Thai Journal of Mathematics
Volume 21 Number 1 (2023)
Pages 101-110

http://thaijmath.in.cmu.ac.th
ISSN 1686-0209

Common Fixed Point Theorems for Generalized
Rational Fr-Contractive Pairs of Mappings

Mahmoud Bousselsal and Mostefa Debba*
Department of Mathematics, ENS-Kouba, Algiers, Algeria
e-mail : bousselsal55@gmail.com (M. Bousselsal); debbamos60@gmail.com (M. Debba)
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1. INTRODUCTION

In [1], D. Wardowski introduced a new type of contraction; called F-contractions that
generalize the famous Banach contraction principle and prove a fixed point theorem.
Later, many authors give fixed point theorems for maps satisfying such contraction type.
In [2], K. Sawangsup and al. introduced the notion of Fr—contraction where R is a
binary relation on a complete metric space and established some fixed point results.
Recently M.B. Zada and al. [3], modified the definition of Fr — contraction introduced by
Sawangsup for two maps, namely rational Fr-contractive pairs of mappings and prove a
common fixed point theorem for such pairs of maps.

In this work, inspired by M.B. Zada and al. [3], we prove some common fixed point
theorems for a pair of mappings satisfying a condition of rational Fr-contraction type
and we give examples to support our results.

PRELIMINARIES

Throughout this paper, Ry denotes the set of nonnegative real numbers and R* the
set of positive real numbers.
We start with some definitions and properties that we need in our results.

Definition 1.1. ([1]) we call F the following set,
F= {F : [07 +OO[_) R SatiSfying (Fl)a (FQ)a (FS)}
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where
(Fy) F is strictly increasing i.e. Vs;t € Ry with s < t, we have F(s) < F(¢).
n—-+o0o

(F2) for each sequence (s,), C RY: hr—{l Sp =0 <= F(sp) —— —o0.
n—-+0o0
(F3) There exists p €]0, 1] such that: lim s"F(s) = 0.

s—0t

Example 1.2. ([2]) examples of functions belonging to F.
Fi(s) =Ilns, s>0.

1
FQ(S):—E, s> 0.

Definition 1.3. ([1]) Let (E,d) be a metric space. A mapping T': E — F is said to be
an F-contraction if there exists 7 > 0 and F' € F such that

Ve,y e E: d(Tz,Ty) > 0= 7+ F(d(Tz,Ty)) < F(d(z,y)).

Definition 1.4. ([1]) Given a mapping T : E — E, a binary relation R defined on E is
called T'—closed if
Ve,ye E: (r,y) € R= (Tz,Ty) € R.

Remark 1.5. The previous property is equivalent to say that T is nondecreasing

(xRy = TxRTy).

Definition 1.6. ([5]) Let 1,22 € E and R be a binary relation on a nonempty set F.
A path ( of length n € N) in R from z; to x5 is a sequence {tg,t1,t2, - ,t,} C E such
that:

t():$07"',tn:$2, (tj7tj+1)€R, VjZO,L"',’I’L—l.

['(x1, 22, R) represents the class of all paths from z1 to x5 in R.
Remark 1.7. t; are not necessarily distinct.

Definition 1.8. ([6]) A metric space (E, d) equipped with a binary relation R
is R-nondecreasing-regular if for all sequences (z,,),; we have :

((xn,Znt1) ER, VR €N and z, = z) = (x,,z) € R,Vn € N.

Definition 1.9. ([2]) Let (E,d) be a metric space, R a binary relation on E and let
T:E — E be amapping. Let W= {(z,y) e R: d(Tz,Ty) > 0}.
T is said to be an Fr-contraction if there exists 6 > 0, F' € F such that:

V(z,y) eW: 0+ F(d(Tz,Ty)) < F(d(z,y)).
M.B. Zada and al. [3] modified the definition 1.4 ([4]) for two maps as follows.

Definition 1.10. Let E # (). Let T, S be two self mappings on E and R a binary relation
on E. Then, R is (T, S)—closed if for all z,y € E:

(z,y) € R = (Tz,Sy) € R, (Sz,Ty) € R.
And they introduced the concept of rational Fr —contractive pair of mappings.

Definition 1.11. Let (E,d) be a metric space and 7', S be self-mappings on E and let
R be a binary relation on E. Put

X ={(z,y) eR: d(Tz,Sy)>0}.
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We say that (T, S) is a rational Fr-contractive pair of mappings if there exist 6 > 0 and
F € F such that:

d(y, Tx) - d(z, Sy)
1+d(x,y)
Denote by E((T,S),R) the set of all order pairs (z,y) € E x E

such that (Tx, Sy) € R.
M.B. Zada and al. [3] proved the following theorem:

S+ F(d(Tz,Ty)) < F (d(z,y) + > , for all (z,y) € X.

Theorem 1.12. ((3.3) in [3]): Let (E,d) be a complete metric space; R be a binary
relation on E and T,S : E — E. two mappings. Suppose that the following conditions
hold:

(C1) E((T,S),R) is nonempty.

(C3) R is (T, S)—closed.

(C3) T and S are continuous.

(Cy4) The pair (T, S) is rational Fr-contractive.

Then there is a common fixed point of Tand S.

Our goal in this work is to introduce a new type of rational Fr-contraction for a pair
of mappings and we prove fixed point results.

Definition 1.13. Let (E,d) be a metric space and T, S : E — E two mappings and let
R be a binary relation on E. We say that (7, .5) is a generalized rational Fr- contractive
pair of mappings if there exist § > 0 and F € F such that: V(z,y) € X

d(y,Tz) - d(x, Sy) . .
T+ d(,y) sad(z, Tx); Bd(y, Sy)})

(1.1)

d+ F(d(Tx, Sy)) < F(max{d(z,y) +

where «, 3 € [0,1].

Let remember that X = {(z,y) € R, d(Tz,Sy) >0}
and E((T,S),R) = {(z,y) € E*: (Tx,Sy) € R}.

2. MAIN RESULTS
Now we present our main result.

Theorem 2.1. Let (E,d) be a complete metric space; R a binary relation on E and
T,S: E — E two mappings. Suppose that the following conditions hold:

(1) E(T,S),R) is non empty.

(2) R is (T,S)—closed.

(3) T and S are continuous.

(4) The pair (T,S) is generalized rational Fr-contractive in the sense of (1.1).

Then T and S have a common fized point.

Proof. by (1): Let (a,b) € E((T,S),R), then (Ta, Sb) € R.
Put z; = Ta,x9 = Sb and define (z,,)nen by

Topt1 = Txoy, n2>1
Tan42 = S$2n+1
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if oy = xon41 for some N € N*| then we have necessarily d(Tzay, Sxans1) = 0,
otherwise d(Txan, Sxan+1) > 0 which implies (zan, zan+1) € X. So, by (1.1)

d(rany1, Txon) - d(zan, STaN 1) |
1+ d(xon, Tan41) 7
ad(zon, Txon); Bd(zan+1, STan+1)}]

0+ F(d(z2n+1, 22n+42)) < F[max{0;0;0; Bd(v2n+1, Tan+2)}]
d+ F(d(zant1,xan+2)) < F(Bd(zan41, Tan+2))-

Since F is strictly increasing and 8 < 1, we get:

0+ F(d(zant1, Zan+2)) < Fd(zant1, Tan+2))

which implies § < 0,that is a contradiction.

Hence d(Txan, Sxon+1) =0 and so : Taay = Sxoni1,

finally: zon = wany1 = Txony = Sxony1 and xopn is a fixed point of T', xon 41 is a fixed
point of S. Then zon = xan41 is a common fixed point of 7" and S.

That is we can assume %, # Tan+1, vn € N* and so d(Tx2,, Stony1) > 0.

o+ F(d(Tl‘gN, S$2N+1)) < F[max{d(w2N7 372N+1) +

Using assumption (2) we have:
(z1,22) = (Ta,Sb)eR
(1‘2,33‘3) = (S.]?l,TJ?Q) ER

($3,l‘4) (ng,Swg) cER

by induction (2o, Ton+1) = (Szan—1,Txan) € R thus (xon, Topt1) € X, Vn € N.
Put © = 295,y = T2,—1 in (1.1) we obtain:

F(d(22n, w2n41)) = F(d(@2n41, 72n)) = F(d(T@20, ST20-1))
< Flmax{d(x2n, Tan—1) +

d(xon—1, Txon)d(Ton, ST2n_1) .

d n7T n)s d n—1; n— *(;
+ 1+ d(x2n, T2n—1) sad(xon, Toy,); Bd(on—1, STan—1)}]

< Fmax{d(x2n, Tan—1); ad(T2n, Tani1)}] — 0
If maX{d(Isz $2n—1); ad(iﬂzm I2n+1)} = ad(u’@m $2n+1), we get
F(d(xan, Tant1)) < F(ad(xan, Tant1)) — 0 < F(d(zon, Tont1)) — 0
which is a contradiction (since 6 > 0). So
F(d(xgn,x2n+1)) S F(d((ﬂgn, QCQn_l)) — (5, VTL Z 1. (21)
Similary, setting = Zan,y = Zap41 in (1.1), we obtain
F(d(x2n41, Tant2)) = F(d(T22n, Stant1))
d(any1, T2 )d(2n, STani1)
1+ d(z2n, Tont1) ’
ad(xan, Tran); Bd(T2ng1, SToni1)}] — 0
< Flmax{d(w2,, T2nt1); Bd(Tant1, Tang2)}] — 0

< Fmax{d(x2n, Tont1) +

If max{d(:vgn, $2n+1); 5d(l’2n+1, $2n+2)} = 6d(1’2n+1, x2n+2), we have

F(d(x27L+17$2n+2)) S F(Bd(x2n+17x2n+2)) - 5 S F(d(x2n+17x2n+2)) - 5
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which is a contradiction. Hence

F(d(zani1, Tany2)) < F(d(22n, T2ny1)) =6,
with (2.1) and (2.2) we deduce that

F(d(zn,xn+1)) < Fd(xn-1,2n)) — 0, Vn>1.
Using (2.3), we obtain

F(d(a:n,xn+1)) < F(d(xn—hxn)) -0
S F(d(l‘n,Q, xn,l)) — 20
S F(d(l’nfg, £En,2)) - 35
(d(

IN
T

d(z1,29)) — (n—1)6

Thus lim F(d(zn,%n+1)) = —00, by condition (F3) in definition of F, we get

n—-+o0o

ngrfw d(xp, py1) = 0.

From condition (F3) in definition of F, we can find p €]0, 1] such that
lim (d(zpn, Tni1)) " F(d(2n, Tni1)) = 0.

n—+oo
Using (2.4), we have

(d(@n, Tns1)" [F(d(Tn, Tnt1)) — Fd(21,22))] < —(n = 1)6(d(zn, Tni1)"
take n — 400 in (2.8) and using (2.6),(2.7)

(A, 1) [ (A(n, 011)) — F(dl1, 72))] < —(0 — 1)5(d(n, ns1)"

n — +o0, we get liT (n — 1)(d(zn, Tne1)" = 0 which implies, that there exists ng €N
n——+0o0o

such that Vn > ng : (n — 1)(d(xn, Tny1))* < 1 thus
1

—, Yn2>np>1
(n—1)»

d(mna xn+1) <

Now, we show that (z,)nen is a Cauchy sequence. Let n,m € N, m >n > nyg

m—1

d(xnv 5L’m) S d(.’[n, anrl) + d(anrlv $n+2) + -+ d(xmfla xm) = Z d(xkv karl)

k=n
m—1 m—2 00
1 1 1
DD el Dl eyl Dl
k=n (k - 1)” k=n—1 (kl)“ k=n—1 (k/)“
| 1
Since Z — is the remainder of the convergent series Z —, we obtain
k)i N
k=n—1 E>1
i 1 — 400 n——+oo
R,_1 = Z - 27 0 that is d(2n, 2m) ————— 0. And hence (2,)nen is
k=n—1 (k,)ﬁ (m—+o0)

a Cauchy sequence in (F,d). Since E is complete, there exists u € E such that:
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n—-+o0o
Ty — U.

Next we show that T'(u) = S(u) = u.
Since T and S are continuous and zs, oo, U, Ton_1 noAoo,

Ton+1 = Tron — Tu,
Ton = Sl’gn,l — Su.

So we obtain T'u = Su = u and hence u is a common fixed point of T" and S. ]

Example 2.2. Let E = {1,2,3} with the usual metric d(z,y) = |z — y|, and let T, S :
E — FE the mappings defined by

T1=1,72=T3=2
S1=52=953=1
and R the binary relation on E :
R ={(1,1);(1,2);(1,3); (2,1)}

we have:
e (E.d) is a complete metric space (E is closed in the usual complete metric
space R).
e (T, 5),R) is nonempty ((1,1) € E(T, S), R)).
e Ris (T,S5)—closed. Indeed:
(I,1) e R = (T1,51)=(1,1) e R,(S1,T1)=(1,1) e R
(1,2) e R = (T1,52) = (1,1) € R, (S1,T2) = (1,2) € R
(1,3) e R = (T1,53)=(1,1) e R,(S1,T3) =(1,2) e R
(2,1) e R = (T2,51)=(2,1) € R,(52,T1)=(1,1) e R
e T and S are continuous on E (Endowed with the induced topology).
e X = {21}
e The pair (T, 5) is generalized rational Fgr—contractive in the sense of (1,1).
Indeed:

- ('Ivy) €X<:>(x’y):(271)

d(z, Sy).d(y, Tx)

6+ F(d(Tz,5y)) < F(max{d(e,y) + =77 iz.v) sad(z, Tx); Bd(y, Sy)})
6+ F(d(T2,51)) < F(max{d(2,1)+ ‘W; ad(2,T2); Bd(1,51)})
s+ F(1) < F(max{l—i—%;O;O})
5+ F(1) < F(), FeF,

2
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we choose: F(t) = In(t) we get § + In(1) < 1n(g).

1. .3
That is 36 > 0: = B ln(i) such that (1.1) is satisfied.

Hence T and S have a common fixed point u (here u = 1).

Now we give a result that ensures the uniqueness of the common fixed point found in
the previous theorem.

Theorem 2.3. Let (E,d) be a complete metric space, and R be a transitive binary relation
on E. Assume that T, S : E — E are two mappings such that:

(Uh) Y(z,y) € X,30 > 0,3F € F such that

d(y, Tzx) - d(x,Sy). )
T+ dz.) sad(z,Tz); Bd(y, Sy)})

(2.9)

§+ F(d(Tx, Sy)) < F(Amax{d(z,y) +

1
where a; 5 € [0,1] and A €]0, 5]

(Uz) E((T,S),R),I'(x,y,R) are non empty, Vr,y € X.
(Us) R is (T, S)-closed.
(Uy) T and S are continuous.

Then T and S have a unique common fixed point.

Proof. Following the same steps as in the proof of Theorem 2.1, we can easily prove that
T and S have a common fixed point, thus we have to show that this common fixed point
is unique.

Assume that u and v are two distinct common fixed point of 7" and S.

Tu=Su=u, Tv=Sv=wv, du,v)>0.

Let {wo, w1, - ,wp} a path from v and v

wo =u,wp =v, (wj,wjt1)€ER; j=0,1,---,p—1
Since R is transitive
(u,wy), (w1, w2), -, (Wp—1,v) € R = (u,v) € R.
Put in contraction condition (U;): © = u,y = v we get
d(v, Tu) - d(u, Sv)

0+ F(d(Tu, Sv)) < F(Amax{d(u,v) + ad(u, Tu); Bd(v, Sv)})

1+d(u,v)
0+ F(d(u,v)) < F(max{\d(u,v) + )\%; 0;0)}).
Since W < Ad(u,v), we obtain

v)
§ + F(d(u,v)) < F(max{\d(u,v) + Ad(u,v)})
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and hence : § + F(d(u,v)) < F(2Ad(u,v)).
Since F is strictly increasing, we get

6+ F(d(u,v)) < F(d(u,v))

which is a contradiction and hence u = v, then the common fixed point is unique. L]

Example 2.4. Let E = [0,1] equipped with d(z,y) = |t —y| and T, S : E — E defined
by

x x
To=2 _—
T , Sz 1
1
And let R the binary relation defined on E by R = {(0,—), n>1)}.
n

Remark that R is transitive. We claim that (T, S) satisfies Theorem 2.3.
Indeed:

(E,d) is complete.
E((T,S),R) is nonempty ((0, %) € E((T,S),R) for example).
R is (T, S)—closed.

1 1 1 1
(07 ﬁ) ER = (TO,S;) - (0, E) - (Ov ;) € Rv
1 1 1
(SO,T;) - (07%) - (Ovm) ER

T and S are continuous on E.
The pair (7, 5) is generalized rational Fr—contractive in the sense of (1.10)

- X:R:{(O,%), n>1)

1
(r,y) € X = (z,y) = (O’ﬁ>’ n>1

1 1

d(z,Sy).d(y, Tz
My = maxtd(oy) + D52, (e, Ty gty S)
11
— max{l—i— 4n 7iL;oz.O;BZ%}

nooq, 1 n

n
1 1
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1
Let F(t) =In(t) € IF, we can choose § > 0 and A\ = 3 such that

S+F(3) < F(+ m))
Flro) = Py =it ) ()
< In(4n+5) —In(Bn(n+1)) — ln(ﬁ)
< In(dn+5) — ln(8n) In(n + 1) + In(4n)
< In(4n+5) —In(2) —In(4n) — In(n + 1) + In(4n)
< In(4+ L) In(2)

n+1

1 1
since In(4 + n 1) —In(2) > In(4) — In(2) = In(2) > 5 In(2) then we can
n
1
choose 6 = 3 In(2) such that (1.10) is satisfied.

Hence T and S have a unique common fixed point in E (here u = 0 is the fixed
point required).

Remark 2.5. Note that the results existing in the literature are not applicable in Ex-
amples 2.2 and 2.4.

Remark 2.6. If we take @ = 8 = 0 in Theorem 2.1, we obtain Theorem 3.3 in [3] and if
1
we consider « = 8 =0,\ = 3 in Theorem 2.3, we get Theorem 3.4 in [3].

Now we get some corollaries:
Put T'= S in Theorem 2.1, we get

Corollary 2.7. Let (E,d) be a complete metric space; R a binary relation on E and
T:FE — E be a mapping. Assume that

(1) Y(z,y) € X,3F € F such that
dly, Tz) - d(z, Ty)
1+d(z,y)

0+ F(d(Tz,Ty)) < F(max{d(z,y) + ad(z, Tx); Bd(y, Ty)})

where 6 > 0.
(2) E(T,R) is nonempty.
(3) R is T—closed.
(4) T is continuous.

Then T has a fized point.

And if we take T'= S in Theorem 2.3, we obtain
Corollary 2.8. Let (E,d) be a complete metric space; R a transitive binary relation on
E andT : E — E be a mapping. Assume that

(U]) Y(z,y) € X,36 > 0,3F € F such that
d(y, Tx) - d(z, Ty)

0+ F(d(Tz,Ty)) < F(Amax{d(x,y); 1+d(z,y)

sd(z, Tx);d(y, Ty)}).
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(U5 E(T,R),I(xz,y,R) are non empty, V(z,y) € X.
(US) R is T—closed.
(U3) T is continuous.

Then T has a unique fized point in E.
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