The Multicomplex Numbers and Their Properties on Some Elementary Functions

Md. Nasiruzzaman ${ }^{1}$ and M. Mursaleen ${ }^{2,3, *}$
${ }^{1}$ Department of Mathematics, Faculty of Science, University of Tabuk, PO Box-4279, Tabuk-71491, Saudi Arabia
e-mail : nasir3489@gmail.com (M. Nasiruzzaman)
${ }^{2}$ Department of Medical Research, China Medical University Hospital, China Medical University (Taiwan), Taichung, Taiwan
${ }^{3}$ Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India
e-mail : mursaleenm@gmail.com (M. Mursaleen)

Abstract

In this paper, we introduce the some algebraic properties in idempotent form of bicomplex space and multicomplex space, which is the generalization of the field of complex numbers. We describe how to define elementary functions such as polynomials, exponential functions, trigonometric functions, Taylor series for multicomplex holomorphic functions, algebra of eigenvalues corresponding to an eigenvector on multicomplex space. Finally, our goal are to show that the functions theory on multicomplex space and multicomplex polynomial are in some sense a better generalization than the bicomplex space and bicomplex Polynomial.

MSC: 41A10; 41A25; 41A36
Keywords: bicomplex numbers; multicomplex number system; multicomplex polynomial; Kronecker products and Kronecker sum on multicomplex space

Submission date: 02.10.2014 / Acceptance date: 14.10.2022

1. Introduction and Preliminaries

There exist several ways to generalize complex numbers to higher dimensions. The most well-known extension is given by the quaternions invented by Hamilton [1] which are mainly used to represent rotations in three-dimensional space. However, quaternions are not commutative in multiplication. Another extension was found at the end of the $19^{\text {th }}$ century by Corrado Segre [2], who described special multidimensional algebras. This type of number is now commonly named a multicomplex number. They were studied in details by G.B.Price [3] and N. Fleury [4]. Bicomplex numbers, just like the quaternions, are a generalization of complex numbers to four real dimensions introduced by C. Segre [2]. These two number systems differ because: (i) Quaternions which form a

[^0]division algebra, while bicomplex numbers do not, and (ii) bicomplex numbers are commutative, whereas quaternions are not. For such reasons, the bicomplex numbers system has been shown to be more attractive (compared to the quaternions). These properties of bicomplex numbers are preserved when we define multicomplex numbers as the unique higher dimensional analogues to bicomplex numbers. We begin the present paper with an overview of the structure of the multicomplex space \mathbb{C}^{k} [3]. For more details we refer to see [5-13].

Importantly, we define some form of idempotent elements, convergent of a multicomplex sequence, multicomplex polynomial, multicomplex derivatives and Taylor series representation, characteristic polynomials and characteristic roost of multicomplex matrices, zeros of characteristic polynomial on multicomplex space, Kronecker products, Kronecker sum and some its applications on multicomplex space and a generalization of its characteristic roots, which will be vital for all future advancements. We are then able to prove certain useful properties of functions on \mathbb{C}^{k}. In this paper, we introduce elementary functions, such as polynomials, exponentials, trigonometric functions, Taylor representation for holomorphic function in this algebra as well as their inverses (something that, incidentally, is not possible in the case of quaternions). We will show how these elementary functions enjoy properties that are very similar to those enjoyed by their complex counterparts. To generalize, the observation consists in looking at maps $f=\left(f_{1}, f_{2}\right)$ in a open set $U \subset \mathbb{C}^{k} \rightarrow \mathbb{C}^{k}$ and to ask that each component f_{1}, f_{2} be holomorphic in z_{1} and in z_{2} without assuming any additional relationship between them. Though both generalizations are important, and give rise to large and interesting theories. We believe that there is another even more appropriate generalization, which so far has not received enough attention (see [14-16]). To this purpose, we introduce to multicomplex CauchyRiemann system and to apply it to pairs of holomorphic functions $\left(f_{1}, f_{2}\right)$ in a open set $U \subset \mathbb{C}^{k} \rightarrow \mathbb{C}^{k}$, so that the pair $\left(f_{1}, f_{2}\right)$ can be interpreted as a map of \mathbb{C}^{k} to itself. It is then natural to ask whether it makes any sense to consider pairs $\left(f_{1}, f_{2}\right)$ for which the following system is satisfied:

$$
\begin{aligned}
\frac{\partial f_{1}}{\partial z_{1}} & =\frac{\partial f_{2}}{\partial z_{2}} \\
\frac{\partial f_{2}}{\partial z_{1}} & =-\frac{\partial f_{1}}{\partial z_{2}}
\end{aligned}
$$

The bicomplex polynomial was discussed by M.E. Luna-Elizarrara's and M. Shapiro [15], and the eigenvalues for bicomplex matrices was discussed in [17]. We generalized it for multicomplex space \mathbb{C}^{k} for which ($k=2$, Bicomplex polynomial, $k=3$, Tricomplex polynomial). The algebra which one obtains is the bicomplex algebra. In this paper we show how to introduce elementary functions, such as polynomials, characteristic polynomial functions, zeros of characteristic polynomial, on multicomplex space \mathbb{C}^{k} and the Kronecker products, Kronecker sum and some of its results was discussed in [18].On multicomplex matrices $\mathbb{C}_{m \times n}^{k}, \mathbb{C}_{p \times q}^{k}$ (something that, incidentally, is not possible in the case of quaternions). We will show how these elementary functions enjoy properties that are very similar to those enjoyed by their complex counterparts. If $A:=\left\{\left(a_{l j}\right) \in \mathbb{C}_{m \times n}^{k}=A_{1} I_{x}+A_{2} I_{y}\right\}$ and $A u=\lambda u$ which is equivalent to

$$
\left\{\begin{array}{l}
A_{1} u_{1}=\lambda_{1} u_{1} \\
A_{2} u_{2}=\lambda_{2} u_{2}
\end{array}\right.
$$

Then λ is eigenvalue of the multicomplex matrix A corresponding to eigenvector u where $\lambda:=\lambda_{1} I_{x}+\lambda_{2} I_{y} \in \mathbb{C}^{k}$ and $u=u_{1} I_{x}+u_{2} I_{y}$. To generalize the above observation consists in looking at

$$
A:=\left(a_{l j}\right) \in \mathbb{C}_{m \times n}^{k}=B_{i_{k}} I_{x}+C_{i_{k}} I_{y}:=B_{i_{k-1}} I_{x}+C_{i_{k-1}} I_{y}
$$

where $B_{i_{k}}, C_{i_{k}} \in \mathbb{C}_{m \times n}^{k-1}$ and $B_{i_{k-1}}, C_{i_{k-1}} \in \mathbb{C}_{m \times n}^{k-1}$.
For two matrices A and B , the matrix $A \otimes B$ is the Kronecker product and $A \oplus B$ is Kronecker sum of A and B.

$$
\begin{gathered}
A \otimes B=\left\{\left(a_{l j} B\right) \in \mathbb{C}_{m p \times n q}^{k} \mid A=\left(a_{l j}\right) \in \mathbb{C}_{m \times n}^{k}, B=\left(b_{r s}\right) \in \mathbb{C}_{p \times q}^{k}\right\} \\
A \oplus B=\left\{\left(I_{m} \otimes A\right)+\left(B \otimes I_{n}\right) \mid A \in \mathbb{C}_{n \times n}^{k}, B \in \mathbb{C}_{m \times m}^{k}\right\} .
\end{gathered}
$$

Without assuming any additional relationship between them, both generalizations are important, and give rise to large and interesting theories, we believe that there is another even more appropriate generalization, which so far has not received enough attention.

2. Bicomplex Numbers

Definition 2.1. ($[15,17]$) The set of the bicomplex numbers is defined as

$$
\begin{equation*}
\mathbb{B C}:=\left\{z_{1}+z_{2} i_{2} \mid z_{1}, z_{2} \in \mathbb{C}^{1}\left(i_{1}\right)\right\} \tag{2.1}
\end{equation*}
$$

where i_{1}, i_{2} are the imaginary units and governed by the rules

$$
\begin{equation*}
i_{1}^{2}=i_{2}^{2}=-1, i_{1} i_{2}=i_{2} i_{1}=j \tag{2.2}
\end{equation*}
$$

and so,

$$
\begin{equation*}
j^{2}=1, i_{1} j=j i_{1}=-i_{2}, i_{2} j=j i_{2}=-i_{1} \tag{2.3}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\mathbb{C}^{1}\left(i_{k}\right):=\left\{x+y i_{k} \mid i_{k}^{2}=-1 \text { and } x, y \in \mathbb{R} \text { for } k=1,2\right\} \tag{2.4}
\end{equation*}
$$

where \mathbb{C}^{1} is the set of all complex numbers with the imaginary units i_{k} for $k=1,2$. Thus the bicomplex numbers are complex numbers with complex coefficients, which explain the name of bicomplex.
With the addition and the multiplication of two bicomplex numbers defined in the obvious way, the set $\mathbb{B C}$ makes up a commutative ring (in fact they are the particular case of the so called multicomplex numbers).
Clearly the bicomplex numbers

$$
\begin{equation*}
\mathbb{B} \mathbb{C} \cong \mathrm{Cl}_{\mathbb{C}}(1,0) \cong \mathrm{Cl}_{\mathbb{C}}(0,1) \tag{2.5}
\end{equation*}
$$

are unique among the complex Clifford algebras in that they are commutative but not division algebras. It is also convenient to write the set of bicomplex numbers as

$$
\begin{equation*}
\mathbb{B C}:=\left\{x_{0}+x_{1} i_{1}+x_{2} i_{2}+x_{3} i_{1} i_{2} \mid x_{0}, x_{1}, x_{2}, x_{3} \in \mathbb{R}\right\} \tag{2.6}
\end{equation*}
$$

We know the complex conjugation plays an important role for both algebraic and geometric properties of \mathbb{C}^{1}. So for bicomplex numbers there are three possibilities of conjugations. Let $z \in \mathbb{B C}$ and $z_{1}, z_{2} \in \mathbb{C}^{1}\left(i_{1}\right)$, such that $z:=z_{1}+z_{2} i_{2}$, then we define the three conjugation as:

$$
\begin{align*}
& z^{\dagger_{1}}=\left(z_{1}+z_{2} i_{2}\right)^{\dagger_{1}}=\bar{z}_{1}+\bar{z}_{2} i_{2} \tag{2.7}\\
& z^{\dagger_{2}}=\left(z_{1}+z_{2} i_{2}\right)^{\dagger_{2}}=z_{1}-z_{2} i_{2} \tag{2.8}
\end{align*}
$$

$$
\begin{equation*}
z^{\dagger 3}=\left(z_{1}+z_{2} i_{2}\right)^{\dagger 3}=\bar{z}_{1}-\bar{z}_{2} i_{2} \tag{2.9}
\end{equation*}
$$

All the three kinds of conjugations have some of the standard properties of conjugations, such as

$$
\begin{align*}
& \left(z_{1}+z_{2}\right)^{\dagger^{k}}=z_{1}^{\dagger^{k}}+z_{2}^{\dagger^{k}} \tag{2.10}\\
& \left(z_{1}^{\dagger^{k}}\right)^{\dagger k}=z_{1} \tag{2.11}\\
& \left(z_{1} \cdot z_{2}\right)^{\dagger^{k}}=z_{1}^{\dagger^{k}} \cdot z_{2}^{\dagger^{k}} \tag{2.12}
\end{align*}
$$

We know that the product of a standard complex number with its conjugate gives the square of the Euclidean metric in \mathbb{R}^{2}. Thus the analogs of this, for bicomplex numbers, are the following. Let $z_{1}, z_{2} \in \mathbb{C}^{1}\left(i_{1}\right)$ and $z:=z_{1}+z_{2} i_{2} \in \mathbb{B} \mathbb{C}$, then we have:

$$
\begin{align*}
& |z|_{i_{1}}^{2}=z \cdot z^{\dagger_{2}}=z_{1}^{2}+z_{2}^{2} \in \mathbb{C}^{1}\left(i_{1}\right) \tag{2.13}\\
& |z|_{i_{2}}^{2}=z \cdot z^{\dagger_{1}}=\left(\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}\right)+2 \operatorname{Re}\left(z_{1} \bar{z}_{2}\right) i_{2} \in \mathbb{C}^{1}\left(i_{2}\right) \tag{2.14}\\
& |z|_{j}^{2}=z \cdot z^{\dagger_{3}}=\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)-2 \operatorname{Im}\left(z_{1} \bar{z}_{2}\right) j \in \mathbb{D}, \tag{2.15}
\end{align*}
$$

where \mathbb{D} is the subalgebra of hyperbolic numbers, and is defined as

$$
\begin{equation*}
\mathbb{D}:=\left\{x+y j \mid j^{2}=1, x, y \in \mathbb{R},\right\} \cong \mathrm{Cl}_{\mathbb{R}}(0,1) \tag{2.16}
\end{equation*}
$$

Note that for $z_{1}, z_{2} \in \mathbb{C}^{1}\left(i_{1}\right)$ and $z:=z_{1}+z_{2} i_{2} \in \mathbb{B} \mathbb{C}$, we can define the usual (Euclidean in \mathbb{R}^{4}) norm of z as $|z|=\sqrt{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}}=\sqrt{\operatorname{Re}\left(|z|_{j}^{2}\right)}$. It is easy to verifying that $z \cdot \frac{z^{\dagger} 2}{|z|_{i_{1}}^{2}}=1$. Hence the inverse of z is given by

$$
\begin{equation*}
z^{-1}=\frac{z^{\dagger_{2}}}{|z|_{i_{1}}^{2}} \tag{2.17}
\end{equation*}
$$

Idempotent basis

Bicomplex algebra is considerably simplified by the introduction of two bicomplex numbers e_{1} and e_{2} defined as $e_{1}=\frac{1+i_{1} i_{2}}{2}, e_{2}=\frac{1-i_{1} i_{2}}{2}$. In fact, e_{1} and e_{2} are hyperbolic numbers $\left(i_{1} i_{2}=i_{2} i_{1}=j\right)$. They make up the so called idempotent basis of the bicomplex numbers, and one easily can check that

$$
\begin{equation*}
e_{1}^{2}=e_{1}, e_{2}^{2}=e_{2}, e_{1}+e_{2}=1, e_{1} \cdot e_{2}=0, e_{k}^{\dagger_{3}}=e_{k}(\text { for } k=1,2) \tag{2.18}
\end{equation*}
$$

Thus any bicomplex number can be written as

$$
\begin{equation*}
z=z_{1}+z_{2} i_{2}=\alpha_{1} e_{1}+\alpha_{2} e_{2}, \text { where } \alpha_{1}=z_{1}-z_{2} i_{1}, \alpha_{2}=z_{1}+z_{2} i_{1} . \tag{2.19}
\end{equation*}
$$

The idempotent representation for a bicomplex number can be expressed in different ways:

$$
\begin{aligned}
& z:=\eta_{1}+\eta_{2} i_{1} \mid \eta_{1}, \eta_{2} \in \mathbb{B} \mathbb{C}\left(i_{2}\right)=\left(\eta_{1}-\eta_{2} i_{2}\right)\left(\frac{1+i_{1} i_{2}}{2}\right)+\left(\eta_{1}+\eta_{2} i_{2}\right)\left(\frac{1-i_{1} i_{2}}{2}\right) \\
& :=\beta_{1}+\beta_{2} i_{2} \mid \beta_{1}, \beta_{2} \in \mathbb{B} \mathbb{C}\left(i_{1} i_{2}\right)=\left(\beta_{1}-\beta_{2} i_{1} i_{2}\right)\left(\frac{1+i_{1}}{2}\right)+\left(\beta_{1}+\beta_{2} i_{1} i_{2}\right)\left(\frac{1-i_{1}}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& :=\gamma_{1}+\gamma_{2} i_{1} \mid \gamma_{1}, \gamma_{2} \in \mathbb{B} \mathbb{C}\left(i_{1} i_{2}\right)=\left(\gamma_{1}-\gamma_{2} i_{1} i_{2}\right)\left(\frac{1+i_{2}}{2}\right)+\left(\gamma_{1}+\gamma_{2} i_{1} i_{2}\right)\left(\frac{1-i_{2}}{2}\right), \\
& :=\nu_{1}+\nu_{2} i_{1} i_{2} \mid \nu_{1}, \nu_{2} \in \mathbb{B} \mathbb{C}\left(i_{1}\right)=\left(\nu_{1}+\nu_{2} i_{1}\right)\left(\frac{1+i_{2}}{2}\right)+\left(\nu_{1}-\nu_{2} i_{1}\right)\left(\frac{1-i_{2}}{2}\right), \\
& :=\mu_{1}+\mu_{2} i_{1} i_{2} \mid \mu_{1}, \mu_{2} \in \mathbb{B} \mathbb{C}\left(i_{2}\right)=\left(\mu_{1}+\mu_{2} i_{2}\right)\left(\frac{1+i_{1}}{2}\right)+\left(\mu_{1}-\mu_{2} i_{2}\right)\left(\frac{1-i_{1}}{2}\right) .
\end{aligned}
$$

3. Multicomplex Numbers

Definition 3.1. ([14, 16]) We must firstly define the multicomplex space in which we have to work, that will do so inductively. For the base case $k=0$, we define $\mathbb{C}^{0}:=\mathbb{R}$, that is the set of all real numbers with additions, multiplication and norm being defined as usual. The case for $k=1$ is also familiar to \mathbb{C}^{1}, which is simply the standard complex plane with arithmetic and norm usually defined. The case of $k=2$ and $k=3$ are familiar with \mathbb{C}^{2} and \mathbb{C}^{3} are the simply bicomplex plane and tricomplex plane. So we define

$$
\begin{equation*}
\mathbb{C}^{k}:=\left\{z_{1}+z_{2} i_{k} \mid z_{1}, z_{2} \in \mathbb{C}^{k-1}, k>1, i_{k}^{2}=-1 \text { and } i_{m} i_{n}=i_{n} i_{m} \text { for } m \neq n\right\} \tag{3.1}
\end{equation*}
$$

The arithmetic is defined in usual way and if z_{1}, z_{2}, z_{3} and $z_{4} \in \mathbb{C}^{k-1}$ and w_{1}, w_{2} and $w_{3} \in$ \mathbb{C}^{k}, then

$$
\begin{align*}
& \left(z_{1}+z_{2} i_{k}\right)+\left(z_{3}+z_{4} i_{k}\right)=\left(z_{1}+z_{3}\right)+\left(z_{2}+z_{4}\right) i_{k} \tag{3.2}\\
& \left(z_{1}+z_{2} i_{k}\right)\left(z_{3}+z_{4} i_{k}\right)=\left(z_{1} z_{3}-z_{2} z_{4}\right)+\left(z_{1} z_{4}+z_{2} z_{3}\right) i_{k} \tag{3.3}\\
& w_{1}\left(w_{2}+w_{3}\right)=w_{1} w_{2}+w_{1} w_{3} . \tag{3.4}
\end{align*}
$$

With this definition it is simple to show that for all natural numbers k, \mathbb{C}^{k} is a commutative ring with unity. Further, assuming have defined the norm
$\|\cdot\|_{k-1}: \mathbb{C}^{k-1} \rightarrow \mathbb{R}_{\geq 0}$, we define the norm $\|\cdot\|_{k}: \mathbb{C}^{k} \rightarrow \mathbb{R}_{\geq 0}$ by

$$
\begin{equation*}
\left\|z_{1}+z_{2} i_{k}\right\|_{k}^{2}=\left\|z_{1}\right\|_{k-1}^{2}+\left\|z_{2}\right\|_{k-1}^{2} \tag{3.5}
\end{equation*}
$$

with this definition of the norm, the space \mathbb{C}^{k} becomes a modified Banach algebra.
Other useful representations of the multicomplex numbers can be found by repetitively applying to the multicomplex coefficients of lower dimension, that is decomposing z_{1} and z_{2} into lower dimension repetitively. We obtain

$$
\begin{equation*}
\mathbb{C}^{k}:=\left\{z_{11}+z_{12} i_{k-1}+z_{21} i_{k}+z_{22} i_{k} i_{k-1} \mid z_{11}, z_{12}, z_{21}, z_{22} \in \mathbb{C}^{k-2}\right\} \tag{3.6}
\end{equation*}
$$

For any $x_{0}, \cdots, x_{k}, \cdots, x_{1 \cdots k} \in \mathbb{R}$ we get

$$
\begin{equation*}
\mathbb{C}^{k}:=\left\{x_{0}+x_{1} i_{1}+\cdots+x_{k} i_{k}+x_{12} i_{1} i_{2}+\cdots+x_{k-1 k} i_{k-1} i_{k}+\cdots+x_{1 \cdots k} i_{1} \cdots i_{k} \mid\right\} \tag{3.7}
\end{equation*}
$$

It is clear that we can represent each element of \mathbb{C}^{k} with $\binom{k}{0}+\binom{k}{1}+\cdots+\binom{k}{k}\left\{\right.$ where $\binom{k}{r}=$ $\left.\frac{k!}{r!(k-r)!}\right\}$, coefficients in \mathbb{R}. One coefficients x_{0} for the real part k, and coefficients x_{1}, \cdots, x_{k} for the pure imaginary directions and additional coefficients corresponding to 'cross coupled'imaginary directions. We note that the cross directions do not exit in \mathbb{R} or \mathbb{C}, but appear only in \mathbb{C}^{k} for $k \geq 2$.

The multicomplex space for $k \geq 2$ has many idempotents elements, that is elements I with the property that $I^{2}=I$

$$
\begin{align*}
& I_{1}=\frac{1+i_{k} i_{k-1}}{2} \text { and } I_{2}=\frac{1-i_{k} i_{k-1}}{2} \tag{3.8}\\
& I_{1}^{2}=\left(\frac{1+i_{k} i_{k-1}}{2}\right)^{2}=\frac{1+i_{k} i_{k-1}}{2}=I_{1} \tag{3.9}\\
& I_{2}^{2}=\left(\frac{1-i_{k} i_{k-1}}{2}\right)^{2}=\frac{1-i_{k} i_{k-1}}{2}=I_{2} \tag{3.10}\\
& I_{1}+I_{2}=\left(\frac{1+i_{k} i_{k-1}}{2}\right)+\left(\frac{1-i_{k} i_{k-1}}{2}\right)=1 \tag{3.11}\\
& I_{1} I_{2}=\left(\frac{1+i_{k} i_{k-1}}{2}\right)\left(\frac{1-i_{k} i_{k-1}}{2}\right)=0 . \tag{3.12}
\end{align*}
$$

Thus we define a multicomplex number can be written in six different ways:

$$
\begin{aligned}
\mathbb{C}^{k} & =\left(x_{1}+y_{1} i_{k-1}\right)+\left(x_{2}+y_{2} i_{k-1}\right) i_{k}=z_{1}+z_{2} i_{k}=\left(z_{1}-z_{2} i_{k-1}\right) I_{1}+\left(z_{1}+z_{2} i_{k-1}\right) I_{2} \\
& =\left(x_{1}+x_{2} i_{k}\right)+\left(y_{1}+y_{2} i_{k}\right) i_{k-1}=\eta_{1}+\eta_{2} i_{k-1}=\left(\eta_{1}-\eta_{2} i_{k}\right) I_{1}+\left(\eta_{1}+\eta_{2} i_{k}\right) I_{2} \\
& =\left(x_{1}+y_{2} i_{k} i_{k-1}\right)+\left(x_{2}-y_{1} i_{k} i_{k-1}\right) i_{k}=\beta_{1}+\beta_{2} i_{k} \\
& =\left(\beta_{1}-\beta_{2} i_{k} i_{k-1}\right)\left(\frac{1+i_{k-1}}{2}\right)+\left(\beta_{1}+\beta_{2} i_{k} i_{k-1}\right)\left(\frac{1-i_{k-1}}{2}\right) \\
& =\left(x_{1}+y_{2} i_{k} i_{k-1}\right)+\left(y_{1}-x_{2} i_{k} i_{k-1}\right) i_{k-1}=\gamma_{1}+\gamma_{2} i_{k-1} \\
& =\left(\gamma_{1}-\gamma_{2} i_{k} i_{k-1}\right)\left(\frac{1+i_{k}}{2}\right)+\left(\gamma_{1}+\gamma_{2} i_{k} i_{k-1}\right)\left(\frac{1-i_{k}}{2}\right) \\
& =\left(x_{1}+y_{1} i_{k-1}\right)+\left(y_{2}-x_{2} i_{k-1}\right) i_{k} i_{k-1}=\nu_{1}+\nu_{2} i_{k} i_{k-1} \\
& =\left(\nu_{1}+\nu_{2} i_{k-1}\right)\left(\frac{1+i_{k}}{2}\right)+\left(\nu_{1}-\nu_{2} i_{k-1}\right)\left(\frac{1-i_{k}}{2}\right) \\
& =\left(x_{1}+x_{2} i_{k}\right)+\left(y_{2}-y_{1} i_{k}\right) i_{k} i_{k-1}=\mu_{1}+\mu_{2} i_{k} i_{k-1} \\
& =\left(\mu_{1}+\mu_{2} i_{k}\right)\left(\frac{1+i_{k-1}}{2}\right)+\left(\mu_{1}-\mu_{2} i_{k}\right)\left(\frac{1-i_{k-1}}{2}\right) .
\end{aligned}
$$

We define the definition given below in multicomplex space, in which if we put $k=2$ definition from [15].
Definition 3.2. Let $w_{n}=\left\{\alpha_{1, n} I_{1}+\alpha_{2, n} I_{2} \mid \alpha_{1, n}, \alpha_{2, n} \in \mathbb{C}^{k-1}\right.$ and $w_{n} \in \mathbb{C}^{k}$ for $\left.n \geq 1\right\}$ be a sequence of multicomplex numbers then the sequence $\left\{w_{n}\right\}_{n \geq 1}$ is said to be convergent component wise if the sequences $\left\{\alpha_{1, n}\right\}$ and $\left\{\alpha_{2, n}\right\}$ in \mathbb{C}^{k-1} are convergent in \mathbb{C}^{k-1} to the numbers $\alpha_{1,0}$ and $\alpha_{2,0}$ where $\alpha_{1,0}, \alpha_{2,0} \in \mathbb{C}^{k-1}$, hence we can write $w_{n} \rightarrow w_{0}:=$ $\alpha_{1,0} I_{1}+\alpha_{2,0} I_{2}$ and we say that w_{n} has limit w_{0}.
Theorem 3.3 (Theorem 3, [14]). Let $w=\left\{z_{1}+z_{2} i_{k} \mid z_{1}, z_{2} \in \mathbb{C}^{k-1}\right\}$, then for all $z_{1}, z_{2} \in \mathbb{C}^{k-1}$ and $w \in \mathbb{C}^{k}$, the following hold :

$$
\begin{align*}
& e^{z_{1}+z_{2} i_{k}}=e^{z_{1}} e^{z_{2} i_{k}} \tag{3.13}\\
& e^{z_{1} i_{k}}=\cos \left(z_{1}\right)+i_{k} \sin \left(z_{1}\right) \tag{3.14}
\end{align*}
$$

$$
\begin{align*}
& \cos (-w):=\cos (w) \tag{3.15}\\
& \sin (-w):=-\sin (w) \tag{3.16}
\end{align*}
$$

We define the following theorem and corollaries given below in multicomplex space, in which if we put $k=2$ we get, (cf. [2]).
Theorem 3.4. Let $w=\left\{z_{1}+z_{2} i_{k} \mid z_{1}, z_{2} \in \mathbb{C}^{k-1}\right\}$ be any multicomplex numbers, then the sequence $w_{n}:=\left(1+\frac{w}{n}\right)^{n}$ is convergent to $e^{z_{1}}\left(\cos \left(z_{2}\right)+i_{k} \sin \left(z_{2}\right)\right)$ as $(n \rightarrow \infty)$.

Proof. We have

$$
w=z_{1}+z_{2} i_{k}=\left(z_{1}-z_{2} i_{k-1}\right) I_{1}+\left(z_{1}+z_{2} i_{k-1}\right) I_{2}=\alpha_{1} I_{1}+\alpha_{2} I_{2}
$$

then,

$$
\begin{gathered}
\left(1+\frac{w}{n}\right)^{n}:=\left(1+\frac{\alpha_{1}}{n}\right)^{n} I_{1}+\left(1+\frac{\alpha_{2}}{n}\right)^{n} I_{2} \\
\lim _{n \rightarrow \infty}\left(1+\frac{w}{n}\right)^{n}:=\lim _{n \rightarrow \infty}\left(1+\frac{\alpha_{1}}{n}\right)^{n} I_{1}+\lim _{n \rightarrow \infty}\left(1+\frac{\alpha_{2}}{n}\right)^{n} I_{2} \\
=\frac{1}{2}\left(e^{\alpha_{1}}+e^{\alpha_{2}}\right)+\frac{i_{k} i_{k-1}}{2}\left(e^{\alpha_{1}}-e^{\alpha_{2}}\right) \\
=e^{z_{1}}\left\{\frac{1}{2}\left(e^{-i_{k-1} z_{2}}+e^{i_{k-1} z_{2}}\right)+\frac{i_{k} i_{k-1}}{2}\left(e^{-i_{k-1} z_{2}}-e^{i_{k-1} z_{2}}\right)\right\} \\
=e^{z_{1}}\left(\cos \left(z_{2}\right)+i_{k} \sin \left(z_{2}\right)\right)
\end{gathered}
$$

thus

$$
\begin{equation*}
e^{z_{1}+z_{2} i_{k}}=\lim _{n \rightarrow \infty}\left(1+\frac{w}{n}\right)^{n}=e^{z_{1}}\left(\cos \left(z_{2}\right)+i_{k} \sin \left(z_{2}\right)\right) . \tag{3.17}
\end{equation*}
$$

Corollary 3.5. If $e^{z_{1} i_{k}}=\cos \left(z_{1}\right)+i_{k} \sin \left(z_{1}\right)$ and $e^{-z_{1} i_{k}}=\cos \left(z_{1}\right)-i_{k} \sin \left(z_{1}\right)$. Then,

$$
\cos \left(z_{1}\right):=\frac{e^{z_{1} i_{k}}+e^{-z_{1} i_{k}}}{2} \text { and } \sin \left(z_{1}\right):=\frac{e^{z_{1} i_{k}}-e^{-z_{1} i_{k}}}{2 i_{k}} .
$$

Proof. Simply on adding and subtracting we get desired result.
We define the sine and cosine formulae and transition formula in multicomplex space as.

Definition 3.6. Let $w=\left\{z_{1}+z_{2} i_{k} \mid z_{1}, z_{2} \in \mathbb{C}^{k-1}\right\}$. Then cosine and sine formulae for the multicomplex space are defined as

$$
\begin{align*}
& \cos (w):=\frac{e^{w i_{k}}+e^{-w i_{k}}}{2} \tag{3.18}\\
& \sin (w):=\frac{e^{w i_{k}}-e^{-w i_{k}}}{2 i_{k}} \tag{3.19}
\end{align*}
$$

Corollary 3.7. Let I_{1} and I_{2} be the basis for the multicomplex space \mathbb{C}^{k}, where $I_{1}=$ $\frac{1+i_{k} i_{k-1}}{2}$ and $I_{2}=\frac{1-i_{k} i_{k-1}}{2}$ and $w=\left\{z_{1}+z_{2} i_{k} \mid z_{1}, z_{2} \in \mathbb{C}^{k-1}\right\}=\left(z_{1}-z_{2} i_{k-1}\right) I_{1}+\left(z_{1}+\right.$ $\left.z_{2} i_{k-1}\right) I_{2}$. Then the transition formula for multicomplex space as

$$
\binom{z_{1}}{z_{2}}=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
-\frac{1}{2 i_{k-1}} & \frac{1}{2 i_{k-1}}
\end{array}\right)\binom{\alpha_{1}}{\alpha_{2}}
$$

where $\alpha_{1}:=\left(z_{1}-z_{2} i_{k-1}\right)$ and $\alpha_{2}:=\left(z_{1}+z_{2} i_{k-1}\right)$.
We prove the following theorem given below.
Theorem 3.8. Let $I_{1}=\frac{1+i_{k} i_{k-1}}{2}$ and $I_{2}=\frac{1-i_{k} i_{k-1}}{2}$. Then

$$
\begin{align*}
& \cos \left(\frac{i_{k}}{2}\right):=\frac{1}{2} e^{-\frac{1}{2}}\left(e^{I_{1}}+e^{I_{2}}\right) \tag{3.20}\\
& \sin \left(\frac{i_{k}}{2}\right):=\frac{1}{2 i_{k-1}} e^{-\frac{1}{2}}\left(e^{I_{1}}-e^{I_{2}}\right) \tag{3.21}
\end{align*}
$$

Proof. $I_{1}=1 . I_{1}+0 . I_{2}, I_{2}=0 . I_{1}+1 . I_{2}$, then we have

$$
\begin{align*}
& e^{I_{1}}=e . I_{1}+1 . I_{2}=e^{\frac{1+i_{k} i_{k-1}}{2}}=e^{\frac{1}{2}}\left(\cos \left(\frac{i_{k}}{2}\right)+i_{k-1} \sin \left(\frac{i_{k}}{2}\right)\right) \tag{3.22}\\
& e^{I_{2}}=1 . I_{1}+e . I_{2}=e^{\frac{1+i_{k} i_{k-1}}{2}}=e^{\frac{1}{2}}\left(\cos \left(\frac{i_{k}}{2}\right)-i_{k-1} \sin \left(\frac{i_{k}}{2}\right)\right) \tag{3.23}
\end{align*}
$$

Theorem 3.9. Let $w=\left\{z_{1}+z_{2} i_{k} \mid z_{1}, z_{2} \in \mathbb{C}^{k-1}\right\}$ be any multicomplex number. Then

$$
\lim _{w \rightarrow \lambda} \frac{w^{n}-\lambda^{n}}{w-\lambda}=n \lambda^{n-1}
$$

Proof. Let $w:=\alpha_{1} I_{1}+\alpha_{2} I_{2}$ and $\lambda:=\lambda_{1} I_{1}+\lambda_{2} I_{2}$, where I_{1}, I_{2} as idempotent basis.

$$
\begin{gathered}
\text { Then } w^{n}:=\alpha_{1}^{n} I_{1}+\alpha_{2}^{n} I_{2} \text { and } \lambda^{n}:=\lambda_{1}^{n} I_{1}+\lambda_{2}^{n} I_{2} \\
\text { where } \lambda:=\left\{\psi_{1}+\psi_{2} i_{k} \mid \psi_{1}, \psi_{2} \in \mathbb{C}^{k-1}\right\}, \\
\text { and } \lambda_{1}:=\psi_{1}-\psi_{2} i_{k-1}, \lambda_{2}:=\psi_{1}+\psi_{2} i_{k-1},
\end{gathered}
$$

Now

$$
\begin{gathered}
\lim _{w \rightarrow \lambda} \frac{w^{n}-\lambda^{n}}{w-\lambda}:=\lim _{w \rightarrow \lambda} \frac{\left(\alpha_{1}^{n}-\lambda_{1}^{n}\right) I_{1}+\left(\alpha_{2}^{n}-\lambda_{2}^{n}\right) I_{2}}{\left(\alpha_{1}-\lambda_{1}\right) I_{1}+\left(\alpha_{2}-\lambda_{2}\right) I_{2}} \\
:=\lim _{w \rightarrow \lambda}\left\{\left(\frac{\alpha_{1}^{n}-\lambda_{1}^{n}}{\alpha_{1}-\lambda_{1}}\right) I_{1}+\left(\frac{\alpha_{2}^{n}-\lambda_{2}^{n}}{\alpha_{2}-\lambda_{2}}\right) I_{2}\right\} \\
:=\lim _{\alpha_{1} \rightarrow \lambda_{1}}\left(\frac{\alpha_{1}^{n}-\lambda_{1}^{n}}{\alpha_{1}-\lambda_{1}}\right) I_{1}+\lim _{\alpha_{2} \rightarrow \lambda_{2}}\left(\frac{\alpha_{2}^{n}-\lambda_{2}^{n}}{\alpha_{2}-\lambda_{2}}\right) I_{2} \\
:=n \lambda_{1}^{n-1} I_{1}+n \lambda_{2}^{n-1} I_{2}=n \lambda^{n-1}
\end{gathered}
$$

$$
\begin{equation*}
\lim _{w \rightarrow \lambda} \frac{w^{n}-\lambda^{n}}{w-\lambda}=n \lambda^{n-1} \tag{3.24}
\end{equation*}
$$

We define the sine and cosine formulae for hyperbolic functions in multicomplex space and prove the theorem given below.

Definition 3.10. Let $w:=z_{1}+z_{2} i_{k} \mid z_{z}, z_{2} \in \mathbb{C}^{k-1}$ be a multicomplex number. Then hyperbolic sine and cosine functions for multicomplex variable are defined as

$$
\begin{align*}
& \sin h w:=\frac{e^{w}-e^{-w}}{2} \tag{3.25}\\
& \cos h w:=\frac{e^{w}+e^{-w}}{2} \tag{3.26}
\end{align*}
$$

We prove the following theorem.
Theorem 3.11. Let $w=\left\{z_{1}+z_{2} i_{k} \mid z_{1}, z_{2} \in \mathbb{C}^{k-1}\right\}$. Then the following hold:

$$
\begin{align*}
& \sin w:=\sin \left(z_{1}+z_{2} i_{k}\right):=\sin z_{1} \cos h z_{2}+i_{k} \cos z_{1} \sin h z_{2} \tag{3.27}\\
& \cos w:=\cos \left(z_{1}+z_{2} i_{k}\right):=\cos z_{1} \cos h z_{2}-i_{k} \sin z_{1} \sin h z_{2} \tag{3.28}\\
& \sin 2 w:=2 \sin w \cos w \tag{3.29}
\end{align*}
$$

$$
\begin{equation*}
\cos 2 w:=\cos ^{2} w-\sin ^{2} w \tag{3.30}
\end{equation*}
$$

Proof. We have

$$
\begin{gathered}
\sin w:=\frac{1}{2 i_{k}}\left(e^{w i_{k}}-e^{-w i_{k}}\right) \\
=\frac{1}{2 i_{k}}\left(e^{\left(z_{1}+z_{2} i_{k}\right) i_{k}}-e^{-\left(z_{1}+z_{2} i_{k}\right) i_{k}}\right) \\
=\frac{1}{2 i_{k}}\left(e^{z_{1} i_{k}-z_{2}}-e^{-z_{1} i_{k}+z_{2}}\right) \\
=\frac{1}{2 i_{k}}\left(e^{-z_{2}}\left(\cos z_{1}+i_{k} \sin z_{1}\right)-e^{z_{2}}\left(\cos z_{1}-i_{k} \sin z_{1}\right)\right) \\
=\sin z_{1}\left(\frac{e^{z_{2}}+e^{-z_{2}}}{2}\right)+i_{k} \cos z_{1}\left(\frac{e^{z_{2}}-e^{-z_{2}}}{2}\right) \\
=\sin z_{1} \cos h z_{2}+i_{k} \cos z_{1} \sin h z_{2},
\end{gathered}
$$

and

$$
\begin{gathered}
\cos w:=\frac{1}{2}\left(e^{w i_{k}}+e^{-w i_{k}}\right) \\
=\frac{1}{2}\left(e^{\left(z_{1}+z_{2} i_{k}\right) i_{k}}+e^{-\left(z_{1}+z_{2} i_{k}\right) i_{k}}\right) \\
=\frac{1}{2}\left(e^{z_{1} i_{k}-z_{2}}+e^{-z_{1} i_{k}+z_{2}}\right) \\
=\frac{1}{2}\left(e^{-z_{2}}\left(\cos z_{1}+i_{k} \sin z_{1}\right)+e^{z_{2}}\left(\cos z_{1}-i_{k} \sin z_{1}\right)\right) \\
=\cos z_{1}\left(\frac{e^{z_{2}}+e^{-z_{2}}}{2}\right)-i_{k} \sin z_{1}\left(\frac{e^{z_{2}}-e^{-z_{2}}}{2}\right) \\
\cos \left(z_{1}+z_{2} i_{k}\right):=\cos z_{1} \cos h z_{2}-i_{k} \sin z_{1} \sin h z_{2}
\end{gathered}
$$

Similarly we can obtain the formula for $\sin 2 w$ and $\cos 2 w$ using the following theorem.

Theorem 3.12. Let $w_{1}=\left\{z_{1}+z_{2} i_{k} \mid z_{1}, z_{2} \in \mathbb{C}^{k-1}\right\}$ and $w_{2}=\left\{z_{3}+z_{4} i_{k} \mid z_{3}, z_{4} \in \mathbb{C}^{k-1}\right\}$ be any two multicomplex numbers. Then the following hold:

$$
\begin{align*}
& \sin \left(w_{1}+w_{2}\right):=\sin w_{1} \cos w_{2}+\cos w_{1} \sin w_{2} \tag{3.31}\\
& \cos \left(w_{1}+w_{2}\right):=\cos w_{1} \cos w_{2}-\sin w_{1} \sin w_{2} \tag{3.32}
\end{align*}
$$

Proof.

$$
\begin{align*}
& \cos w_{1} \cos w_{2}:=\frac{1}{4}\left\{e^{i_{k}\left(w_{1}+w_{2}\right)}+e^{i_{k}\left(w_{1}-w_{2}\right)}+e^{i_{k}\left(w_{2}-w_{1}\right)}+e^{-i_{k}\left(w_{1}+w_{2}\right)}\right\} \tag{3.33}\\
& -\sin w_{1} \sin w_{2}:=\frac{1}{4}\left\{e^{i_{k}\left(w_{1}+w_{2}\right)}-e^{i_{k}\left(w_{1}-w_{2}\right)}-e^{i_{k}\left(w_{2}-w_{1}\right)}+e^{-i_{k}\left(w_{1}+w_{2}\right)}\right\}, \tag{3.34}
\end{align*}
$$

on adding these expressions we get:

$$
\cos w_{1} \cos w_{2}-\sin w_{1} \sin w_{2}=\frac{1}{2}\left\{e^{i_{k}\left(w_{1}+w_{2}\right)}+e^{-i_{k}\left(w_{1}+w_{2}\right)}\right\}=\cos \left(w_{1}+w_{2}\right) .
$$

4. Multicomplex Polynomial

We define the definition given below in multicomplex space, in which if we put $k=2$, bicomplex polynomial (see [15]).

Definition 4.1. Let $w=z_{1}+z_{2} i_{k}=\alpha_{1} I_{1}+\alpha_{2} I_{2}$ be a multicomplex number, where $\alpha_{1}=\left(z_{1}-z_{2} i_{k-1}\right), \alpha_{2}=\left(z_{1}+z_{2} i_{k-1}\right)$ and I_{1}, I_{2} are idempotent basis and let $A_{p}:=$ $\delta_{p} I_{1}+\gamma_{p} I_{2}$ be multicomplex coefficients for $p=0, \cdots, n$. Then $f(w):=\sum_{p=0}^{n} A_{p} w^{p}$ is called the multicomplex polynomial and written as

$$
f(w):=\sum_{p=0}^{n}\left(\delta_{p} \alpha_{1}^{p}\right) I_{1}+\sum_{p=0}^{n}\left(\gamma_{p} \alpha_{2}^{p}\right) I_{2}=f_{1}\left(\alpha_{1}\right) I_{1}+f_{2}\left(\alpha_{2}\right) I_{2} .
$$

If we denote the set of all r_{1} and r_{2} distinct roots of $f_{1}\left(\alpha_{1}\right)$ and $f_{2}\left(\alpha_{2}\right)$ by ξ_{1} and ξ_{2}, and if we denote by ξ the set of all distinct roots of polynomial $f(w)$, then $f(w)$ has $r_{1} \cdot r_{2}$ distinct roots and it is easy to see that $\xi:=\xi_{1} I_{1}+\xi_{2} I_{2}$ and so the structure of the zero set of a multicomplex polynomial $f(w)$ of degree n is fully described by the following lemma.
(i) If both the polynomials $f_{1}\left(\alpha_{1}\right)$ and $f_{2}\left(\alpha_{2}\right)$ are of degree at least one, and if $\xi_{1}=\left\{\mu_{1}, \cdots, \mu_{\sigma}\right\}$ has r_{1} distint roots and $\xi_{2}=\left\{\nu_{1}, \cdots, \nu_{\tau}\right\}$ has r_{2} distinct roots, then the set of the distinct roots of f is given by

$$
\xi:=w_{s, t}=\mu_{s} I_{1}+\nu_{t} I_{2} \mid s=1, \cdots, \sigma, \text { and } t=1, \cdots, \tau .
$$

Example 4.2. Let $f(w)=w^{3}-8$, where $w \in \mathbb{C}^{k}$. Then we have $f_{1}\left(\alpha_{1}\right)=\alpha_{1}^{3}-8$ and $f_{2}\left(\alpha_{2}\right)=\alpha_{2}^{3}-8$ the set of zeros of f_{1} and f_{2} are, respectively

$$
\begin{aligned}
\xi_{1} & :=\left\{\mu_{1}=2, \mu_{2}=-1+i_{k-1} \sqrt{3}, \mu_{3}=-1-i_{k-1} \sqrt{3}\right\} \\
\xi_{2} & :=\left\{\nu_{1}=2, \nu_{2}=-1+i_{k-1} \sqrt{3}, \nu_{3}=-1-i_{k-1} \sqrt{3}\right\}
\end{aligned}
$$

then the set of solutions of f is $\xi:=\left\{w_{s, t}=\mu_{s} I_{1}+\nu_{t} I_{2} \mid s, t=1,2,3\right\}$, which has 9 distinct roots

$$
\begin{aligned}
\xi:= & \left\{2,\left(\frac{1+i_{k-1} \sqrt{3}}{2}\right)+\left(\frac{3 i_{k-1}+\sqrt{3}}{2}\right) i_{k},\left(\frac{1-i_{k-1} \sqrt{3}}{2}\right)+\left(\frac{3 i_{k-1}-\sqrt{3}}{2}\right) i_{k},\right. \\
& \left(\frac{1-i_{k-1} \sqrt{3}}{2}\right)+\left(\frac{-3 i_{k-1}-\sqrt{3}}{2}\right) i_{k},-1+i_{k-1} \sqrt{3},-1-i_{k} \sqrt{3}, \\
& \left.\left(\frac{1-i_{k-1} \sqrt{3}}{2}\right)+\left(\frac{-3 i_{k-1}+\sqrt{3}}{2}\right) i_{k},-1+i_{k} \sqrt{3},-1-i_{k-1} \sqrt{3}\right\} .
\end{aligned}
$$

Example 4.3. Let $f(w):=\left(\frac{1+i_{k} i_{k-1}}{2}\right) w^{5}+\left\{\left(-1-4 i_{k-1}\right)+\left(4-2 i_{k-1}\right) i_{k}\right\} w^{4}+$ $\left\{\left(-11+6 i_{k-1}\right)-\left(12+11 i_{k-1}\right) i_{k}\right\} w^{3}+\left\{\left(\frac{29+26 i_{k-1}}{2}\right)+\left(\frac{-26+47 i_{k-1}}{2}\right) i_{k}\right\} w^{2}+\left\{\left(\frac{13-34 i_{k-1}}{2}\right)\right.$ $\left.+\left(\frac{34+13 i_{k-1}}{2}\right) i_{k}\right\} w+\left(\frac{-11-2 i_{k-1}}{2}\right)+\left(\frac{2-11 i_{k-1}}{2}\right)$. Then
we have

$$
f(w):=f_{1}\left(\alpha_{1}\right) I_{1}+f_{2}\left(\alpha_{2}\right) I_{2}
$$

where

$$
\begin{aligned}
& \quad I_{1}:=\left(\frac{1+i_{k} i_{k-1}}{2}\right), I_{2}:=\left(\frac{1-i_{k} i_{k-1}}{2}\right) \\
& f_{1}\left(\alpha_{1}\right):=\alpha_{1}^{5}+\left(-3-8 i_{k-1}\right) \alpha_{1}^{4}+\left(-22+18 i_{k-1}\right) \alpha_{1}^{3}+\left(38+26 i_{k-1}\right) \alpha_{1}^{2} \\
& +\left(13-34 i_{k-1}\right) \alpha_{1}+\left(-11-2 i_{k-1}\right) \\
& f_{2}\left(\alpha_{2}\right):=\alpha_{2}^{4}-6 i_{k-1} \alpha_{2}^{3}-9 \alpha_{2}^{2} \\
& \xi_{1}:=\left\{\mu_{1}=i_{k-1}, \mu_{2}=1+2 i_{k-1}\right\} \\
& \xi_{2}:=\left\{\nu_{1}=0, \nu_{2}=3 i_{k-1}\right\} \\
& \xi:=\left\{W_{s, t}=\mu_{s} I_{1}+\nu_{t} I_{2} \mid s, t=1,2\right\},
\end{aligned}
$$

has 4 distinct roots.

$$
\xi:=\left\{\frac{i_{k-1}-i_{k}}{2}, 2 i_{k-1}+i_{k},\left(\frac{1+2 i_{k-1}}{2}\right)+\left(\frac{-2+i_{k-1}}{2}\right) i_{k},\left(\frac{1+5 i_{k-1}}{2}\right)+\left(\frac{1+i_{k-1}}{2}\right) i_{k}\right\} .
$$

(ii) If $f_{1}\left(\alpha_{1}\right)=0$, then $\xi_{1}=\mathbb{C}^{k-1}$ and $\xi_{2}=\left\{\nu_{1}, \cdots, \nu_{\tau}\right\}$, where $\tau \leq n$; and $\xi:=w_{t}=\omega I_{1}+\nu_{t} I_{2} \mid \omega \in \mathbb{C}^{k-1}, t=1, \cdots, \tau$. If $f_{2}\left(\alpha_{2}\right)=0$, then $\xi_{2}=\mathbb{C}^{k-1}$ and $\xi_{1}=\left\{\mu_{1}, \cdots, \mu_{\sigma}\right\}$, where $\sigma \leq n$; and

$$
\xi:=w_{s}=\mu_{s} I_{1}+\omega I_{2} \mid \omega \in \mathbb{C}^{k-1}, s=1, \cdots, \sigma
$$

Example 4.4. Let $f(w):=\left(1-i_{k} i_{k-1}\right) w^{2}+i_{k}-i_{k-1}$. Then
we have

$$
f(w):=f_{1}\left(\alpha_{1}\right) I_{1}+f_{2}\left(\alpha_{2}\right) I_{2}
$$

where

$$
\begin{gathered}
I_{1}:=\left(\frac{1+i_{k} i_{k-1}}{2}\right), I_{2}:=\left(\frac{1-i_{k} i_{k-1}}{2}\right) \\
f_{1}\left(\alpha_{1}\right):=2\left(\alpha_{1}^{2}-i_{k-1}\right) I_{1} \\
f_{1}\left(\alpha_{1}\right):=0 \\
\xi:=w_{s}=\mu_{s} I_{1}+\omega I_{2}=\left\{\left. \pm\left(\frac{1+i_{k-1}}{\sqrt{2}}\right) I_{1}+\omega I_{2} \right\rvert\, \omega \in \mathbb{C}^{k-1}\left(\omega=\sqrt{i_{k-1}}\right)\right\}
\end{gathered}
$$

(iii) If all the coefficients A_{p} with the exception of $A_{0}=\delta_{0} I_{1}+\gamma_{0} I_{2}$ are not multicomplex multiples of I_{1} (respectively I_{2}), but A_{0} has $\gamma_{0} \neq 0$ (respectively $\delta_{0} \neq 0$), then polynomial f has no root.
Example 4.5. Let $f(w):=\left(1-i_{k} i_{k-1}\right) w^{2}+1+i_{k}-i_{k-1}-i_{k} i_{k-1}$. Then we have

$$
f(w):=f_{1}\left(\alpha_{1}\right) I_{1}+f_{2}\left(\alpha_{2}\right) I_{2}
$$

where

$$
f_{1}\left(\alpha_{1}\right)=2\left(\alpha_{1}^{2}-i_{k-1}\right) \text { and } f_{2}\left(\alpha_{2}\right)=2
$$

clearly polynomial has no root.
(iv) (Analogue of Fundamental Theorem of Algebra for Multicomplex Polynomials)
Let $f(w):=\sum_{p=0}^{n} A_{p} w^{p}$ be multicomplex Polynomial, where $A_{p}:=\delta_{p} I_{1}+\gamma_{p} I_{2}$, and $w^{p}=\alpha_{1}^{p} I_{1}+\alpha_{2}^{p} I_{2}$, with $\alpha_{1}=\left(z_{1}-z_{2} i_{k-1}\right), \alpha_{2}=\left(z_{1}+z_{2} i_{k-1}\right)$. If all the coefficients A_{p} with the exception of $A_{0}=\delta_{0} I_{1}+\gamma_{0} I_{2}$ are not multicomplex multiples of I_{1} (respectively I_{2}), but A_{0} has $\gamma_{0} \neq 0$ (respectively $\delta_{0} \neq 0$), then polynomial f has no root. In all other cases f has at least one root.

Remark 4.6. Let $w=z_{1}+z_{2} i_{k}=\alpha_{1} I_{1}+\alpha_{2} I_{2}$ be a multicomplex number and $f(w):=$ $\sum_{p=0}^{n} A_{p} w^{p}$ be any multicomplex polynomial. If we put $k=2$, then it becomes Bicomplex polynomial, and if put $k=3$, then becomes tricomplex polynomial.

Remark 4.7. A multicomplex polynomial may not have a unique factorization into linear polynomials.

Example 4.8. Let $f(w):=w^{3}+1$. Then we have

$$
\begin{gathered}
f_{1}\left(\alpha_{1}\right)=\alpha_{1}^{3}+1, f_{2}\left(\alpha_{2}\right)=\alpha_{2}^{3}+1 \\
\xi_{1}=\left\{\mu_{1}=-1, \mu_{2}=\frac{1+\sqrt{3} i_{k}}{2}, \mu_{3}=\frac{1-\sqrt{3} i_{k}}{2}\right\} \\
\xi_{2}=\left\{\nu_{1}=-1, \nu_{2}=\frac{1+\sqrt{3} i_{k}}{2}, \nu_{3}=\frac{1-\sqrt{3} i_{k}}{2}\right\} \\
\xi:=w_{s, t}=\mu_{s} I_{1}+\nu_{t} I_{2} \mid s, t=1,2,3 \\
w^{3}+1:=(w+1)\left(w-\frac{1}{2}-\frac{\sqrt{3}}{2} i_{k}\right)\left(w-\frac{1}{2}+\frac{\sqrt{3}}{2} i_{k}\right) \\
w^{3}+1:=(w+1)\left(w-\frac{1}{2}-\frac{\sqrt{3}}{2} i_{k-1}\right)\left(w-\frac{1}{2}+\frac{\sqrt{3}}{2} i_{k-1}\right) .
\end{gathered}
$$

Note: It is clear from what we have indicated that the multicomplex polynomials do not satisfy the Fundamental theorem of algebra in its original form.
Theorem 4.9 (Theorem 2, [16]). Let $w=z_{1}+z_{2} i_{k}$ be any multicomplex number. Then the functions \sin , \cos and exponential in the form of the power series is defined as

$$
\begin{align*}
& \sin w:=\sin \left(z_{1}+z_{2} i_{k}\right):=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}\left(z_{1}+z_{2} i_{k}\right)^{2 n-1}}{(2 n-1)!} \tag{4.1}\\
& \cos w:=\cos \left(z_{1}+z_{2} i_{k}\right):=\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(z_{1}+z_{2} i_{k}\right)^{2 n}}{(2 n)!} \tag{4.2}
\end{align*}
$$

$$
\begin{equation*}
\exp (w):=e^{z_{1}+z_{2} i_{k}}=\sum_{n=0}^{\infty} \frac{\left(z_{1}+z_{2} i_{k}\right)^{n}}{(n)!} \tag{4.3}
\end{equation*}
$$

Definition 4.10 (Definition 1, [14]). A function $f: \mathbb{C}^{k} \rightarrow \mathbb{C}^{k}$ is said to be multicomplex differentiable at $w_{0} \in \mathbb{C}^{k}$ if the limit

$$
\begin{equation*}
\lim _{w \rightarrow w_{0}} \frac{f(w)-f\left(w_{0}\right)}{w-w_{0}} \tag{4.4}
\end{equation*}
$$

exists. This limit is called first derivative of f at w_{0} and will be denoted by $f^{\prime}\left(w_{0}\right)$.
Definition 4.11 (Definition 2, [14]). A function f is said to be holomorphic in an open set $U \subset \mathbb{C}^{k}$ if $f^{\prime}(w)$ exits for all $w \in U$.
This definition is not very restrictive, most usual functions are holomorphic in \mathbb{C}^{k}. Examples of the non holomorphic functions are the modulus and absolute value functions at zero.

Theorem 4.12 (Theorem 2, [14]). Let $w=\left\{z_{1}+z_{2} i_{k} \mid z_{1}, z_{2} \in \mathbb{C}^{k-1}\right\}$ be a multicomplex number and f be a function such that $f: U \subset \mathbb{C}^{k} \rightarrow \mathbb{C}^{k}$ defined by

$$
\begin{equation*}
f\left(z_{1}+z_{2} i_{k}\right)=f_{1}\left(z_{1}, z_{2}\right)+f_{2}\left(z_{1}, z_{2}\right) i_{k} . \tag{4.5}
\end{equation*}
$$

Then the following are equivalent,
(i) f is holomorphic in U,
(ii) f_{1} and f_{2} are holomorphic in z_{1} and z_{2} and satisfy the multicomplex CauchyRiemann equations:

$$
\begin{equation*}
\frac{\partial f_{1}}{\partial z_{1}}=\frac{\partial f_{2}}{\partial z_{2}} \text { and } \frac{\partial f_{2}}{\partial z_{1}}=-\frac{\partial f_{1}}{\partial z_{2}} \tag{4.6}
\end{equation*}
$$

(iii) f can be represented, near every point $w_{0} \in U$, by Taylor series.

We prove the theorem given below.
Theorem 4.13. Let $w=z_{1}+z_{2} i_{k}$ a multicomplex number, and $\exp (w), \sin w$ and $\cos w$ are holomorphic in an open set $U \subset \mathbb{C}^{k}$. Then the following hold:

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} w} w^{n}:=n w^{n-1} \text { where } n \in \mathbb{N} \tag{4.7}\\
& \frac{\mathrm{~d}}{\mathrm{~d} w} \exp (w):=\exp (w) \tag{4.8}\\
& \frac{\mathrm{d}}{\mathrm{~d} w} \sin w:=\cos w \tag{4.9}\\
& \frac{\mathrm{~d}}{\mathrm{~d} w} \cos w:=-\sin w . \tag{4.10}
\end{align*}
$$

Proof.

$$
\frac{\mathrm{d}}{\mathrm{~d} w} \exp (w):=\frac{\mathrm{d}}{\mathrm{~d} w} \sum_{n=0}^{\infty} \frac{1}{n!} w^{n}=\sum_{n=1}^{\infty} \frac{n}{n!} w^{n-1}
$$

$$
\begin{gathered}
=\sum_{n=1}^{\infty} \frac{1}{(n-1)!} w^{n-1} \\
=\sum_{n=0}^{\infty} \frac{1}{n!} w^{n}=\exp (w) \\
\frac{\mathrm{d}}{\mathrm{~d} w} \sin w:=\frac{\mathrm{d}}{\mathrm{~d} w}\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(z_{1}+z_{2} i_{k}\right)^{2 n+1}}{(2 n+1)!}\right) \\
=\sum_{n=1}^{\infty} \frac{(-1)^{n}(2 n+1)\left(z_{1}+z_{2} i_{k}\right)^{2 n}}{(2 n+1)!} \\
=\sum_{n=1}^{\infty} \frac{(-1)^{n}\left(z_{1}+z_{2} i_{k}\right)^{2 n}}{(2 n)!}=\cos w .
\end{gathered}
$$

Similarly we can prove,

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} w} \cos w & :=-\sin w \\
\frac{\mathrm{~d}}{\mathrm{~d} w} w^{n} & :=n w^{n-1}
\end{aligned}
$$

Definition 4.14 (Definition 3, [14]). Let $\mathbb{C}^{k}:=w=\left\{z_{1}+z_{2} i_{k} \mid z_{1}, z_{2} \in \mathbb{C}^{k-1}\right\}$ be a multicomplex number, and let $f: U \subset \mathbb{C}^{k} \rightarrow \mathbb{C}^{k}$ be a multicomplex holomorphic function in U. Then f can be expanded in a Taylor series about a real point a as follows:

$$
\begin{align*}
f(a+ & \left.h i_{1}+\cdots+h i_{k}\right):=f(a)+h\left(i_{1}+\cdots+i_{k}\right) f^{\prime}(a)+h^{2}\left(i_{1}+\cdots+i_{k}\right)^{2} \frac{f^{\prime \prime}(a)}{2}+\cdots \\
& +h^{n}\left(i_{1}+\cdots+i_{k}\right)^{n} \frac{f^{(n)}(a)}{n!}+h^{n+1}\left(i_{1}+\cdots+i_{k}\right)^{n+1} \frac{f^{(n+1)}(a)}{(n+1)!}+O\left(h^{(n+2)}\right) \tag{4.11}
\end{align*}
$$

where f^{n} denotes the $n^{t h}$ order derivative, and

$$
\begin{equation*}
\left(i_{1}+\cdots+i_{k}\right)^{n}:=\sum_{\substack{x_{1}, x_{2}, \cdots, x_{k} \\ x_{1}+x_{2}+\cdots+x_{k}=n}} \frac{n!}{x_{1}!\cdots x_{k}!} i_{1}^{x_{1}} \cdots i_{k}^{x_{k}} \tag{4.12}
\end{equation*}
$$

Using the above definition we can prove the theorem given below.
Theorem 4.15. Let $f, g: U \subset \mathbb{C}^{k} \rightarrow \mathbb{C}^{k}$ be multicomplex holomorphic functions in U and if $f(a)=0$ and $g(a)=0$, but $g^{\prime}(a) \neq 0$. Then

$$
\begin{equation*}
\lim _{w \rightarrow a} \frac{f(w)}{g(w)}=\frac{f^{\prime}(a)}{g^{\prime}(a)} \tag{4.13}
\end{equation*}
$$

and hence, in general, if $f^{n}(a)=0=g^{n}(a)$, but $g^{(n+1)}(a) \neq 0$. Then

$$
\begin{equation*}
\lim _{w \rightarrow a} \frac{f(w)}{g(w)}=\frac{f^{n+1}(a)}{g^{n+1}(a)} \tag{4.14}
\end{equation*}
$$

Proof. From Taylor series we have,

$$
\begin{align*}
f\left(a+h\left(i_{1}+\cdots+i_{k}\right)\right) & :=\sum_{r=0}^{n+1} h^{r}\left(i_{1}+\cdots+i_{k}\right)^{r} \frac{f^{(r)}(a)}{r!}+O\left(h^{(n+2)}\right) \tag{4.15}\\
g\left(a+h\left(i_{1}+\cdots+i_{k}\right)\right) & :=\sum_{r=0}^{n+1} h^{r}\left(i_{1}+\cdots+i_{k}\right)^{r} \frac{g^{(r)}(a)}{r!}+O\left(h^{(n+2)}\right) .
\end{align*}
$$

Put $a+h\left(i_{1}+\cdots+i_{k}\right)=w$.
Then $h\left(i_{1}+\cdots+i_{k}\right)=w-a$.

$$
\begin{aligned}
& f(w):=\sum_{r=0}^{n+1}(w-a)^{r} \frac{f^{(r)}(a)}{r!}+O\left(h^{(n+2)}\right) \\
& g(w):=\sum_{r=0}^{n+1}(w-a)^{r} \frac{f^{(r)}(a)}{r!}+O\left(h^{(n+2)}\right) \\
& \frac{f(w)}{g(w)}:=\frac{\sum_{r=0}^{n+1}(w-a)^{r} \frac{f^{(r)}(a)}{r!}+O\left(h^{(n+2)}\right)}{\sum_{r=0}^{n+1}(w-a)^{r} \frac{f(r)(a)}{r!}+O\left(h^{(n+2)}\right)}
\end{aligned}
$$

If $f(a)=0=g(a)$, but $g^{\prime}(a) \neq 0$. Then

$$
\lim _{w \rightarrow a} \frac{f(w)}{g(w)}=\frac{f^{\prime}(a)}{g^{\prime}(a)}
$$

If $f^{\prime}(a)=0=g^{\prime}(a)$, but $g^{\prime \prime}(a) \neq 0$, then

$$
\lim _{w \rightarrow a} \frac{f(w)}{g(w)}=\frac{f^{\prime \prime}(a)}{g^{\prime \prime}(a)}
$$

Hence in general, if $f^{n}(a)=0=g^{n}(a)$, but $g^{(n+1)}(a) \neq 0$. Then

$$
\lim _{w \rightarrow a} \frac{f(w)}{g(w)}=\frac{f^{n+1}(a)}{g^{n+1}(a)}
$$

5. Multicomplex Matrices

We define the definition for the multicomplex matrices given below, in which if we put $k=2$ definition for bicomplex matrices (see [17]).
Definition 5.1 (Multicomplex Matrices). The set of $m \times n$ matrices $\mathbb{C}_{m \times n}^{k}$ with multicomplex entries, is denoted as $A:=\left\{\left(a_{l j}\right) \in \mathbb{C}_{m \times n}^{k}, 1 \leq l \leq m, 1 \leq j \leq n\right\}=$ $B_{i_{k}} I_{x}+C_{i_{k}} I_{y}:=B_{i_{k-1}} I_{x}+C_{i_{k-1}} I_{y}$, where $B_{i_{k}}, C_{i_{k}} \in \mathbb{C}_{m \times n}^{k-1}$ and $B_{i_{k-1}}, C_{i_{k-1}} \in \mathbb{C}_{m \times n}^{k-1}$ and $I_{x}=\frac{1+i_{k} i_{k-1}}{2}, I_{y}=\frac{1-i_{k} i_{k-1}}{2}$.
Corollary 5.2. We can do easily the following results in the field of multicomplex space: (i) Let A be an $n \times n$ multicomplex matrix

$$
A=B_{i_{k}} I_{1}+C_{i_{k}} I_{2}:=B_{i_{k-1}} I_{x}+C_{i_{k-1}} I_{y}
$$

then its determinant is given by

$$
\begin{equation*}
\operatorname{det} A=\operatorname{det} B_{i_{k}} I_{x}+\operatorname{det} C_{i_{k}} I_{y}:=\operatorname{det} B_{i_{k-1}} I_{x}+\operatorname{det} C_{i_{k-1}} I_{y}, \tag{5.1}
\end{equation*}
$$

(ii) Let A and B be any two square multicomplex matrices then

$$
\begin{equation*}
\operatorname{det}(A B)=\operatorname{det} A \cdot \operatorname{det} B \tag{5.2}
\end{equation*}
$$

(iii) Let $A=B_{i_{k}} I_{x}+C_{i_{k}} I_{y}:=B_{i_{k-1}} I_{x}+C_{i_{k-1}} I_{y} \in \mathbb{C}_{n \times n}^{k}, B_{i_{k}}, C_{i_{k}} \in \mathbb{C}_{n \times n}^{k}$ and $B_{i_{k-1}}, C_{i_{k-1}}$ $\in \mathbb{C}_{n \times n}^{k-1}$, be a multicomplex matrix. Then A is invertible if and only if $B_{i_{k}}, C_{i_{k}}$ are invertible in $\mathbb{C}_{n \times n}^{k}$ and $B_{i_{k-1}}, C_{i_{k-1}}$ are invertible in $\mathbb{C}_{n \times n}^{k-1}$.

We define the definition for the eigenvalues of a matrix in multicomplex space in which if we put $k=2$ then the definition of eigenvalues for bicomplex matrices (see [17]).
Definition 5.3 (Eigenvalues for Multicomplex Matrices). Let $A:=\left\{\left(a_{l j}\right) \in\right.$ $\left.\mathbb{C}_{m \times n}^{k}=A_{1} I_{x}+A_{2} I_{y}\right\}$ and $A u=\lambda u$ which is equivalent to

$$
\left\{\begin{array}{l}
A_{1} u_{1}=\lambda_{1} u_{1} \\
A_{2} u_{2}=\lambda_{2} u_{2}
\end{array}\right.
$$

Then λ is called the eigenvalue of the multicomplex matrix A corresponding to eigenvector u where $\lambda:=\lambda_{1} I_{x}+\lambda_{2} I_{y} \in \mathbb{C}^{k}$ and $u=u_{1} I_{x}+u_{2} I_{y}$. If λ is not a zero divisor and $u_{1} \neq 0, u_{2} \neq 0$ then λ is an eigenvalue of A if and only if λ_{1} and λ_{2} be an eigenvalue of A_{1} and A_{2} corresponding to eigenvector of u_{1} and u_{2}.

We define and prove the following theorem given bellow.
Theorem 5.4. Let $A:=\left\{\left(a_{l j}\right) \in \mathbb{C}_{m \times n}^{k}=A_{1} I_{x}+A_{2} I_{y}\right\}$ and $A u=\lambda u$ which is equivalent to

$$
\left\{\begin{array}{l}
A_{1} u_{1}=\lambda_{1} u_{1} \\
A_{2} u_{2}=\lambda_{2} u_{2}
\end{array}\right.
$$

Where $\lambda=\lambda_{1} I_{x}+\lambda_{2} I_{y} \in \mathbb{C}^{k}$ and $u=u_{1} I_{x}+u_{2} I_{y}$. Then multicomplex matrix A has $\left.\left\{\lambda=p_{1} \cdot q_{1}\right\}\right\}$ distinct eigenvalues if and only if A_{1} has $\left\{\lambda_{1}=p_{1}\right\}$ distinct eigenvalues and A_{2} has $\left\{\lambda_{2}=q_{1}\right\}$ distinct eigenvalues.
Proof. We have $\lambda=\left\{\alpha_{s} I_{x}+\beta_{t} I_{y} \mid 1 \leq s \leq p_{1}, 1 \leq t \leq q_{1}\right\}$

$$
\begin{gathered}
=\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p_{1}}\right\} I_{x}+\left\{\beta_{1}, \beta_{2}, \cdots, \beta_{q_{1}}\right\} I_{y}=\lambda_{1} I_{x}+\lambda_{2} I_{y} \\
A u=\lambda u \Rightarrow\left(A_{1} I_{x}+A_{2} I_{y}\right) u=\left(\lambda_{1} I_{x}+\lambda_{2} I_{y}\right) u \\
\left\{\begin{array}{l}
A_{1} u_{1}=\lambda_{1} u_{1}, \\
A_{2} u_{2}=\lambda_{2} u_{2} .
\end{array}\right.
\end{gathered}
$$

Conversely: If $\lambda_{1}=\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p_{1}}\right\}, \lambda_{2}=\left\{\beta_{1}, \beta_{2}, \cdots, \beta_{q_{1}}\right\}$

$$
\begin{gathered}
A u=\left(A_{1} I_{x}+A_{2} I_{y}\right) u=\left(\lambda_{1} I_{x}+\lambda_{2} I_{y}\right) u \\
A u=\lambda u .
\end{gathered}
$$

Implies that

$$
\lambda=\left\{\lambda_{1} I_{x}+\lambda_{2} I_{y}=\alpha_{s} I_{x}+\beta_{t} I_{y} \mid 1 \leq s \leq p_{1}, 1 \leq t \leq q_{1}\right\} .
$$

Example 5.5. Take

$$
\begin{gathered}
A_{2,2}=\left(\begin{array}{cc}
1-i_{k-1}+i_{k}+i_{k-1} i_{k} & 1+i_{k-1}+i_{k}-i_{k-1} i_{k} \\
1-i_{k-1}-i_{k}+i_{k-1} i_{k} & -1+i_{k-1}+i_{k}-i_{k-1} i_{k}
\end{array}\right) \\
A=A_{1} I_{x}+A_{2} I_{y} \\
A=\left(\begin{array}{cc}
2\left(1-i_{k-1}\right) & 0 \\
2 & -2
\end{array}\right) I_{x}+\left(\begin{array}{cc}
0 & 2\left(1+i_{k-1}\right) \\
-2 i_{k-1} & 2 i_{k-1}
\end{array}\right) I_{y} \\
\operatorname{det}(A-\lambda I):=\lambda^{2}-2 i_{k} \lambda+4\left(i_{k-1}-1\right) \\
\operatorname{det}\left(A_{1}-\lambda_{1} I\right):=\lambda_{1}^{2}+2 i_{k-1} \lambda_{1}+4\left(i_{k-1}-1\right) \\
\operatorname{det}\left(A_{2}-\lambda_{2} I\right):=\lambda_{2}^{2}-2 i_{k} \lambda_{2}+4\left(i_{k-1}-1\right) \\
\lambda=\left\{\left(-i_{k-1}+\sqrt{\left.3-4 i_{k-1}\right)}\right) I_{x}+\left(i_{k-1}+\sqrt{3-4 i_{k-1}}\right) I_{y},\left(-i_{k-1}+\sqrt{3-4 i_{k-1}}\right) I_{x}+\left(i_{k-1}-\right.\right. \\
\sqrt{\left.3-4 i_{k-1}\right) I_{y},\left(-i_{k-1}-\sqrt{3-4 i_{k-1}}\right) I_{x}+\left(i_{k-1}+\sqrt{3-4 i_{k-1}}\right) I_{y},\left(-i_{k-1}-\sqrt{3-4 i_{k-1}}\right) I_{x}+} \\
\left.\left(i_{k-1}-\sqrt{3-4 i_{k-1}}\right) I_{y}\right\} .
\end{gathered}
$$

Note: If we put $k=2$, we get bicomplex eigenvalues for bicomplex matrix.
Theorem 5.6. Let $A:=\left\{\left(a_{l j}\right) \in \mathbb{C}_{n \times n}^{k}=\left(\alpha_{l j}\right) I_{x}+\left(\beta_{l j}\right) I_{y}, 1 \leq l, j \leq n\right\}$ be any Multicomplex matrix and $\operatorname{det}\left(\lambda I_{n}-A\right)$ be the characteristic polynomial, then the matrix A is zero of $\operatorname{det}\left(\lambda I_{n}-A\right)$.
Proof. We have

$$
\operatorname{det}\left(\lambda I_{n}-A\right):=\operatorname{det}\left(\lambda_{1} I_{n}-\alpha_{l j}\right) I_{x}+\operatorname{det}\left(\lambda_{2} I_{n}-\beta_{l j}\right) I_{y}
$$

where

$$
\begin{gathered}
\operatorname{det}\left(\lambda I_{n}-A\right)=\sum_{p=0}^{n} a_{p} \lambda^{p}=\left(\sum_{p=0}^{n} \delta_{p} \lambda_{1}^{p}\right) I_{x}+\left(\sum_{p=0}^{n} \gamma_{p} \lambda_{2}^{p}\right) I_{y} \\
\operatorname{det}\left(\lambda I_{n}-A\right)=\left(\lambda I_{n}-A\right) \cdot \operatorname{Adj}\left(\lambda I_{n}-A\right)=\operatorname{Adj}\left(\lambda I_{n}-A\right) \cdot\left(\lambda I_{n}-A\right) .
\end{gathered}
$$

And

$$
\operatorname{Adj}\left(\lambda I_{n}-A\right)=\sum_{p=0}^{n-1} \omega_{p} \lambda^{p}=\left(\sum_{p=0}^{n-1} \phi_{p} \lambda_{1}^{p}\right) I_{x}+\left(\sum_{p=0}^{n-1} \psi_{p} \lambda_{2}^{p}\right) I_{y}
$$

Take

$$
A=A_{1} I_{x}+A_{2} I_{y}, \lambda=\lambda_{1} I_{x}+\lambda_{2} I_{y} .
$$

Then we have

$$
\begin{gathered}
\phi_{n-1}=\delta_{n} I \\
\phi_{n-2}-A_{1} \phi_{n-1}=\delta_{n-1} I \\
\phi_{n-3}-A_{1} \phi_{n-2}=\delta_{n-2} I \\
\vdots \ddots \vdots \\
\phi_{0}-A_{1} \phi_{1}=\delta_{1} I \\
-A_{1} \phi_{0}=\delta_{0} I .
\end{gathered}
$$

And

$$
\begin{gathered}
\psi_{n-1}=\gamma_{n} I \\
\psi_{n-2}-A_{1} \psi_{n-1}=\gamma_{n-1} I \\
\psi_{n-3}-A_{1} \psi_{n-2}=\gamma_{n-2} I \\
\vdots \ddots \vdots \\
\psi_{0}-A_{1} \psi_{1}=\gamma_{1} I
\end{gathered}
$$

$$
-A_{1} \psi_{0}=\gamma_{0} I
$$

Multiplying by $A_{1}^{n}, A_{1}^{n-1}, \cdots, A_{1}, I$

$$
\begin{gather*}
A_{1}^{n} \phi_{n-1}=A_{1}^{n} \delta_{n} I \\
A_{1}^{n-1} \phi_{n-2}-A_{1}^{n} \phi_{n-1}=A_{1}^{n-1} \delta_{n-1} I \\
A_{1}^{n-2} \phi_{n-3}-A_{1}^{n-1} \phi_{n-2}=A_{1}^{n-2} \delta_{n-2} I \\
\vdots \ddots \\
\vdots \\
A_{1} \phi_{0}-A_{1}^{2} \phi_{1}=A_{1} \delta_{1} I \\
-A_{1} \phi_{0}=\delta_{0} I \tag{5.3}\\
\delta_{n} A_{1}^{n}+\delta_{n-1} A_{1}^{n-1}+\cdots+\delta_{1} A_{1}+\delta_{0} I=0
\end{gather*}
$$

Similarly multiplying by $A_{2}^{n}, A_{2}^{n-1}, \cdots, A_{2}, I$.
We have

$$
\begin{equation*}
\gamma_{n} A_{2}^{n}+\gamma_{n-1} A_{2}^{n-1}+\cdots+\gamma_{1} A_{2}+\psi_{0} I=0 \tag{5.4}
\end{equation*}
$$

From above equation we have

$$
\begin{equation*}
a_{n} A^{n}+a_{n-1} A^{n-1}+\cdots+a_{1} A+a_{0} I=0 \tag{5.5}
\end{equation*}
$$

Theorem 5.7. Let $A:=\left\{\left(a_{l j}\right) \in \mathbb{C}_{n \times n}^{k}=A_{1} I_{x}+A_{2} I_{y}\right\}$ be any Multicomplex matrix, then A is zero of $\operatorname{det}\left(\lambda I_{n}-A\right)$ if and only if A_{1} is zero of $\operatorname{det}\left(\lambda_{1} I_{n}-A_{1}\right)$ and A_{2} is zero of $\operatorname{det}\left(\lambda_{2} I_{n}-A_{2}\right)$ where $\lambda=\lambda_{1} I_{x}+\lambda_{2} I_{y}$.
Proof. Very simple, can be easily proved.
Example 5.8. From above example clearly

$$
\begin{aligned}
f(A) & :=A^{2}-2 i_{k} A+4\left(i_{k-1}-1\right)=0 \\
f_{1}\left(A_{1}\right) & :=A_{1}^{2}+2 i_{k-1} A_{1}+4\left(i_{k-1}-1\right)=0 \\
f_{2}\left(A_{2}\right) & :=A_{2}^{2}-2 i_{k} A_{2}+4\left(i_{k-1}-1\right)=0 .
\end{aligned}
$$

6. Kronecker Product on Multicomplex Space

The following information is interpreted from the paper On the history of Kronecker product by Henderson, Pukelsheim and Searle (see [7]). Apparently, the first documented work on Kronecker products was written by Johann Georg Zehfuss between 1858 and 1868.

Now we do it for the multicomplex space.
Definition 6.1 (Kronecker Product). Let A and B are Multicomplex valued matrices, and if $A=\left(a_{l j}\right) \in \mathbb{C}_{m \times n}^{k}, B=\left(b_{r s}\right) \in \mathbb{C}_{p \times q}^{k}$ then their Kronecker product is denoted by $A \otimes B$ and is defined as

$$
A \otimes B=\left(a_{l j} B\right) \in \mathbb{C}_{m p \times n q}^{k}=\left(\begin{array}{cccc}
a_{1,1} B & a_{1,2} B & \cdots & a_{1, n} B \\
a_{2,1} B & a_{2,2} B & \cdots & a_{2, n} B \\
\vdots & \vdots & \ddots & \vdots \\
a_{m, 1} B & a_{m, 2} B & \cdots & a_{m, n} B
\end{array}\right)
$$

Which imply

$$
A \otimes B=\left(\alpha_{l j} B_{1}\right) I_{x}+\left(\beta_{l j} B_{2}\right) I_{y}=\left(\begin{array}{ccc}
\alpha_{1,1} B_{1} I_{x}+\beta_{1,1} B_{2} I_{y} & \cdots & \alpha_{1, n} B_{1} I_{x}+\beta_{1, n} B_{2} I_{y} \\
\alpha_{2,1} B_{1} I_{x}+\beta_{2,1} B_{2} I_{y} & \cdots & \alpha_{2, n} B_{1} I_{x}+\beta_{2, n} B_{2} I_{y} \\
\vdots & \ddots & \vdots \\
\alpha_{m, 1} B_{1} I_{x}+\beta_{m, 1} B_{2} I_{y} & \cdots & \alpha_{m, n} B_{1} I_{x}+\beta_{m, n} B_{2} I_{y}
\end{array}\right)
$$

where $A=\left\{\alpha_{l j} I_{x}+\beta_{l j} I_{y} \mid 1 \leq l \leq m, 1 \leq j \leq n\right\}$ and $B=B_{1} I_{x}+B_{2} I_{y}$.
Clearly $A \otimes B \neq B \otimes A$.
We do the theorem for multicomplex space.
Theorem 6.2. Let $A \in \mathbb{C}_{m \times n}^{k}, B \in \mathbb{C}_{r \times s}^{k}, C \in \mathbb{C}_{n \times p}^{k}, D \in \mathbb{C}_{s \times t}^{k}$. Then $(A \otimes B)(C \otimes D)=$ $A C \otimes B D$.

Proof. We have

$$
\begin{aligned}
& A \otimes B=\left(\alpha_{l j} B_{1}\right) I_{x}+\left(\beta_{l j} B_{2}\right) I_{y}=\left(\begin{array}{ccc}
\alpha_{1,1} B_{1} I_{x}+\beta_{1,1} B_{2} I_{y} & \cdots & \alpha_{1, n} B_{1} I_{x}+\beta_{1, n} B_{2} I_{y} \\
\alpha_{2,1} B_{1} I_{x}+\beta_{2,1} B_{2} I_{y} & \cdots & \alpha_{2, n} B_{1} I_{x}+\beta_{2, n} B_{2} I_{y} \\
\vdots & \ddots & \vdots \\
\alpha_{m, 1} B_{1} I_{x}+\beta_{m, 1} B_{2} I_{y} & \cdots & \alpha_{m, n} B_{1} I_{x}+\beta_{m, n} B_{2} I_{y}
\end{array}\right) \\
& C \otimes D=\left(\gamma_{u v} D_{1}\right) I_{x}+\left(\delta_{u v} D_{2}\right) I_{y}=\left(\begin{array}{ccc}
\gamma_{1,1} D_{1} I_{x}+\delta_{1,1} D_{2} I_{y} & \cdots & \gamma_{1, p} D_{1} I_{x}+\delta_{1, p} D_{2} I_{y} \\
\gamma_{2,1} D_{1} I_{x}+\delta_{2,1} D_{2} I_{y} & \cdots & \gamma_{2, p} D_{1} I_{x}+\delta_{2, p} D_{2} I_{y} \\
\vdots & \ddots & \vdots \\
\gamma_{n, 1} D_{1} I_{x}+\delta_{n, 1} D_{2} I_{y} & \cdots & \gamma_{n, p} D_{1} I_{x}+\delta_{n, p} D_{2} I_{y}
\end{array}\right) \\
& (A \otimes B)(C \otimes D)=\left(\begin{array}{ccc}
P & \cdots & Q \\
\vdots & \ddots & \vdots \\
R & \cdots & S
\end{array}\right) \\
& =A C \otimes B D \text {, }
\end{aligned}
$$

where,

$$
\begin{aligned}
P & =\sum_{k=1}^{n}\left(\alpha_{1, k} \gamma_{k, 1} B_{1} D_{1} I_{x}+\beta_{1, k} \delta_{k, 1} B_{2} D_{2} I_{y}\right) \\
Q & =\sum_{k=1}^{n}\left(\alpha_{1, k} \gamma_{k, p} B_{1} D_{1} I_{x}+\beta_{1, k} \delta_{k, p} B_{2} D_{2} I_{y}\right) \\
R & =\sum_{k=1}^{n}\left(\alpha_{m, k} \gamma_{k, 1} B_{1} D_{1} I_{x}+\beta_{m, k} \delta_{k, 1} B_{2} D_{2} I_{y}\right) \\
S & =\sum_{k=1}^{n}\left(\alpha_{m, k} \gamma_{k, p} B_{1} D_{1} I_{x}+\beta_{m, k} \delta_{k, p} B_{2} D_{2} I_{y}\right)
\end{aligned}
$$

The following results can be do easily for the multicomplx space.
(i) Let A and B be non singular Multicomplex valued matrices. Then $(A \otimes B)^{-1}=$ $A^{-1} \otimes B^{-1}$.
(ii) Let $A \in \mathbb{C}_{m \times n}^{k}, B \in \mathbb{C}_{r \times s}^{k}$. Then $(A \otimes B)^{T}=A^{T} \otimes B^{T}$.
(iii) If $A \in \mathbb{C}_{n \times n}^{k}, B \in \mathbb{C}_{m \times m}^{k}$ are normal. Then $A \otimes B$ is normal.
(iv) If $A \in \mathbb{C}_{n \times n}^{k}, B \in \mathbb{C}_{m \times m}^{k}$ are symmetric. Then $A \otimes B$ is symmetric.

Now we prove the theorem in multicomplex space on the eigenvalues.
Theorem 6.3. Let $A \in \mathbb{C}_{n \times n}^{k}, B \in \mathbb{C}_{m \times m}^{k}$ for which $A u=\lambda u$ and $B v=\mu v$. If λ be ($p_{1} . q_{1}$) distinct eigenvalues of A and μ be $\left(p_{2} . q_{2}\right)$ distinct eigenvalues for B then $A \otimes B$ has $\left(p_{1} q_{1} \cdot p_{2} q_{2}\right)$ distinct eigenvalues and written as in the form of $\alpha_{k} \nu_{r} I_{x}+\beta_{s} \sigma_{t} I_{y}$ where $1 \leq k \leq p_{1}, 1 \leq r \leq p_{2}, 1 \leq s \leq q_{1}, 1 \leq t \leq q_{2}$.
Proof. Let $A=A_{1} I_{x}+A_{2} I_{y}, B=B_{1} I_{x}+B_{2} I_{y}, \lambda=\lambda_{1} I_{x}+\lambda_{2} I_{y}, \mu=\mu_{1} I_{x}+\mu_{2} I_{y}$ $A u=\lambda u, B v=\mu v$ with

$$
\left\{\begin{array}{l}
A_{1} u_{1}=\lambda_{1} u_{1} \\
A_{2} u_{2}=\lambda_{2} u_{2}
\end{array}\right.
$$

And

$$
\left\{\begin{array}{l}
B_{1} v_{1}=\mu_{1} v_{1} \\
B_{2} v_{2}=\mu_{2} v_{2}
\end{array}\right.
$$

If $\lambda_{1}=\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p_{1}}$ having p_{1} distinct eigenvalues $\lambda_{2}=\beta_{1}, \beta_{2}, \cdots, \beta_{q_{1}}$ having q_{1} distinct eigenvalues then λ has $m n$ distinct eigenvalues in the form of

$$
\begin{equation*}
\left\{\lambda=\alpha_{k} I_{x}+\beta_{s} I_{y} \mid 1 \leq k \leq p_{1}, 1 \leq s \leq q_{1}\right\} . \tag{6.1}
\end{equation*}
$$

Similarly, if $\mu_{1}=\nu_{1}, \nu_{2}, \cdots, \nu_{p_{2}}$ having p_{2} distinct eigenvalues $\mu_{2}=\sigma_{1}, \sigma_{2}, \cdots, \sigma_{q_{2}}$ having q_{2} distinct eigenvalues then μ has $p_{2} q_{2}$ distinct eigenvalues in the form of

$$
\begin{align*}
& \left\{\mu=\nu_{r} I_{x}+\sigma_{t} I_{y} \mid 1 \leq r \leq p_{2}, 1 \leq t \leq q_{2}\right\} \tag{6.2}\\
& (A \otimes B)(u \otimes v)=\left(\left(A_{1} \otimes B_{1}\right) I_{x}+\left(A_{2} \otimes B_{2}\right) I_{y}\right)(u \otimes v) \\
& =\left(A_{1} \otimes B_{1}\right) I_{x}(u \otimes v)+\left(A_{2} \otimes B_{2}\right) I_{y}(u \otimes v) \\
& =\left(A_{1} u \otimes B_{1} v\right) I_{x}+\left(A_{2} u \otimes B_{2} v\right) I_{y} \\
& =\left(\lambda_{1} u \otimes \mu_{1} v\right) I_{x}+\left(\lambda_{2} u \otimes \mu_{2} v\right) I_{y} \\
& =\lambda_{1} \mu_{1}(u \otimes v) I_{x}+\lambda_{2} \mu_{2}(u \otimes v) I_{y} \\
& (A \otimes B)(u \otimes v)=\left(\lambda_{1} \mu_{1} I_{x}+\lambda_{2} \mu_{2} I_{y}\right)(u \otimes v) \\
& (A \otimes B)(u \otimes v)=(\lambda \cdot \mu)(u \otimes v) \\
& \lambda \mu=\left\{\alpha_{k} \nu_{r} I_{x}+\beta_{s} \sigma_{t} I_{y} \mid 1 \leq k \leq p_{1}, 1 \leq r \leq p_{2}, 1 \leq s \leq q_{1}, 1 \leq t \leq q_{2}\right\}
\end{align*}
$$

Implies that $A \otimes B$ has ($p_{1} q_{1} . p_{2} q_{2}$) distinct eigenvalues.
Example 6.4. Take

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
1-i_{k-1}+i_{k}+i_{k-1} i_{k} & 1+i_{k-1}+i_{k}-i_{k-1} i_{k} \\
1-i_{k-1}-i_{k}+i_{k-1} i_{k} & -1+i_{k-1}+i_{k}-i_{k-1} i_{k}
\end{array}\right) \\
& B=\left(\begin{array}{cccc}
1+i_{k-1}+i_{k}+i_{k-1} i_{k} & 1-i_{k-1}-i_{k}-i_{k-1} i_{k} \\
1+i_{k-1}+i_{k}-i_{k-1} i_{k} & 1-i_{k-1}+i_{k}+i_{k-1} i_{k}
\end{array}\right) \\
& A \otimes B=\left(\begin{array}{cccc}
4\left(1-i_{k-1}\right) & 0 & 0 & 0 \\
0 & 8 & 0 & 0 \\
4 & 0 & -4 & 0 \\
0 & 4\left(1-i_{k-1}\right) & 0 & 4\left(-1+i_{k-1}\right)
\end{array}\right) I_{x}
\end{aligned}
$$

$$
+\left(\begin{array}{cccc}
0 & 0 & 4\left(-1+i_{k-1}\right) & 8 \\
0 & 0 & 8 i_{k-1} & 0 \\
4 & 4\left(-1-i_{k-1}\right) & -4 & 4\left(1+i_{k-1}\right) \\
4\left(1-i_{k-1}\right) & 0 & 4\left(-1+i_{k-1}\right) & 0
\end{array}\right) I_{y}
$$

where

$$
\begin{gathered}
A=A_{1} I_{x}+A_{2} I_{y} \\
A=\left(\begin{array}{cc}
2\left(1-i_{k-1}\right) & 0 \\
2 & -2
\end{array}\right) I_{x}+\left(\begin{array}{cc}
0 & 2\left(1+i_{k-1}\right) \\
-2 i_{k-1} & 2 i_{k-1}
\end{array}\right) I_{y} \\
\operatorname{det}(A-\lambda I):=\lambda^{2}-2 i_{k} \lambda+4\left(i_{k-1}-1\right) \\
\operatorname{det}\left(A_{1}-\lambda_{1} I\right):=\lambda_{1}^{2}+2 i_{k-1} \lambda_{1}+4\left(i_{k-1}-1\right) \\
\operatorname{det}\left(A_{2}-\lambda_{2} I\right):=\lambda_{2}^{2}-2 i_{k} \lambda_{2}+4\left(i_{k-1}-1\right) \\
\lambda_{1}=\left\{\alpha_{1}, \alpha_{2} \mid \alpha_{1}=-i_{k-1}+\sqrt{3-4 i_{k-1}}, \alpha_{2}=-i_{k-1}-\sqrt{3-4 i_{k-1}}\right\} \\
\lambda_{2}=\left\{\beta_{1}, \beta_{2} \mid \beta_{1}=i_{k-1}+\sqrt{3-4 i_{k-1}}, \beta_{2}=i_{k-1}-\sqrt{3-4 i_{k-1}}\right\},
\end{gathered}
$$

where λ_{1} are set of eigenvalues for A_{1} and λ_{2} be the set of eigenvalues of A_{2}.
Similarly, if $B=B_{1} I_{x}+B_{2} I_{y}$ having eigenvalues μ for which $\mu=\mu_{1} I_{x}+\mu_{2} I_{y}$ where μ_{1} are set of eigenvalues for B_{1} and μ_{2} be the set of eigenvalues of B_{2} then we have

$$
\begin{gathered}
\mu_{1}=\left\{\nu_{1}, \nu_{2} \mid \nu_{1}=2-i_{k-1}+i_{k}, \nu_{2}=2-i_{k-1}-i_{k}\right\} \\
\mu_{2}=\left\{\sigma_{1}, \sigma_{2} \mid \sigma_{1}=i_{k-1}+\sqrt{7}, \sigma_{2}=i_{k-1}-\sqrt{7}\right\} \\
\lambda \cdot \mu=\lambda_{1} \cdot \mu_{1} I_{x}+\lambda_{2} \cdot \mu_{2} I_{y}
\end{gathered}
$$

where

$$
\begin{aligned}
& \lambda_{1} \mu_{1}=\left\{\alpha_{1} \nu_{1}, \alpha_{1} \nu_{2}, \alpha_{2} \nu_{1}, \alpha_{2} \nu_{2}\right\} \\
& \lambda_{2} \mu_{2}=\left\{\beta_{1} \sigma_{1}, \beta_{1} \sigma_{2}, \beta_{2} \sigma_{1}, \beta_{2} \sigma_{2}\right\}
\end{aligned}
$$

hence set of all eigenvalues of $A \otimes B$ is in the form of

$$
\left\{\alpha_{k} \nu_{r} I_{x}+\beta_{s} \sigma_{t} I_{y} \mid k, r, s, t=1,2\right\} .
$$

7. Kronecker Sum on Multicomplex Space

As for the Kronecker product, we can define the Kronecker sum and some of its results on the eigenvalues in the multicomplex space.

Definition 7.1 (Kronecker Sum). Let $A \in \mathbb{C}_{n \times n}^{k}, B \in \mathbb{C}_{m \times m}^{k}$ then the Kronecker sum of the Multicomplex valued matrices A and B is denoted as $A \oplus B$ and is the $m n \times m n$ matrix and is defined as $A \oplus B=\left(I_{m} \otimes A\right)+\left(B \otimes I_{n}\right)$ and in general $A \oplus B \neq B \oplus A$.

We prove the following theorem on eigenvalues for Kronecker sum in the multicomplex space.

Theorem 7.2. Let $A \in \mathbb{C}_{n \times n}^{k}, B \in \mathbb{C}_{m \times m}^{k}$ for which $A u=\lambda u$ and $B v=\mu v$. Let λ be ($p_{1} . q_{1}$) distinct eigenvalues of A and μ be ($p_{2} . q_{2}$) distinct eigenvalues for B then $A \oplus B$ has $\left(p_{1} p_{2} . q_{1} q_{2}\right)$ distinct eigenvalues and written as in the form of $\left(\alpha_{k}+\nu_{r}\right) I_{x}+\left(\beta_{s}+\sigma_{t}\right) I_{y}$ where $1 \leq k \leq p_{1}, 1 \leq r \leq p_{2}, 1 \leq s \leq q_{1}, 1 \leq t \leq q_{2}$.

Proof.

$$
\begin{gathered}
(A \oplus B)(u \otimes v)=\left(\left(I_{m} \otimes A\right)+\left(B \otimes I_{n}\right)\right)(u \otimes v) \\
=\left(\left(I_{m} \otimes A_{1}+B_{1} \otimes I_{n}\right) I_{x}+\left(I_{m} \otimes A_{2}+B_{2} \otimes I_{n}\right) I_{y}\right)(u \otimes v) \\
=u \otimes\left(A_{1}+B_{1}\right) v I_{x}+\left(A_{2}+B_{2}\right) u \otimes v I_{y} \\
=u \otimes\left(A_{1} v+B_{1} v\right) I_{x}+\left(A_{2} u+B_{2} u\right) \otimes v I_{y} \\
=u \otimes\left(\lambda_{1} v+\mu_{1} v\right) I_{x}+\left(\lambda_{2} u+\mu_{2} u\right) \otimes v I_{y} \\
=\left(\lambda_{1}+\mu_{1}\right) I_{x}(u \otimes v)+\left(\lambda_{2}+\mu_{2}\right) I_{y}(u \otimes v) \\
=\left(\left(\lambda_{1}+\mu_{1}\right) I_{x}+\left(\lambda_{2}+\mu_{2}\right) I_{y}\right)(u \otimes v) \\
=(\lambda+\mu)(u \otimes v) .
\end{gathered}
$$

Since $\lambda_{1}=\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p_{1}}$ having p_{1} distinct eigenvalues,
$\lambda_{2}=\beta_{1}, \beta_{2}, \cdots, \beta_{q_{1}}$ having q_{1} distinct eigenvalues,
$\mu_{1}=\nu_{1}, \nu_{2}, \cdots, \nu_{p_{2}}$ having p_{2} distinct eigenvalues,
$\mu_{2}=\sigma_{1}, \sigma_{2}, \cdots, \sigma_{q_{2}}$ having q_{2} distinct eigenvalues.
Therefore $\lambda_{1}+\mu_{1}=\left\{\alpha_{k}+\nu_{r} \mid 1 \leq k \leq p_{1}, 1 \leq r \leq p_{2}\right\}$ has $p_{1} p_{2}$ distinct values. $\lambda_{2}+\mu_{2}=$ $\left\{\beta_{s}+\sigma_{t} \mid 1 \leq s \leq q_{1}, 1 \leq t \leq q_{2}\right\}$ has $q_{1} q_{2}$ distinct values. $\lambda+\mu=\left(\alpha_{k}+\nu_{r}\right) I_{x}+\left(\beta_{s}+\sigma_{t}\right) I_{y}$ has ($p_{1} p_{2} \cdot q_{1} q_{2}$) distinct eigenvalues.

Example 7.3. Take A and B Multicomplex matrices from the above example

$$
A \oplus B=\left(I_{2} \otimes A\right)+\left(B \otimes I_{2}\right)
$$

where

$$
\begin{aligned}
& I_{2} \otimes A=\left(\begin{array}{cccc}
2\left(1-i_{k-1}\right) & 0 & 0 & 0 \\
2 & -2 & 0 & 0 \\
0 & 0 & 2\left(1-i_{k-1}\right) & 0 \\
0 & 0 & 2 & -2
\end{array}\right) I_{x} \\
& +\left(\begin{array}{cccc}
0 & 2\left(1+i_{k-1}\right) & 0 & 0 \\
-2 i_{k-1} & 2 i_{k-1} & 0 & 0 \\
0 & 0 & 0 & 2\left(1+i_{k-1}\right) \\
0 & 0 & -2 i_{k-1} & 2 i_{k-1}
\end{array}\right) I_{y} \\
& B \otimes I_{2}=\left(\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2\left(1-i_{k-1}\right) & 0 \\
0 & 0 & 2 & 2\left(1-i_{k-1}\right)
\end{array}\right) I_{x} \\
& +\left(\begin{array}{cccc}
2 i_{k-1} & 0 & 2\left(1-i_{k-1}\right) & 0 \\
0 & 2 i_{k-1} & 0 & 2\left(1-i_{k-1}\right) \\
2\left(1+i_{k-1}\right) & 0 & 0 & 0 \\
0 & 2\left(1+i_{k-1}\right) & 0 & 0
\end{array}\right) I_{y} \\
& A \otimes B=\left(\begin{array}{cccc}
2\left(2-i_{k-1}\right) & 0 & 0 & 0 \\
2 & 0 & 0 & 0 \\
0 & 0 & 4\left(1-i_{k-1}\right) & 0 \\
0 & 0 & 2 & \left.-2 i_{k-1}\right)
\end{array}\right) I_{x}
\end{aligned}
$$

$$
+\left(\begin{array}{cccc}
2 i_{k-1} & 2\left(1+i_{k-1}\right) & 2\left(1-i_{k-1}\right) & 0 \\
-2 i_{k-1} & 4 i_{k-1} & 0 & 2\left(1-i_{k-1}\right) \\
2\left(1+i_{k-1}\right) & 0 & 0 & 2\left(1+i_{k-1}\right) \\
0 & 2\left(1+i_{k-1}\right) & -2 i_{k-1} & 2 i_{k-1}
\end{array}\right) I_{y}
$$

where

$$
\lambda+\mu=\lambda_{1} \cdot \mu_{1} I_{x}+\lambda_{2} \cdot \mu_{2} I_{y}
$$

and

$$
\begin{aligned}
& \lambda_{1}+\mu_{1}=\left\{\alpha_{1}+\nu_{1}, \alpha_{1}+\nu_{2}, \alpha_{2}+\nu_{1}, \alpha_{2}+\nu_{2}\right\} \\
& \lambda_{2}+\mu_{2}=\left\{\beta_{1}+\sigma_{1}, \beta_{1}+\sigma_{2}, \beta_{2}+\sigma_{1}, \beta_{2}+\sigma_{2}\right\}
\end{aligned}
$$

hence set of all eigenvalues of $A \oplus B$ is in the form of

$$
\left\{\left(\alpha_{k}+\nu_{r}\right) I_{x}+\left(\beta_{s}+\sigma_{t}\right) I_{y} \mid k, r, s, t=1,2\right\} .
$$

References

[1] W.R. Hamilton, On Quaternions; or on a new System of Imaginaries in Algebra, The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science 15 (1844) 489-495.
[2] C. Segre, The real representation of complex elements and hyperalgebraic entities (Italian), Mathematische Annalen 40 (3) (1892) 413-467.
[3] G.B. Price, An Introduction to Multicomplex Spaces and Functions, Marcel Dekker, 1991.
[4] N. Fleury, M.R. Detraubenberg, R.M. Yamaleev, Commutative Extended Complex Numbers and Connected Trigonometry, Journal of Mathematical Analysis and Applications 180 (1993) 431-457.
[5] K.S. Charak, D. Rochon, On Factorization of Bicomplex Meromorphic Functions Quaternionic and Clifford Analysis Trends in Mathematics, 55-68, 2008 Birkhauser Verlag Basel/Switzerland.
[6] K.S. Charak, D. Rochon and N. Sharma, Normal families of bicomplex holomorphic functions, World Scientific Publishing Company 17 (3) (2009) 257-268.
[7] H.V. Henderson, F. Pukelsheim, S.R. Searle, On the History of the Kronecker Product, Linear and Multilinear Algebra 14 (1983) 113-120.
[8] A. Kilicman, Z.A.A. Zhour, On the Connection between Kronecker and Hadamard Convolution Products of Matrices and Some Applications, Journal of Inequalities and Applications 2009, 2009:736243 doi:10.1155/2009/736243
[9] M. Mursaleen, M. Nasiruzzaman, H.M. Srivastava, Approximation by bicomplex beta operators in compact BC-disks, Math. Meth. Appl. Sci. 39 (2016) 2916-2929.
[10] J. Ryan, Complexified Clifford analysis, Complex Variables and Elliptic Equations 1 (1982) 119-149.
[11] D. Rochon, M. Shapiro, On algebraic properties of bicomplex and hyperbolic numbers, Analele Universitatii Oradea, Fasc. Matematica 11 (2004) 71-110.
[12] Z.A.A. Zhour, A. Kilicman, M.A. Hasan, A new Algebraic Method for Solving the Balanced Transportation Problem (BTP) Based on the Kronecker Product, IRSIAM Journal on Applied Mathematics (IJAM) 1 (2005) 64-80.
[13] Z.A.A. Zhour, A. Kilicman, Some Topics on Weighted Generalized Inverse and Kronecker Product of Matrices, Malaysian Journal of Mathematical Sciences 1 (1) (2007) 109-122.
[14] G. Lantoine, R.P. Russell, T. Dargent, Using Multicomplex Variables for Automatic Computation of High-order Derivatives, ACM Transactions on Mathematical Software 38 (3) Article id: 16, April 2012, 21 pages.
[15] M.E. Luna-Elizarrara's, M.Shapiro, Bicomplex Numbers and their Elementary Functions CUBO A Mathematical Journal 14 (02) (2012) 61-80.
[16] F.L. Reid, A. Robert V. Gorder, A Multicomplex Riemann Zeta Function, Adv. Appl. Cliff ord Algebras 23 (2013) 237-251.
[17] D. Alpay, Maria Elena Luna-Elizarrar's Michael Shapiro and Daniele C. Struppa Basics of Functional Analysis with Bicomplex Scalars, and Bicomplex Schur Analysis, Springer (2014).
[18] A.J. Laub, Matrix Analysis for Scientists and Engineers, SIAM, 2004.

[^0]: *Corresponding author.

