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1. Introduction and Preliminaries

There exist several ways to generalize complex numbers to higher dimensions. The
most well-known extension is given by the quaternions invented by Hamilton [1] which
are mainly used to represent rotations in three-dimensional space. However, quaternions
are not commutative in multiplication. Another extension was found at the end of the
19th century by Corrado Segre [2], who described special multidimensional algebras. This
type of number is now commonly named a multicomplex number. They were studied
in details by G.B.Price [3] and N. Fleury [4]. Bicomplex numbers, just like the quater-
nions, are a generalization of complex numbers to four real dimensions introduced by
C. Segre [2]. These two number systems differ because: (i) Quaternions which form a
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division algebra, while bicomplex numbers do not, and (ii) bicomplex numbers are com-
mutative, whereas quaternions are not. For such reasons, the bicomplex numbers system
has been shown to be more attractive (compared to the quaternions). These properties
of bicomplex numbers are preserved when we define multicomplex numbers as the unique
higher dimensional analogues to bicomplex numbers. We begin the present paper with
an overview of the structure of the multicomplex space Ck [3]. For more details we refer
to see [5–13].

Importantly, we define some form of idempotent elements, convergent of a multicom-
plex sequence, multicomplex polynomial, multicomplex derivatives and Taylor series rep-
resentation, characteristic polynomials and characteristic roost of multicomplex matrices,
zeros of characteristic polynomial on multicomplex space, Kronecker products, Kronecker
sum and some its applications on multicomplex space and a generalization of its char-
acteristic roots, which will be vital for all future advancements. We are then able to
prove certain useful properties of functions on Ck. In this paper, we introduce elementary
functions, such as polynomials, exponentials, trigonometric functions, Taylor representa-
tion for holomorphic function in this algebra as well as their inverses (something that,
incidentally, is not possible in the case of quaternions). We will show how these elemen-
tary functions enjoy properties that are very similar to those enjoyed by their complex
counterparts. To generalize, the observation consists in looking at maps f = (f1, f2)
in a open set U ⊂ Ck → Ck and to ask that each component f1, f2 be holomorphic in
z1 and in z2 without assuming any additional relationship between them. Though both
generalizations are important, and give rise to large and interesting theories. We believe
that there is another even more appropriate generalization, which so far has not received
enough attention (see [14–16]). To this purpose, we introduce to multicomplex Cauchy-
Riemann system and to apply it to pairs of holomorphic functions (f1, f2) in a open set
U ⊂ Ck → Ck, so that the pair (f1, f2) can be interpreted as a map of Ck to itself. It
is then natural to ask whether it makes any sense to consider pairs (f1, f2) for which the
following system is satisfied:

∂f1
∂z1

=
∂f2
∂z2

∂f2
∂z1

= −∂f1
∂z2

.

The bicomplex polynomial was discussed by M.E. Luna-Elizarrara’s and M. Shapiro
[15], and the eigenvalues for bicomplex matrices was discussed in [17]. We generalized it for
multicomplex space Ck for which (k = 2, Bicomplex polynomial, k = 3, Tricomplex poly-
nomial). The algebra which one obtains is the bicomplex algebra. In this paper we show
how to introduce elementary functions, such as polynomials, characteristic polynomial
functions, zeros of characteristic polynomial, on multicomplex space Ck and the Kronecker
products, Kronecker sum and some of its results was discussed in [18].On multicomplex
matrices Ckm×n,Ckp×q (something that, incidentally, is not possible in the case of quater-
nions). We will show how these elementary functions enjoy properties that are very similar
to those enjoyed by their complex counterparts. If A := {(alj) ∈ Ckm×n = A1Ix + A2Iy}
and Au = λu which is equivalent to{

A1u1 = λ1u1,
A2u2 = λ2u2.
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Then λ is eigenvalue of the multicomplex matrix A corresponding to eigenvector u where
λ := λ1Ix +λ2Iy ∈ Ck and u = u1Ix +u2Iy. To generalize the above observation consists
in looking at

A := (alj) ∈ Ckm×n = BikIx + CikIy := Bik−1
Ix + Cik−1

Iy

where Bik , Cik ∈ Ck−1m×n and Bik−1
, Cik−1

∈ Ck−1m×n.
For two matrices A and B, the matrix A ⊗ B is the Kronecker product and A ⊕ B is
Kronecker sum of A and B.

A⊗B = {(aljB) ∈ Ckmp×nq | A = (alj) ∈ Ckm×n, B = (brs) ∈ Ckp×q}

A⊕B = {(Im ⊗A) + (B ⊗ In) | A ∈ Ckn×n, B ∈ Ckm×m}.
Without assuming any additional relationship between them, both generalizations are
important, and give rise to large and interesting theories, we believe that there is another
even more appropriate generalization, which so far has not received enough attention.

2. Bicomplex Numbers

Definition 2.1. ([15, 17]) The set of the bicomplex numbers is defined as

BC := {z1 + z2i2 | z1, z2 ∈ C1(i1)} (2.1)

where i1, i2 are the imaginary units and governed by the rules

i21 = i22 = −1, i1i2 = i2i1 = j (2.2)

and so,

j2 = 1, i1j = ji1 = −i2, i2j = ji2 = −i1. (2.3)

Note that

C1(ik) := {x+ yik | i2k = −1 and x, y ∈ R for k = 1, 2} (2.4)

where C1 is the set of all complex numbers with the imaginary units ik for k = 1, 2. Thus
the bicomplex numbers are complex numbers with complex coefficients, which explain the
name of bicomplex.
With the addition and the multiplication of two bicomplex numbers defined in the obvious
way, the set BC makes up a commutative ring (in fact they are the particular case of the
so called multicomplex numbers).
Clearly the bicomplex numbers

BC ∼= ClC(1, 0) ∼= ClC(0, 1) (2.5)

are unique among the complex Clifford algebras in that they are commutative but not
division algebras. It is also convenient to write the set of bicomplex numbers as

BC := {x0 + x1i1 + x2i2 + x3i1i2 | x0, x1, x2, x3 ∈ R}. (2.6)

We know the complex conjugation plays an important role for both algebraic and
geometric properties of C1. So for bicomplex numbers there are three possibilities of
conjugations. Let z ∈ BC and z1, z2 ∈ C1(i1), such that z := z1 + z2i2, then we define
the three conjugation as:

z†1 = (z1 + z2i2)†1 = z1 + z2i2 (2.7)

z†2 = (z1 + z2i2)†2 = z1 − z2i2 (2.8)
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z†3 = (z1 + z2i2)†3 = z1 − z2i2. (2.9)

All the three kinds of conjugations have some of the standard properties of conjugations,
such as

(z1 + z2)†k = z†k1 + z†k2 (2.10)

(z†k1 )†k = z1 (2.11)

(z1.z2)†k = z†k1 .z
†k
2 . (2.12)

We know that the product of a standard complex number with its conjugate gives the
square of the Euclidean metric in R2. Thus the analogs of this, for bicomplex numbers,
are the following. Let z1, z2 ∈ C1(i1) and z := z1 + z2i2 ∈ BC, then we have:

| z |2i1= z.z†2 = z21 + z22 ∈ C1(i1) (2.13)

| z |2i2= z.z†1 = (| z1 |2 − | z2 |2) + 2Re(z1z2)i2 ∈ C1(i2) (2.14)

| z |2j= z.z†3 = (| z1 |2 + | z2 |2)− 2Im(z1z2)j ∈ D, (2.15)

where D is the subalgebra of hyperbolic numbers, and is defined as

D := {x+ yj | j2 = 1, x, y ∈ R, } ∼= ClR(0, 1). (2.16)

Note that for z1, z2 ∈ C1(i1) and z := z1+z2i2 ∈ BC, we can define the usual (Euclidean

in R4) norm of z as | z |=
√
| z1 |2 + | z2 |2 =

√
Re(| z |2j ). It is easy to verifying that

z. z
†2

|z|2i1
= 1. Hence the inverse of z is given by

z−1 =
z†2

| z |2i1
. (2.17)

Idempotent basis
Bicomplex algebra is considerably simplified by the introduction of two bicomplex

numbers e1 and e2 defined as e1 = 1+i1i2
2 , e2 = 1−i1i2

2 . In fact, e1 and e2 are hyperbolic
numbers (i1i2 = i2i1 = j). They make up the so called idempotent basis of the bicomplex
numbers, and one easily can check that

e21 = e1, e
2
2 = e2, e1 + e2 = 1, e1.e2 = 0, e†3k = ek (for k = 1, 2). (2.18)

Thus any bicomplex number can be written as

z = z1 + z2i2 = α1e1 + α2e2,where α1 = z1 − z2i1, α2 = z1 + z2i1. (2.19)

The idempotent representation for a bicomplex number can be expressed in different
ways:

z := η1 + η2i1 | η1, η2 ∈ BC(i2) = (η1 − η2i2)(
1 + i1i2

2
) + (η1 + η2i2)(

1− i1i2
2

),

:= β1 + β2i2 | β1, β2 ∈ BC(i1i2) = (β1 − β2i1i2)(
1 + i1

2
) + (β1 + β2i1i2)(

1− i1
2

),
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:= γ1 + γ2i1 | γ1, γ2 ∈ BC(i1i2) = (γ1 − γ2i1i2)(
1 + i2

2
) + (γ1 + γ2i1i2)(

1− i2
2

),

:= ν1 + ν2i1i2 | ν1, ν2 ∈ BC(i1) = (ν1 + ν2i1)(
1 + i2

2
) + (ν1 − ν2i1)(

1− i2
2

),

:= µ1 + µ2i1i2 | µ1, µ2 ∈ BC(i2) = (µ1 + µ2i2)(
1 + i1

2
) + (µ1 − µ2i2)(

1− i1
2

).

3. Multicomplex Numbers

Definition 3.1. ([14, 16]) We must firstly define the multicomplex space in which we
have to work, that will do so inductively. For the base case k = 0, we define C0 := R,
that is the set of all real numbers with additions, multiplication and norm being defined
as usual. The case for k = 1 is also familiar to C1, which is simply the standard complex
plane with arithmetic and norm usually defined. The case of k = 2 and k = 3 are familiar
with C2 and C3 are the simply bicomplex plane and tricomplex plane. So we define

Ck := {z1 + z2ik | z1, z2 ∈ Ck−1, k > 1, i2k = −1 and imin = inim for m 6= n}.
(3.1)

The arithmetic is defined in usual way and if z1, z2, z3 and z4 ∈ Ck−1 and w1, w2 and w3 ∈
Ck , then

(z1 + z2ik) + (z3 + z4ik) = (z1 + z3) + (z2 + z4)ik (3.2)

(z1 + z2ik)(z3 + z4ik) = (z1z3 − z2z4) + (z1z4 + z2z3)ik (3.3)

w1(w2 + w3) = w1w2 + w1w3. (3.4)

With this definition it is simple to show that for all natural numbers k,Ck is a commutative
ring with unity. Further, assuming have defined the norm
‖ . ‖k−1: Ck−1 → R≥0, we define the norm ‖ . ‖k: Ck → R≥0 by

‖ z1 + z2ik ‖2k=‖ z1 ‖2k−1 + ‖ z2 ‖2k−1, (3.5)

with this definition of the norm, the space Ck becomes a modified Banach algebra.
Other useful representations of the multicomplex numbers can be found by repetitively ap-
plying to the multicomplex coefficients of lower dimension, that is decomposing z1 and z2
into lower dimension repetitively. We obtain

Ck := {z11 + z12ik−1 + z21ik + z22ikik−1 | z11, z12, z21, z22 ∈ Ck−2}. (3.6)

For any x0, · · · , xk, · · · , x1···k ∈ R we get

Ck := {x0+x1i1+· · ·+xkik+x12i1i2+· · ·+xk−1kik−1ik+· · ·+x1···ki1 · · · ik |}. (3.7)

It is clear that we can represent each element of Ck with
(
k
0

)
+
(
k
1

)
+· · ·+

(
k
k

)
{where

(
k
r

)
=

k!
r!(k−r)!}, coefficients in R. One coefficients x0 for the real part k, and coefficients

x1, · · · , xk for the pure imaginary directions and additional coefficients corresponding
to ’cross coupled’imaginary directions. We note that the cross directions do not exit in R
or C, but appear only in Ck for k ≥ 2.
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The multicomplex space for k ≥ 2 has many idempotents elements, that is elements I
with the property that I2 = I

I1 =
1 + ikik−1

2
and I2 =

1− ikik−1
2

(3.8)

I21 = (
1 + ikik−1

2
)2 =

1 + ikik−1
2

= I1 (3.9)

I22 = (
1− ikik−1

2
)2 =

1− ikik−1
2

= I2 (3.10)

I1 + I2 = (
1 + ikik−1

2
) + (

1− ikik−1
2

) = 1 (3.11)

I1I2 = (
1 + ikik−1

2
)(

1− ikik−1
2

) = 0. (3.12)

Thus we define a multicomplex number can be written in six different ways:

Ck = (x1 + y1ik−1) + (x2 + y2ik−1)ik = z1 + z2ik = (z1 − z2ik−1)I1 + (z1 + z2ik−1)I2

= (x1 + x2ik) + (y1 + y2ik)ik−1 = η1 + η2ik−1 = (η1 − η2ik)I1 + (η1 + η2ik)I2

= (x1 + y2ikik−1) + (x2 − y1ikik−1)ik = β1 + β2ik

= (β1 − β2ikik−1)(
1 + ik−1

2
) + (β1 + β2ikik−1)(

1− ik−1
2

)

= (x1 + y2ikik−1) + (y1 − x2ikik−1)ik−1 = γ1 + γ2ik−1

= (γ1 − γ2ikik−1)(
1 + ik

2
) + (γ1 + γ2ikik−1)(

1− ik
2

)

= (x1 + y1ik−1) + (y2 − x2ik−1)ikik−1 = ν1 + ν2ikik−1

= (ν1 + ν2ik−1)(
1 + ik

2
) + (ν1 − ν2ik−1)(

1− ik
2

)

= (x1 + x2ik) + (y2 − y1ik)ikik−1 = µ1 + µ2ikik−1

= (µ1 + µ2ik)(
1 + ik−1

2
) + (µ1 − µ2ik)(

1− ik−1
2

).

We define the definition given below in multicomplex space, in which if we put k = 2
definition from [15].

Definition 3.2. Let wn = {α1,nI1+α2,nI2 | α1,n, α2,n ∈ Ck−1 and wn ∈ Ck for n ≥ 1} be
a sequence of multicomplex numbers then the sequence {wn}n≥1 is said to be convergent
component wise if the sequences {α1,n} and {α2,n} in Ck−1 are convergent in Ck−1 to
the numbers α1,0 and α2,0 where α1,0, α2,0 ∈ Ck−1, hence we can write wn → w0 :=
α1,0I1 + α2,0I2 and we say that wn has limit w0.

Theorem 3.3 (Theorem 3, [14]). Let w = {z1 + z2ik | z1, z2 ∈ Ck−1}, then for all
z1, z2 ∈ Ck−1 and w ∈ Ck, the following hold :

ez1+z2ik = ez1ez2ik (3.13)

ez1ik = cos(z1) + ik sin(z1) (3.14)
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cos(−w) := cos(w) (3.15)

sin(−w) := − sin(w). (3.16)

We define the following theorem and corollaries given below in multicomplex space, in
which if we put k = 2 we get, (cf. [2]).

Theorem 3.4. Let w = {z1 + z2ik | z1, z2 ∈ Ck−1}be any multicomplex numbers, then
the sequence wn := (1 + w

n )n is convergent to ez1(cos(z2) + ik sin(z2)) as (n→∞).

Proof. We have

w = z1 + z2ik = (z1 − z2ik−1)I1 + (z1 + z2ik−1)I2 = α1I1 + α2I2,

then,

(1 +
w

n
)n := (1 +

α1

n
)nI1 + (1 +

α2

n
)nI2

lim
n→∞

(1 +
w

n
)n := lim

n→∞
(1 +

α1

n
)nI1 + lim

n→∞
(1 +

α2

n
)nI2

=
1

2
(eα1 + eα2) +

ikik−1
2

(eα1 − eα2)

= ez1{1

2
(e−ik−1z2 + eik−1z2) +

ikik−1
2

(e−ik−1z2 − eik−1z2)}

= ez1(cos(z2) + ik sin(z2)),

thus

ez1+z2ik = lim
n→∞

(1 +
w

n
)n = ez1(cos(z2) + ik sin(z2)). (3.17)

Corollary 3.5. If ez1ik = cos(z1) + ik sin(z1) and e−z1ik = cos(z1)− ik sin(z1). Then,

cos(z1) :=
ez1ik + e−z1ik

2
and sin(z1) :=

ez1ik − e−z1ik
2ik

.

Proof. Simply on adding and subtracting we get desired result.

We define the sine and cosine formulae and transition formula in multicomplex space
as.

Definition 3.6. Let w = {z1 + z2ik | z1, z2 ∈ Ck−1}. Then cosine and sine formulae for
the multicomplex space are defined as

cos(w) :=
ewik + e−wik

2
(3.18)

sin(w) :=
ewik − e−wik

2ik
. (3.19)
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Corollary 3.7. Let I1 and I2 be the basis for the multicomplex space Ck, where I1 =
1+ikik−1

2 and I2 = 1−ikik−1

2 and w = {z1 + z2ik | z1, z2 ∈ Ck−1} = (z1 − z2ik−1)I1 + (z1 +
z2ik−1)I2. Then the transition formula for multicomplex space as(

z1
z2

)
=

( 1
2

1
2

− 1
2ik−1

1
2ik−1

)(
α1

α2

)
,

where α1 := (z1 − z2ik−1) and α2 := (z1 + z2ik−1).

We prove the following theorem given below.

Theorem 3.8. Let I1 = 1+ikik−1

2 and I2 = 1−ikik−1

2 . Then

cos(
ik
2

) :=
1

2
e−

1
2 (eI1 + eI2) (3.20)

sin(
ik
2

) :=
1

2ik−1
e−

1
2 (eI1 − eI2). (3.21)

Proof. I1 = 1.I1 + 0.I2, I2 = 0.I1 + 1.I2, then we have

eI1 = e.I1 + 1.I2 = e
1+ikik−1

2 = e
1
2 (cos(

ik
2

) + ik−1 sin(
ik
2

)) (3.22)

eI2 = 1.I1 + e.I2 = e
1+ikik−1

2 = e
1
2 (cos(

ik
2

)− ik−1 sin(
ik
2

)) (3.23)

Theorem 3.9. Let w = {z1 + z2ik | z1, z2 ∈ Ck−1}be any multicomplex number. Then

lim
w→λ

wn − λn

w − λ
= nλn−1.

Proof. Let w := α1I1 + α2I2 and λ := λ1I1 + λ2I2, where I1, I2 as idempotent basis.

Then wn := αn1 I1 + αn2 I2 and λ
n := λn1 I1 + λn2 I2

where λ := {ψ1 + ψ2ik | ψ1, ψ2 ∈ Ck−1},
and λ1 := ψ1 − ψ2ik−1, λ2 := ψ1 + ψ2ik−1,

Now

lim
w→λ

wn − λn

w − λ
:= lim

w→λ

(αn1 − λn1 )I1 + (αn2 − λn2 )I2
(α1 − λ1)I1 + (α2 − λ2)I2

:= lim
w→λ
{(α

n
1 − λn1
α1 − λ1

)I1 + (
αn2 − λn2
α2 − λ2

)I2}

:= lim
α1→λ1

(
αn1 − λn1
α1 − λ1

)I1 + lim
α2→λ2

(
αn2 − λn2
α2 − λ2

)I2

:= nλn−11 I1 + nλn−12 I2 = nλn−1

lim
w→λ

wn − λn

w − λ
= nλn−1. (3.24)

We define the sine and cosine formulae for hyperbolic functions in multicomplex space
and prove the theorem given below.
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Definition 3.10. Let w := z1 + z2ik | zz, z2 ∈ Ck−1 be a multicomplex number. Then
hyperbolic sine and cosine functions for multicomplex variable are defined as

sinhw :=
ew − e−w

2
(3.25)

coshw :=
ew + e−w

2
(3.26)

We prove the following theorem.

Theorem 3.11. Let w = {z1 + z2ik | z1, z2 ∈ Ck−1}. Then the following hold:

sinw := sin(z1 + z2ik) := sin z1 coshz2 + ik cos z1 sinhz2 (3.27)

cosw := cos(z1 + z2ik) := cos z1 coshz2 − ik sin z1 sinhz2 (3.28)

sin 2w := 2 sinw cosw (3.29)

cos 2w := cos2 w − sin2 w. (3.30)

Proof. We have

sinw :=
1

2ik
(ewik − e−wik)

=
1

2ik
(e(z1+z2ik)ik − e−(z1+z2ik)ik)

=
1

2ik
(ez1ik−z2 − e−z1ik+z2)

=
1

2ik
(e−z2(cos z1 + ik sin z1)− ez2(cos z1 − ik sin z1))

= sin z1(
ez2 + e−z2

2
) + ik cos z1(

ez2 − e−z2
2

)

= sin z1 coshz2 + ik cos z1 sinhz2,

and

cosw :=
1

2
(ewik + e−wik)

=
1

2
(e(z1+z2ik)ik + e−(z1+z2ik)ik)

=
1

2
(ez1ik−z2 + e−z1ik+z2)

=
1

2
(e−z2(cos z1 + ik sin z1) + ez2(cos z1 − ik sin z1))

= cos z1(
ez2 + e−z2

2
)− ik sin z1(

ez2 − e−z2
2

)

cos(z1 + z2ik) := cos z1 coshz2 − ik sin z1 sinhz2.

Similarly we can obtain the formula for sin 2w and cos 2w using the following theorem.
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Theorem 3.12. Let w1 = {z1+z2ik | z1, z2 ∈ Ck−1} and w2 = {z3+z4ik | z3, z4 ∈ Ck−1}
be any two multicomplex numbers. Then the following hold:

sin(w1 + w2) := sinw1 cosw2 + cosw1 sinw2 (3.31)

cos(w1 + w2) := cosw1 cosw2 − sinw1 sinw2 (3.32)

Proof.

cosw1 cosw2 :=
1

4
{eik(w1+w2) + eik(w1−w2) + eik(w2−w1) + e−ik(w1+w2)} (3.33)

− sinw1 sinw2 :=
1

4
{eik(w1+w2) − eik(w1−w2) − eik(w2−w1) + e−ik(w1+w2)}, (3.34)

on adding these expressions we get:

cosw1 cosw2 − sinw1 sinw2 =
1

2
{eik(w1+w2) + e−ik(w1+w2)} = cos(w1 + w2).

4. Multicomplex Polynomial

We define the definition given below in multicomplex space, in which if we put k = 2,
bicomplex polynomial (see [15]).

Definition 4.1. Let w = z1 + z2ik = α1I1 + α2I2 be a multicomplex number, where
α1 = (z1 − z2ik−1), α2 = (z1 + z2ik−1) and I1, I2 are idempotent basis and let Ap :=
δpI1 + γpI2 be multicomplex coefficients for p = 0, · · · , n. Then f(w) :=

∑n
p=0Apw

p is
called the multicomplex polynomial and written as

f(w) :=

n∑
p=0

(δpα
p
1)I1 +

n∑
p=0

(γpα
p
2)I2 = f1(α1)I1 + f2(α2)I2.

If we denote the set of all r1 and r2 distinct roots of f1(α1) and f2(α2) by ξ1 and ξ2,
and if we denote by ξ the set of all distinct roots of polynomial f(w), then f(w) has r1.r2
distinct roots and it is easy to see that ξ := ξ1I1 +ξ2I2 and so the structure of the zero set
of a multicomplex polynomial f(w) of degree n is fully described by the following lemma.

(i) If both the polynomials f1(α1) and f2(α2) are of degree at least one, and if
ξ1 = {µ1, · · · , µσ} has r1 distint roots and ξ2 = {ν1, · · · , ντ} has r2 distinct roots,
then the set of the distinct roots of f is given by

ξ := ws,t = µsI1 + νtI2 | s = 1, · · · , σ, and t = 1, · · · , τ.

Example 4.2. Let f(w) = w3 − 8, where w ∈ Ck. Then
we have f1(α1) = α3

1 − 8 and f2(α2) = α3
2 − 8

the set of zeros of f1 and f2 are, respectively

ξ1 := {µ1 = 2, µ2 = −1 + ik−1
√

3, µ3 = −1− ik−1
√

3}

ξ2 := {ν1 = 2, ν2 = −1 + ik−1
√

3, ν3 = −1− ik−1
√

3}
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then the set of solutions of f is
ξ := {ws,t = µsI1 + νtI2 | s, t = 1, 2, 3}, which has 9 distinct roots

ξ : =

{
2, (

1 + ik−1
√

3

2
) + (

3ik−1 +
√

3

2
)ik, (

1− ik−1
√

3

2
) + (

3ik−1 −
√

3

2
)ik,

(
1− ik−1

√
3

2
) + (

−3ik−1 −
√

3

2
)ik,−1 + ik−1

√
3,−1− ik

√
3,

(
1− ik−1

√
3

2
) + (

−3ik−1 +
√

3

2
)ik,−1 + ik

√
3,−1− ik−1

√
3

}
.

Example 4.3. Let f(w) := ( 1+ikik−1

2 )w5 + {(−1− 4ik−1) + (4− 2ik−1)ik}w4 +

{(−11+6ik−1)−(12+11ik−1)ik}w3+{( 29+26ik−1

2 )+(−26+47ik−1

2 )ik}w2+{( 13−34ik−1

2 )

+ ( 34+13ik−1

2 )ik}w + (−11−2ik−1

2 ) + ( 2−11ik−1

2 ). Then
we have

f(w) := f1(α1)I1 + f2(α2)I2

where

I1 := (
1 + ikik−1

2
), I2 := (

1− ikik−1
2

)

f1(α1) := α5
1 + (−3− 8ik−1)α4

1 + (−22 + 18ik−1)α3
1 + (38 + 26ik−1)α2

1

+(13− 34ik−1)α1 + (−11− 2ik−1)

f2(α2) := α4
2 − 6ik−1α

3
2 − 9α2

2

ξ1 := {µ1 = ik−1, µ2 = 1 + 2ik−1}
ξ2 := {ν1 = 0, ν2 = 3ik−1}
ξ := {Ws,t = µsI1 + νtI2 | s, t = 1, 2},

has 4 distinct roots.

ξ := { ik−1 − ik
2

, 2ik−1 + ik, (
1 + 2ik−1

2
) + (

−2 + ik−1
2

)ik, (
1 + 5ik−1

2
) + (

1 + ik−1
2

)ik}.

(ii) If f1(α1) = 0, then ξ1 = Ck−1 and ξ2 = {ν1, · · · , ντ}, where τ ≤ n; and
ξ := wt = ωI1 + νtI2 | ω ∈ Ck−1, t = 1, · · · , τ . If f2(α2) = 0, then ξ2 = Ck−1 and
ξ1 = {µ1, · · · , µσ}, where σ ≤ n; and

ξ := ws = µsI1 + ωI2 | ω ∈ Ck−1, s = 1, · · · , σ.

Example 4.4. Let f(w) := (1− ikik−1)w2 + ik − ik−1. Then
we have

f(w) := f1(α1)I1 + f2(α2)I2

where

I1 := (
1 + ikik−1

2
), I2 := (

1− ikik−1
2

)

f1(α1) := 2(α2
1 − ik−1)I1

f1(α1) := 0

ξ := ws = µsI1 + ωI2 = {±(
1 + ik−1√

2
)I1 + ωI2 | ω ∈ Ck−1(ω =

√
ik−1)}.
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(iii) If all the coefficients Ap with the exception of A0 = δ0I1 + γ0I2 are not
multicomplex multiples of I1 (respectively I2), but A0 has γ0 6= 0 (respectively
δ0 6= 0), then polynomial f has no root.

Example 4.5. Let f(w) := (1− ikik−1)w2 + 1 + ik − ik−1 − ikik−1. Then
we have

f(w) := f1(α1)I1 + f2(α2)I2

where
f1(α1) = 2(α2

1 − ik−1) and f2(α2) = 2,

clearly polynomial has no root.
(iv) (Analogue of Fundamental Theorem of Algebra for Multicomplex Polynomi-
als)
Let f(w) :=

∑n
p=0Apw

p be multicomplex Polynomial, where Ap := δpI1 + γpI2,

and wp = αp1I1 +αp2I2, with α1 = (z1−z2ik−1), α2 = (z1 +z2ik−1). If all the coef-
ficients Ap with the exception of A0 = δ0I1 +γ0I2 are not multicomplex multiples
of I1 (respectively I2), but A0 has γ0 6= 0 (respectively δ0 6= 0), then polynomial
f has no root. In all other cases f has at least one root.

Remark 4.6. Let w = z1 + z2ik = α1I1 + α2I2 be a multicomplex number and f(w) :=∑n
p=0Apw

p be any multicomplex polynomial. If we put k = 2, then it becomes Bicomplex
polynomial, and if put k = 3, then becomes tricomplex polynomial.

Remark 4.7. A multicomplex polynomial may not have a unique factorization into linear
polynomials.

Example 4.8. Let f(w) := w3 + 1. Then
we have

f1(α1) = α3
1 + 1, f2(α2) = α3

2 + 1

ξ1 = {µ1 = −1, µ2 =
1 +
√

3ik
2

, µ3 =
1−
√

3ik
2

}

ξ2 = {ν1 = −1, ν2 =
1 +
√

3ik
2

, ν3 =
1−
√

3ik
2

}

ξ := ws,t = µsI1 + νtI2 | s, t = 1, 2, 3

w3 + 1 := (w + 1)(w − 1

2
−
√

3

2
ik)(w − 1

2
+

√
3

2
ik)

w3 + 1 := (w + 1)(w − 1

2
−
√

3

2
ik−1)(w − 1

2
+

√
3

2
ik−1).

Note: It is clear from what we have indicated that the multicomplex polynomials do
not satisfy the Fundamental theorem of algebra in its original form.

Theorem 4.9 (Theorem 2, [16]). Let w = z1 + z2ik be any multicomplex number. Then
the functions sin, cos and exponential in the form of the power series is defined as

sinw := sin(z1 + z2ik) :=

∞∑
n=1

(−1)n−1(z1 + z2ik)2n−1

(2n− 1)!
(4.1)

cosw := cos(z1 + z2ik) :=

∞∑
n=0

(−1)n(z1 + z2ik)2n

(2n)!
(4.2)
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exp(w) := ez1+z2ik =

∞∑
n=0

(z1 + z2ik)n

(n)!
. (4.3)

Definition 4.10 (Definition 1, [14]). A function f : Ck → Ck is said to be multicomplex
differentiable at w0 ∈ Ck if the limit

lim
w→w0

f(w)− f(w0)

w − w0
(4.4)

exists. This limit is called first derivative of f at w0 and will be denoted by f ′(w0).

Definition 4.11 (Definition 2, [14]). A function f is said to be holomorphic in an open
set U ⊂ Ck if f ′(w) exits for all w ∈ U .
This definition is not very restrictive, most usual functions are holomorphic in Ck. Ex-
amples of the non holomorphic functions are the modulus and absolute value functions
at zero.

Theorem 4.12 (Theorem 2, [14]). Let w = {z1 + z2ik | z1, z2 ∈ Ck−1} be a multicomplex
number and f be a function such that f : U ⊂ Ck → Ck defined by

f(z1 + z2ik) = f1(z1, z2) + f2(z1, z2)ik. (4.5)

Then the following are equivalent,

(i) f is holomorphic in U ,
(ii) f1 and f2 are holomorphic in z1 and z2 and satisfy the multicomplex Cauchy-

Riemann equations:

∂f1
∂z1

=
∂f2
∂z2

and
∂f2
∂z1

= −∂f1
∂z2

, (4.6)

(iii) f can be represented, near every point w0 ∈ U , by Taylor series.

We prove the theorem given below.

Theorem 4.13. Let w = z1 + z2ik a multicomplex number, and exp(w), sinw and cosw
are holomorphic in an open set U ⊂ Ck. Then the following hold:

d

dw
wn := nwn−1 where n ∈ N (4.7)

d

dw
exp(w) := exp(w) (4.8)

d

dw
sinw := cosw (4.9)

d

dw
cosw := − sinw. (4.10)

Proof.

d

dw
exp(w) :=

d

dw

∞∑
n=0

1

n!
wn =

∞∑
n=1

n

n!
wn−1
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=

∞∑
n=1

1

(n− 1)!
wn−1

=

∞∑
n=0

1

n!
wn = exp(w)

d

dw
sinw :=

d

dw
(

∞∑
n=0

(−1)n(z1 + z2ik)2n+1

(2n+ 1)!
)

=

∞∑
n=1

(−1)n(2n+ 1)(z1 + z2ik)2n

(2n+ 1)!

=

∞∑
n=1

(−1)n(z1 + z2ik)2n

(2n)!
= cosw.

Similarly we can prove,

d

dw
cosw := − sinw

d

dw
wn := nwn−1.

Definition 4.14 (Definition 3, [14]). Let Ck := w = {z1 + z2ik | z1, z2 ∈ Ck−1} be a
multicomplex number, and let f : U ⊂ Ck → Ck be a multicomplex holomorphic function
in U . Then f can be expanded in a Taylor series about a real point a as follows:

f(a+ hi1 + · · ·+ hik) := f(a) + h(i1 + · · ·+ ik)f ′(a) + h2(i1 + · · ·+ ik)2
f ′′(a)

2
+ · · ·

+hn(i1 + · · ·+ ik)n
f (n)(a)

n!
+ hn+1(i1 + · · ·+ ik)n+1 f

(n+1)(a)

(n+ 1)!
+O(h(n+2)) (4.11)

where fn denotes the nth order derivative, and

(i1 + · · ·+ ik)n :=
∑

x1,x2,··· ,xk
x1+x2+···+xk=n

n!

x1! · · ·xk!
ix1
1 · · · i

xk

k . (4.12)

Using the above definition we can prove the theorem given below.

Theorem 4.15. Let f, g : U ⊂ Ck → Ck be multicomplex holomorphic functions in U
and if f(a) = 0 and g(a) = 0, but g′(a) 6= 0. Then

lim
w→a

f(w)

g(w)
=
f ′(a)

g′(a)
(4.13)

and hence, in general, if fn(a) = 0 = gn(a), but g(n+1)(a) 6= 0. Then

lim
w→a

f(w)

g(w)
=
fn+1(a)

gn+1(a)
. (4.14)
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Proof. From Taylor series we have,

f(a+ h(i1 + · · ·+ ik)) :=

n+1∑
r=0

hr(i1 + · · ·+ ik)r
f (r)(a)

r!
+O(h(n+2)) (4.15)

g(a+ h(i1 + · · ·+ ik)) :=

n+1∑
r=0

hr(i1 + · · ·+ ik)r
g(r)(a)

r!
+O(h(n+2)).

Put a+ h(i1 + · · ·+ ik) = w.
Then h(i1 + · · ·+ ik) = w − a.

f(w) :=

n+1∑
r=0

(w − a)r
f (r)(a)

r!
+O(h(n+2))

g(w) :=

n+1∑
r=0

(w − a)r
f (r)(a)

r!
+O(h(n+2))

f(w)

g(w)
:=

∑n+1
r=0 (w − a)r f

(r)(a)
r! +O(h(n+2))∑n+1

r=0 (w − a)r f
(r)(a)
r! +O(h(n+2))

.

If f(a) = 0 = g(a), but g′(a) 6= 0. Then

lim
w→a

f(w)

g(w)
=
f ′(a)

g′(a)
.

If f ′(a) = 0 = g′(a), but g′′(a) 6= 0, then

lim
w→a

f(w)

g(w)
=
f ′′(a)

g′′(a)
.

Hence in general, if fn(a) = 0 = gn(a), but g(n+1)(a) 6= 0. Then

lim
w→a

f(w)

g(w)
=
fn+1(a)

gn+1(a)
.

5. Multicomplex Matrices

We define the definition for the multicomplex matrices given below, in which if we put
k = 2 definition for bicomplex matrices (see [17]).

Definition 5.1 (Multicomplex Matrices). The set of m × n matrices Ckm×n with

multicomplex entries, is denoted as A := {(alj) ∈ Ckm×n, 1 ≤ l ≤ m, 1 ≤ j ≤ n} =

BikIx + CikIy := Bik−1
Ix + Cik−1

Iy, where Bik , Cik ∈ Ck−1m×n and Bik−1
, Cik−1

∈ Ck−1m×n
and Ix = 1+ikik−1

2 , Iy = 1−ikik−1

2 .

Corollary 5.2. We can do easily the following results in the field of multicomplex space:
(i) Let A be an n× n multicomplex matrix

A = BikI1 + CikI2 := Bik−1
Ix + Cik−1

Iy,

then its determinant is given by

detA = detBikIx + detCikIy := detBik−1
Ix + detCik−1

Iy, (5.1)
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(ii) Let A and B be any two square multicomplex matrices then

det(AB) = detA.detB, (5.2)

(iii) Let A = BikIx+CikIy := Bik−1
Ix+Cik−1

Iy ∈ Ckn×n, Bik , Cik ∈ Ckn×n and Bik−1
, Cik−1

∈ Ck−1n×n, be a multicomplex matrix. Then A is invertible if and only if Bik , Cik are in-

vertible in Ckn×n and Bik−1
, Cik−1

are invertible in Ck−1n×n.

We define the definition for the eigenvalues of a matrix in multicomplex space in which
if we put k = 2 then the definition of eigenvalues for bicomplex matrices (see [17] ).

Definition 5.3 (Eigenvalues for Multicomplex Matrices). Let A := {(alj) ∈
Ckm×n = A1Ix +A2Iy} and Au = λu which is equivalent to{

A1u1 = λ1u1,
A2u2 = λ2u2.

Then λ is called the eigenvalue of the multicomplex matrix A corresponding to eigenvec-
tor u where λ := λ1Ix + λ2Iy ∈ Ck and u = u1Ix + u2Iy. If λ is not a zero divisor and
u1 6= 0, u2 6= 0 then λ is an eigenvalue of A if and only if λ1 and λ2 be an eigenvalue of
A1 and A2 corresponding to eigenvector of u1 and u2.

We define and prove the following theorem given bellow.

Theorem 5.4. Let A := {(alj) ∈ Ckm×n = A1Ix+A2Iy} and Au = λu which is equivalent
to {

A1u1 = λ1u1,
A2u2 = λ2u2.

Where λ = λ1Ix + λ2Iy ∈ Ck and u = u1Ix + u2Iy. Then multicomplex matrix A has
{λ = p1.q1}} distinct eigenvalues if and only if A1 has {λ1 = p1} distinct eigenvalues and
A2 has {λ2 = q1} distinct eigenvalues.

Proof. We have λ = {αsIx + βtIy | 1 ≤ s ≤ p1, 1 ≤ t ≤ q1}

= {α1, α2, · · · , αp1}Ix + {β1, β2, · · · , βq1}Iy = λ1Ix + λ2Iy

Au = λu⇒ (A1Ix +A2Iy)u = (λ1Ix + λ2Iy)u{
A1u1 = λ1u1,
A2u2 = λ2u2.

Conversely: If λ1 = {α1, α2, · · · , αp1}, λ2 = {β1, β2, · · · , βq1}

Au = (A1Ix +A2Iy)u = (λ1Ix + λ2Iy)u

Au = λu.

Implies that

λ = {λ1Ix + λ2Iy = αsIx + βtIy | 1 ≤ s ≤ p1, 1 ≤ t ≤ q1}.
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Example 5.5. Take

A2,2 =

(
1− ik−1 + ik + ik−1ik 1 + ik−1 + ik − ik−1ik
1− ik−1 − ik + ik−1ik −1 + ik−1 + ik − ik−1ik

)
A = A1Ix +A2Iy

A =

(
2(1− ik−1) 0

2 −2

)
Ix +

(
0 2(1 + ik−1)

−2ik−1 2ik−1

)
Iy

det(A− λI) := λ2 − 2ikλ+ 4(ik−1 − 1)

det(A1 − λ1I) := λ21 + 2ik−1λ1 + 4(ik−1 − 1)

det(A2 − λ2I) := λ22 − 2ikλ2 + 4(ik−1 − 1)

λ = {(−ik−1 +
√

3− 4ik−1)Ix + (ik−1 +
√

3− 4ik−1)Iy, (−ik−1 +
√

3− 4ik−1)Ix + (ik−1−√
3− 4ik−1)Iy, (−ik−1−

√
3− 4ik−1)Ix+(ik−1+

√
3− 4ik−1)Iy, (−ik−1−

√
3− 4ik−1)Ix+

(ik−1 −
√

3− 4ik−1)Iy}.
Note: If we put k = 2, we get bicomplex eigenvalues for bicomplex matrix.

Theorem 5.6. Let A := {(alj) ∈ Ckn×n = (αlj)Ix + (βlj)Iy, 1 ≤ l, j ≤ n} be any
Multicomplex matrix and det(λIn − A) be the characteristic polynomial, then the matrix
A is zero of det(λIn −A).

Proof. We have

det(λIn −A) := det(λ1In − αlj)Ix + det(λ2In − βlj)Iy,
where

det(λIn −A) =

n∑
p=0

apλ
p = (

n∑
p=0

δpλ
p
1)Ix + (

n∑
p=0

γpλ
p
2)Iy

det(λIn −A) = (λIn −A).Adj(λIn −A) = Adj(λIn −A).(λIn −A).

And

Adj(λIn −A) =

n−1∑
p=0

ωpλ
p = (

n−1∑
p=0

φpλ
p
1)Ix + (

n−1∑
p=0

ψpλ
p
2)Iy.

Take
A = A1Ix +A2Iy, λ = λ1Ix + λ2Iy.

Then we have
φn−1 = δnI

φn−2 −A1φn−1 = δn−1I

φn−3 −A1φn−2 = δn−2I
...

. . .
...

φ0 −A1φ1 = δ1I

−A1φ0 = δ0I.

And
ψn−1 = γnI

ψn−2 −A1ψn−1 = γn−1I

ψn−3 −A1ψn−2 = γn−2I
...

. . .
...

ψ0 −A1ψ1 = γ1I
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−A1ψ0 = γ0I.

Multiplying by An1 , A
n−1
1 , · · · , A1, I

An1φn−1 = An1 δnI

An−11 φn−2 −An1φn−1 = An−11 δn−1I

An−21 φn−3 −An−11 φn−2 = An−21 δn−2I

...
. . .

...

A1φ0 −A2
1φ1 = A1δ1I

−A1φ0 = δ0I

δnA
n
1 + δn−1A

n−1
1 + · · ·+ δ1A1 + δ0I = 0. (5.3)

Similarly multiplying by An2 , A
n−1
2 , · · · , A2, I.

We have

γnA
n
2 + γn−1A

n−1
2 + · · ·+ γ1A2 + ψ0I = 0. (5.4)

From above equation we have

anA
n + an−1A

n−1 + · · ·+ a1A+ a0I = 0. (5.5)

Theorem 5.7. Let A := {(alj) ∈ Ckn×n = A1Ix + A2Iy} be any Multicomplex matrix,
then A is zero of det(λIn −A) if and only if A1 is zero of det(λ1In −A1) and A2 is zero
of det(λ2In −A2) where λ = λ1Ix + λ2Iy.

Proof. Very simple, can be easily proved.

Example 5.8. From above example clearly

f(A) := A2 − 2ikA+ 4(ik−1 − 1) = 0

f1(A1) := A2
1 + 2ik−1A1 + 4(ik−1 − 1) = 0

f2(A2) := A2
2 − 2ikA2 + 4(ik−1 − 1) = 0.

6. Kronecker Product on Multicomplex Space

The following information is interpreted from the paper On the history of Kronecker
product by Henderson, Pukelsheim and Searle (see [7] ). Apparently, the first documented
work on Kronecker products was written by Johann Georg Zehfuss between 1858 and 1868.

Now we do it for the multicomplex space.

Definition 6.1 (Kronecker Product). Let A and B are Multicomplex valued matrices,
and if A = (alj) ∈ Ckm×n, B = (brs) ∈ Ckp×q then their Kronecker product is denoted by
A⊗B and is defined as

A⊗B = (aljB) ∈ Ckmp×nq =


a1,1B a1,2B · · · a1,nB
a2,1B a2,2B · · · a2,nB

...
...

. . .
...

am,1B am,2B · · · am,nB

 .
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Which imply

A⊗B = (αljB1)Ix+(βljB2)Iy =


α1,1B1Ix + β1,1B2Iy · · · α1,nB1Ix + β1,nB2Iy
α2,1B1Ix + β2,1B2Iy · · · α2,nB1Ix + β2,nB2Iy

...
. . .

...
αm,1B1Ix + βm,1B2Iy · · · αm,nB1Ix + βm,nB2Iy

 ,

where A = {αljIx + βljIy | 1 ≤ l ≤ m, 1 ≤ j ≤ n} and B = B1Ix +B2Iy.
Clearly A⊗B 6= B ⊗A.

We do the theorem for multicomplex space.

Theorem 6.2. Let A ∈ Ckm×n, B ∈ Ckr×s, C ∈ Ckn×p, D ∈ Cks×t. Then (A⊗B)(C⊗D) =
AC ⊗BD.
Proof. We have

A⊗B = (αljB1)Ix+(βljB2)Iy =


α1,1B1Ix + β1,1B2Iy · · · α1,nB1Ix + β1,nB2Iy
α2,1B1Ix + β2,1B2Iy · · · α2,nB1Ix + β2,nB2Iy

...
. . .

...
αm,1B1Ix + βm,1B2Iy · · · αm,nB1Ix + βm,nB2Iy



C⊗D = (γuvD1)Ix+(δuvD2)Iy =


γ1,1D1Ix + δ1,1D2Iy · · · γ1,pD1Ix + δ1,pD2Iy
γ2,1D1Ix + δ2,1D2Iy · · · γ2,pD1Ix + δ2,pD2Iy

...
. . .

...
γn,1D1Ix + δn,1D2Iy · · · γn,pD1Ix + δn,pD2Iy



(A⊗B)(C ⊗D) =

P · · · Q
...

. . .
...

R · · · S


= AC ⊗BD,

where,

P =

n∑
k=1

(α1,kγk,1B1D1Ix + β1,kδk,1B2D2Iy)

Q =

n∑
k=1

(α1,kγk,pB1D1Ix + β1,kδk,pB2D2Iy)

R =

n∑
k=1

(αm,kγk,1B1D1Ix + βm,kδk,1B2D2Iy)

S =

n∑
k=1

(αm,kγk,pB1D1Ix + βm,kδk,pB2D2Iy).

The following results can be do easily for the multicomplx space.

(i) Let A and B be non singular Multicomplex valued matrices. Then (A⊗B)−1 =
A−1 ⊗B−1.

(ii) Let A ∈ Ckm×n, B ∈ Ckr×s. Then (A⊗B)T = AT ⊗BT .
(iii) If A ∈ Ckn×n, B ∈ Ckm×m are normal. Then A⊗B is normal.

(iv) If A ∈ Ckn×n, B ∈ Ckm×m are symmetric. Then A⊗B is symmetric.
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Now we prove the theorem in multicomplex space on the eigenvalues.

Theorem 6.3. Let A ∈ Ckn×n, B ∈ Ckm×m for which Au = λu and Bv = µv. If λ be
(p1.q1) distinct eigenvalues of A and µ be (p2.q2) distinct eigenvalues for B then A ⊗ B
has (p1q1.p2q2) distinct eigenvalues and written as in the form of αkνrIx + βsσtIy where
1 ≤ k ≤ p1, 1 ≤ r ≤ p2, 1 ≤ s ≤ q1, 1 ≤ t ≤ q2.

Proof. Let A = A1Ix +A2Iy, B = B1Ix +B2Iy, λ = λ1Ix + λ2Iy, µ = µ1Ix + µ2Iy
Au = λu,Bv = µv with{

A1u1 = λ1u1,
A2u2 = λ2u2.

And {
B1v1 = µ1v1,
B2v2 = µ2v2.

If λ1 = α1, α2, · · · , αp1 having p1 distinct eigenvalues
λ2 = β1, β2, · · · , βq1 having q1 distinct eigenvalues
then λ has mn distinct eigenvalues in the form of

{λ = αkIx + βsIy | 1 ≤ k ≤ p1, 1 ≤ s ≤ q1}. (6.1)

Similarly, if µ1 = ν1, ν2, · · · , νp2 having p2 distinct eigenvalues
µ2 = σ1, σ2, · · · , σq2 having q2 distinct eigenvalues
then µ has p2q2 distinct eigenvalues in the form of

{µ = νrIx + σtIy | 1 ≤ r ≤ p2, 1 ≤ t ≤ q2} (6.2)

(A⊗B)(u⊗ v) = ((A1 ⊗B1)Ix + (A2 ⊗B2)Iy)(u⊗ v)

= (A1 ⊗B1)Ix(u⊗ v) + (A2 ⊗B2)Iy(u⊗ v)

= (A1u⊗B1v)Ix + (A2u⊗B2v)Iy

= (λ1u⊗ µ1v)Ix + (λ2u⊗ µ2v)Iy

= λ1µ1(u⊗ v)Ix + λ2µ2(u⊗ v)Iy

(A⊗B)(u⊗ v) = (λ1µ1Ix + λ2µ2Iy)(u⊗ v)

(A⊗B)(u⊗ v) = (λ.µ)(u⊗ v)

λµ = {αkνrIx + βsσtIy | 1 ≤ k ≤ p1, 1 ≤ r ≤ p2, 1 ≤ s ≤ q1, 1 ≤ t ≤ q2}.

Implies that A⊗B has (p1q1.p2q2) distinct eigenvalues.

Example 6.4. Take

A =

(
1− ik−1 + ik + ik−1ik 1 + ik−1 + ik − ik−1ik
1− ik−1 − ik + ik−1ik −1 + ik−1 + ik − ik−1ik

)
B =

(
1 + ik−1 + ik + ik−1ik 1− ik−1 − ik − ik−1ik
1 + ik−1 + ik − ik−1ik 1− ik−1 + ik + ik−1ik

)

A⊗B =


4(1− ik−1) 0 0 0

0 8 0 0
4 0 −4 0
0 4(1− ik−1) 0 4(−1 + ik−1)

 Ix
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+


0 0 4(−1 + ik−1) 8
0 0 8ik−1 0
4 4(−1− ik−1) −4 4(1 + ik−1)

4(1− ik−1) 0 4(−1 + ik−1) 0

 Iy

where

A = A1Ix +A2Iy

A =

(
2(1− ik−1) 0

2 −2

)
Ix +

(
0 2(1 + ik−1)

−2ik−1 2ik−1

)
Iy

det(A− λI) := λ2 − 2ikλ+ 4(ik−1 − 1)

det(A1 − λ1I) := λ21 + 2ik−1λ1 + 4(ik−1 − 1)

det(A2 − λ2I) := λ22 − 2ikλ2 + 4(ik−1 − 1)

λ1 = {α1, α2 | α1 = −ik−1 +
√

3− 4ik−1, α2 = −ik−1 −
√

3− 4ik−1}

λ2 = {β1, β2 | β1 = ik−1 +
√

3− 4ik−1, β2 = ik−1 −
√

3− 4ik−1},
where λ1 are set of eigenvalues for A1 and λ2 be the set of eigenvalues of A2.

Similarly, if B = B1Ix + B2Iy having eigenvalues µ for which µ = µ1Ix + µ2Iy where
µ1 are set of eigenvalues for B1 and µ2 be the set of eigenvalues of B2 then we have

µ1 = {ν1, ν2 | ν1 = 2− ik−1 + ik, ν2 = 2− ik−1 − ik}

µ2 = {σ1, σ2 | σ1 = ik−1 +
√

7, σ2 = ik−1 −
√

7}

λ.µ = λ1.µ1Ix + λ2.µ2Iy,

where

λ1µ1 = {α1ν1, α1ν2, α2ν1, α2ν2}

λ2µ2 = {β1σ1, β1σ2, β2σ1, β2σ2}
hence set of all eigenvalues of A⊗B is in the form of

{αkνrIx + βsσtIy | k, r, s, t = 1, 2}.

7. Kronecker Sum on Multicomplex Space

As for the Kronecker product, we can define the Kronecker sum and some of its results
on the eigenvalues in the multicomplex space.

Definition 7.1 (Kronecker Sum). Let A ∈ Ckn×n, B ∈ Ckm×m then the Kronecker sum
of the Multicomplex valued matrices A and B is denoted as A⊕ B and is the mn×mn
matrix and is defined as A⊕B = (Im ⊗A) + (B ⊗ In) and in general A⊕B 6= B ⊕A.

We prove the following theorem on eigenvalues for Kronecker sum in the multicomplex
space.

Theorem 7.2. Let A ∈ Ckn×n, B ∈ Ckm×m for which Au = λu and Bv = µv. Let λ be
(p1.q1) distinct eigenvalues of A and µ be (p2.q2) distinct eigenvalues for B then A ⊕ B
has (p1p2.q1q2) distinct eigenvalues and written as in the form of (αk+νr)Ix+(βs+σt)Iy
where 1 ≤ k ≤ p1, 1 ≤ r ≤ p2, 1 ≤ s ≤ q1, 1 ≤ t ≤ q2.
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Proof.

(A⊕B)(u⊗ v) = ((Im ⊗A) + (B ⊗ In))(u⊗ v)

= ((Im ⊗A1 +B1 ⊗ In)Ix + (Im ⊗A2 +B2 ⊗ In)Iy)(u⊗ v)

= u⊗ (A1 +B1)vIx + (A2 +B2)u⊗ vIy
= u⊗ (A1v +B1v)Ix + (A2u+B2u)⊗ vIy
= u⊗ (λ1v + µ1v)Ix + (λ2u+ µ2u)⊗ vIy
= (λ1 + µ1)Ix(u⊗ v) + (λ2 + µ2)Iy(u⊗ v)

= ((λ1 + µ1)Ix + (λ2 + µ2)Iy)(u⊗ v)

= (λ+ µ)(u⊗ v).

Since λ1 = α1, α2, · · · , αp1 having p1 distinct eigenvalues,
λ2 = β1, β2, · · · , βq1 having q1 distinct eigenvalues,
µ1 = ν1, ν2, · · · , νp2 having p2 distinct eigenvalues,
µ2 = σ1, σ2, · · · , σq2 having q2 distinct eigenvalues.
Therefore λ1+µ1 = {αk+νr | 1 ≤ k ≤ p1, 1 ≤ r ≤ p2} has p1p2 distinct values. λ2+µ2 =
{βs+σt | 1 ≤ s ≤ q1, 1 ≤ t ≤ q2} has q1q2 distinct values. λ+µ = (αk+νr)Ix+(βs+σt)Iy
has (p1p2.q1q2) distinct eigenvalues.

Example 7.3. Take A and B Multicomplex matrices from the above example

A⊕B = (I2 ⊗A) + (B ⊗ I2)

where

I2 ⊗A =


2(1− ik−1) 0 0 0

2 −2 0 0
0 0 2(1− ik−1) 0
0 0 2 −2

 Ix

+


0 2(1 + ik−1) 0 0

−2ik−1 2ik−1 0 0
0 0 0 2(1 + ik−1)
0 0 −2ik−1 2ik−1

 Iy

B ⊗ I2 =


2 0 0 0
0 2 0 0
0 0 2(1− ik−1) 0
0 0 2 2(1− ik−1)

 Ix

+


2ik−1 0 2(1− ik−1) 0

0 2ik−1 0 2(1− ik−1)
2(1 + ik−1) 0 0 0

0 2(1 + ik−1) 0 0

 Iy

A⊗B =


2(2− ik−1) 0 0 0

2 0 0 0
0 0 4(1− ik−1) 0
0 0 2 −2ik−1)

 Ix
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+


2ik−1 2(1 + ik−1) 2(1− ik−1) 0
−2ik−1 4ik−1 0 2(1− ik−1)

2(1 + ik−1) 0 0 2(1 + ik−1)
0 2(1 + ik−1) −2ik−1 2ik−1

 Iy,

where

λ+ µ = λ1.µ1Ix + λ2.µ2Iy,

and

λ1 + µ1 = {α1 + ν1, α1 + ν2, α2 + ν1, α2 + ν2}
λ2 + µ2 = {β1 + σ1, β1 + σ2, β2 + σ1, β2 + σ2}

hence set of all eigenvalues of A⊕B is in the form of

{(αk + νr)Ix + (βs + σt)Iy | k, r, s, t = 1, 2}.
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