2.5. Note that the results existing in the literature are not applicable in Ex-
amples 2.2 and 2.4.

Remark 2.6. If we take α = β = 0 in Theorem 2.1, we obtain Theorem 3.3 in [3] and if

we consider α = β = 0, λ =
1

2
in Theorem 2.3, we get Theorem 3.4 in [3].

Now we get some corollaries:
Put T = S in Theorem 2.1, we get

Corollary 2.7. Let (E, d) be a complete metric space; R a binary relation on E and
T : E → E be a mapping. Assume that

(1) ∀(x, y) ∈ X ,∃F ∈ F such that

δ + F (d(Tx, Ty)) ≤ F (max{d(x, y) +
d(y, Tx) · d(x, Ty)

1 + d(x, y)
;αd(x, Tx);βd(y, Ty)})

where δ > 0.
(2) E(T,R) is nonempty.
(3) R is T−closed.
(4) T is continuous.

Then T has a fixed point.

And if we take T = S in Theorem 2.3, we obtain

Corollary 2.8. Let (E, d) be a complete metric space; R a transitive binary relation on
E and T : E → E be a mapping. Assume that

(U ′1) ∀(x, y) ∈ X ,∃δ > 0,∃F ∈ F such that

δ + F (d(Tx, Ty)) ≤ F (λmax{d(x, y);
d(y, Tx) · d(x, Ty)

1 + d(x, y)
; d(x, Tx); d(y, Ty)}).
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(U ′2) E(T,R),Γ(x, y,R) are non empty, ∀(x, y) ∈ X .
(U ′3) R is T−closed.
(U ′4) T is continuous.

Then T has a unique fixed point in E.
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