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Abstract In the present paper we investigate the existence and uniqueness of solutions for a Cauchy

problem governed by a Caputo fractional integro-differential equation with nonlocal initial condition in
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1. Introduction

Fractional calculus generalizes the derivative and the integral of some function to the
non-integer order. The study of fractional differential equations has become a very im-
portant area of mathematics due to its numeros applications in various fields of physics,
biophysics, mechanics, chemistry and engineering [1–3]. For more details, interested au-
thors can consult for example Kilbas et al. [4], Miller and Ross [5], Oldham and Spanier
[6], Podlubny [7] and Samko et al. [8]. Existence and uniqueness results of solution for
fractional differential equations drew the attention of many researchers (see [9–18]).In
addition, many properties of solutions of this type of problem such as stability, positivity,
etc., have been studied and establish these properties to various abstract boundary value
problems. Such a importance led to the publication of many research papers in this field,
which revealed the flexibility of fractional calculus theory in designing various mathemat-
ical models. The main methods conducted in these papers are by terms of fixed point
techniques [19–21].
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Integro-differential equations play an important role in various specialties of engineering
sciences. Several authors have worked on this type of equations (see [22–32]).

In [33], Momani et al. studied the local and global existence for the following Cauchy
problem 

CDαu(t) = f(t, u(t)) +

∫ t

t0

K(t, s, u(s))ds,

u(0) = u0,

(1.1)

where 0 < α ≤ 1, f ∈ C
(
[0, 1]× Rn,Rn

)
, K ∈ C

(
[0, 1]× [0, 1]× Rn,Rn

)
and CDα is the

Caputo fractional operator.

Ahmed and Sivasundaram in [34], considered the fractional integro-differential equation
in (1.1) with nonlocal condition u(0) = u0 − g(u), where 0 < α < 1, CDα denotes the
Caputo fractional derivative, f : [0, T ] × X −→ X, K : [0, T ] × [0, T ] × X −→ X are
continuous functions and g ∈ C([0, T ], X) −→ X where X is a Banach space.

In this paper we study existence and uniqueness results for the following fractional
integro-differential problem

CDα
0+u(t) = h(u(t)) + f(t, u(t)) +

∫ t

0

K(t, s, u(s))ds, t ∈ [0, 1],

u(0) = σ

ξ∫
0

u(s)ds, 0 < ξ < 1.

(1.2)

where σ is a real constant, 0 < α < 1, CDα
0+ is the Caputo fractional derivative, f :

[0, 1] × R −→ R, K : [0, 1] × [0, 1] × R −→ R, h ∈ C([0, 1],R) are appropriate functions
satisfying some conditions which will be stated later.

2. Notations and Notion Preliminaries

In the present section, we present some notations, definitions and auxiliary lemmas
concerning fractional calculus and fixed point throrems. Let J = [0, 1] and C(J,R),
Cn(J,R) denotes respectively the Banach spaces of all continuous bounded functions
and n times continuously differentiable functions on J. In addition, we define the norm
‖g‖ = max{|g(t)| : t ∈ J} for any continuously function g : J −→ R.

Definition 2.1. [4, 7] Let α > 0 and g : J −→ R. The left sided Riemann-Liouville
fractional integral of order α of a function g is defined by

Iα0+g(t) =
1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds, t ∈ J. (2.1)

Definition 2.2. [4, 8] Let n − 1 < α < n, (n ∈ N?) and g ∈ Cn(J,R). The left sided
Caputo fractional derivative of order α of a function g is given by

CDα
0+g(t) =

1

Γ(n− α)

∫ t

0

(t− s)n−α−1g(n)(s)ds

= In−α0+

dn

dtn
g(t), t ∈ J. (2.2)
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Lemma 2.3. [4, 8] For real numbers α, β > 0 and appropriate function g, we have for
all t ∈ J :
1) Iα0+I

β
0+g(t) = Iβ0+I

α
0+g(t) = Iα+β

0+ g(t).

2) Iα0+
CDα

0+g(t) = g(t)− g(0), 0 < α < 1.

3) CDα
0+Iα0+g(t) = g(t).

Lemma 2.4. [35](Banach fixed point theorem) Let U be a non-empty complete metric
space and T : U −→ U is contraction mapping. Then, there exists a unique point u ∈ U
such that T (u) = u.

Lemma 2.5. [35](Krasnoselskii fixed point theorem) Let E be bounded, closed and convex
subset in a Banach space X. If T1, T2 : E −→ E are two operators that satisfy the following
conditions
1) T1x+ T2y ∈ E, for every x, y ∈ E
2) T1 is a contraction
3) T2 is compact and continuous.
then, there exists z ∈ E such that T1z + T2z = z.

3. Existence and Uniqueness Result

Before presenting our main results, we need the following auxiliary lemma.

Lemma 3.1. Let 0 < α < 1 and σ 6= 1
ξ . Assume that h, f and K are three continuous

functions. If u ∈ C(J,R) then u is solution of (1.2) if and only if u satisfies the integral
equation

u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1

[
h(u(s)) + f(s, u(s)) +

∫ s

0

K(s, τ, u(τ))dτ

]
ds

+
σ

(1− σξ)Γ(α+ 1)

∫ ξ

0

(ξ − τ)α
[
h(u(τ)) + f(τ, u(τ)) +

∫ τ

0

K(τ, λ, u(λ))dλ

]
dτ.

Proof. Let u ∈ C(J,R) be a solution of (1.2). Firstly, we show that u is solution of
integral equation (3.1). By Lemma 2.3, we obtain

Iα0+
CDα

0+u(t) = u(t)− u(0). (3.1)

In addition, from equation in (1.2) and Definition 2.1, we have

Iα0+
CDα

0+u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1

[
h(u(s)) + f(s, u(s))

+

∫ s

0

K(s, τ, u(τ))dτ

]
ds. (3.2)

By substituting (3.2) in (3.1) with nonlocal condition in problem (1.2), we get

u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1

[
h(u(s)) + f(s, u(s))

+

∫ s

0

K(s, τ, u(τ))dτ

]
ds+ u(0), (3.3)
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but, we have

u(0) = σ

∫ ξ

0

u(s)ds

=
σ

Γ(α)

∫ ξ

0

[ ∫ s

0

(s− τ)α−1

(
h(u(τ)) + f(τ, u(τ)) +

∫ τ

0

K(τ, λ, u(λ))dλ

)
dτ

]
ds

+σξu(0)

=
σ

Γ(α)

[ ∫ ξ

0

∫ s

0

(s− τ)α−1h(u(τ))dτds+

∫ ξ

0

∫ s

0

(s− τ)α−1f(τ, u(τ))dτds

+

∫ ξ

0

∫ s

0

(s− τ)α−1

∫ τ

0

K(τ, λ, u(λ))dλdτds

]
+ σξu(0).

Consequently,

u(0) =
σ

(1− σξ)Γ(α)

[ ∫ ξ

0

∫ s

0

(s− τ)α−1h(u(τ))dτds+

∫ ξ

0

∫ s

0

(s− τ)α−1f(τ, u(τ))dτds

+

∫ ξ

0

∫ s

0

(s− τ)α−1

∫ τ

0

K(τ, λ, u(λ))dλdτds

]
.

Using Fubini’s theorem and after some manipulations we obtain:

u(0) =
σ

(1− σξ)Γ(α+ 1)

∫ ξ

0

(ξ − τ)α
[
h(u(τ)) + f(τ, u(τ)) +

∫ τ

0

K(τ, λ, u(λ))dλ

]
dτ.

Now, by substituting the last value of u(0) in (3.3) we find (3.1).
Conversely, in view of Lemma 2.3 and by applying the operator CDα

0+ on both sides of
(3.1), we get

CDα
0+u(t) = CDα

0+Iα0+h(u(t)) + CDα
0+Iα0+f(t, u(t)) + CDα

0+Iα0+

(∫ t

0

K(t, s, u(s))ds

)
= h(u(t)) + f(t, u(t)) +

∫ t

0

K(t, s, u(s))ds, (3.4)

this means that u satisfies the equation in problem (1.2). Furthermore, by substituting t
by 0 in integral equation (3.1), we have clearly that the nonlocal condition in (1.2) holds.
Therefore, u is solution of problem (1.2), which completes the proof.

We will prove an existence and uniqueness result of the problem (1.2) in C(J,R) by
using Banach’s fixed point theorem. For this fact, we will need some assumptions about
the functions h, f and K previously defined.
(H1) : |h(u(t))− h(v(t))| ≤ k1‖u− v‖, t ∈ J, u, v ∈ R.
(H2) : |f(t, u(t))− f(t, v(t))| ≤ k2‖u− v‖, t ∈ J, u, v ∈ R.
(H3) : |K(t, s, u(s))−K(t, s, v(s))| ≤ k3‖u− v‖, (t, s) ∈ D, u, v ∈ R.
where k1, k2, k3 are three positive real constants and D = {(t, s) : 0 ≤ s ≤ t ≤ 1}.

Theorem 3.2. Assume that the assumptions (H1), (H2) and (H3) hold. If

k1 + k2

Γ(α+ 1)
+

k3

Γ(α+ 2)
+
|σ|k1 + |σ|k2

|1− σξ|Γ(α+ 2)
ξα+1

+
|σ|k3

|1− σξ|Γ(α+ 3)
ξα+2 < 1, (3.5)
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then the fractional integro-differential problem (1.2) has a unique solution on C(J,R).

Proof. Firstly, we define an operator P : C(J,R) −→ C(J,R) by

Pu(t) =
1

Γ(α)

∫ t

0

(t− s)α−1

[
h(u(s)) + f(s, u(s)) +

∫ s

0

K(s, τ, u(τ))dτ

]
ds

+
σ

(1− σξ)Γ(α+ 1)

∫ ξ

0

(ξ − τ)α
[
h(u(τ)) + f(τ, u(τ)) +

∫ τ

0

K(τ, λ, u(λ))dλ

]
dτ

and we consider the subset Br of C(J,R) defined by

Br = {u ∈ C(J,R) : ‖u‖ ≤ r} (3.6)

where r is a strictly positive real number chosen so that

r ≥
M1+M2

Γ(α+1) + M3

Γ(α+2) + |σ|M1+|σ|M2

|1−σξ|Γ(α+2)ξ
α+1 + |σ|M3

|1−σξ|Γ(α+3)ξ
α+2

1− k1+k2
Γ(α+1) −

k3
Γ(α+2) −

|σ|k1+|σ|k2
|1−σξ|Γ(α+2)ξ

α+1 − |σ|k3
|1−σξ|Γ(α+3)ξ

α+2
, (3.7)

with M1 =
∣∣h(0)

∣∣, M2 = sup
s∈J

∣∣f(s, 0)
∣∣, and M3 = sup

(s,τ)∈D
|K(s, τ, 0)

∣∣.
Now, we show that the operator P has a unique fixed point on Br which represents the
unique solution of the problem (1.2). Our proof is down in two steps.

First step: We have to show that PBr ⊂ Br. For each t ∈ J and for any u ∈ Br, we
have ∣∣(Pu)(t)

∣∣
≤ 1

Γ(α)

∫ t

0

(t− s)α−1

[∣∣h(u(s))
∣∣+
∣∣f(s, u(s))

∣∣+

∫ s

0

∣∣K(s, τ, u(τ))
∣∣dτ]ds

+
|σ|

|1− σξ|Γ(α+ 1)

∫ ξ

0

(ξ − τ)α
[
|h(u(τ))|+ |f(τ, u(τ))|+

∫ τ

0

|K(τ, λ, u(λ))|dλ
]
dτ

≤ 1

Γ(α)

∫ t

0

(t− s)α−1
[∣∣h(u(s))− h(0)

∣∣+
∣∣h(0)

∣∣]ds
+

1

Γ(α)

∫ t

0

(t− s)α−1
[∣∣f(s, u(s))− f(s, 0)

∣∣+
∣∣f(s, 0)

∣∣]ds
+

1

Γ(α)

∫ t

0

(t− s)α−1

∫ s

0

[∣∣K(s, τ, u(τ))−K(s, τ, 0)
∣∣+
∣∣K(s, τ, 0)

∣∣]dτds
+

|σ|
|1− σξ|Γ(α+ 1)

∫ ξ

0

(ξ − τ)α
[∣∣h(u(τ))− h(0)

∣∣+
∣∣h(0)

∣∣]dτ
+

|σ|
|1− σξ|Γ(α+ 1)

∫ ξ

0

(ξ − τ)α
[∣∣f(τ, u(τ))− f(τ, 0)

∣∣+
∣∣f(τ, 0)

∣∣]dτ
+

|σ|
|1− σξ|Γ(α+ 1)

∫ ξ

0

(ξ − τ)α
∫ τ

0

[∣∣K(τ, λ, u(λ))−K(τ, λ, 0)
∣∣+
∣∣K(τ, λ, 0)

∣∣]dλdτ
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≤

[
k1

∥∥u∥∥+M1

]
tα

Γ(α+ 1)
+

[
k2

∥∥u∥∥+M2

]
tα

Γ(α+ 1)
+
k3

∥∥u∥∥tα+1

Γ(α+ 2)
+

M3t
α+1

Γ(α+ 2)

+
|σ|
[
k1

∥∥u∥∥+M1

]
ξα+1

|1− σξ|Γ(α+ 2)
+
|σ|
[
k2

∥∥u∥∥+M2

]
ξα+1

|1− σξ|Γ(α+ 2)
+
|σ|k3

∥∥u∥∥ξα+2

|1− σξ|Γ(α+ 3)

+
|σ|M3ξ

α+2

|1− σξ|Γ(α+ 3)

≤

[
k1 + k2

Γ(α+ 1)
+

k3

Γ(α+ 2)
+
|σ|k1 + |σ|k2

|1− σξ|Γ(α+ 2)
ξα+1 +

|σ|k3

|1− σξ|Γ(α+ 3)
ξα+2

]
r

+
M1 +M2

Γ(α+ 1)
+

M3

Γ(α+ 2)
+
|σ|M1 + |σ|M2

|1− σξ|Γ(α+ 2)
ξα+1 +

|σ|M3

|1− σξ|Γ(α+ 3)
ξα+2

≤ r.

Therefore
∥∥Pu∥∥ ≤ r, which means that PBr ⊂ Br.

Second step: We shall show that P : Br −→ Br is a contraction.
In view of the assumptions (H1), (H2) and (H3), we have for any u, v ∈ Br and for each
t ∈ J ∣∣(Pu)(t)− (Pv)(t)

∣∣
≤ 1

Γ(α)

∫ t

0

(t− s)α−1
∣∣h(u(s))− h(v(s))

∣∣ds
+

1

Γ(α)

∫ t

0

(t− s)α−1
∣∣f(s, u(s))− f(s, v(s))

∣∣ds
+

1

Γ(α)

∫ t

0

(t− s)α−1

∫ s

0

∣∣K(s, τ, u(τ))−K(s, τ, v(τ))
∣∣dτds

+
|σ|

|1− σξ|Γ(α+ 1)

∫ ξ

0

(ξ − τ)α
∣∣h(u(τ))− h(v(τ))

∣∣dτ
+

|σ|
|1− σξ|Γ(α+ 1)

∫ ξ

0

(ξ − τ)α
∣∣f(τ, u(τ))− f(τ, v(τ))

∣∣dτ
+

|σ|
|1− σξ|Γ(α+ 1)

∫ ξ

0

(ξ − τ)α
∫ τ

0

∣∣K(τ, λ, u(λ))−K(τ, λ, v(λ))
∣∣dλdτ

≤
[

k1t
α

Γ(α+ 1)
+

k2t
α

Γ(α+ 1)
+

k3t
α+1

Γ(α+ 2)

]∥∥u− v∥∥
+

[
|σ|k1

|1− σξ|Γ(α+2)
ξα+1 +

|σ|k2

|1− σξ|Γ(α+2)
ξα+1 +

|σ|k3

|1− σξ|Γ(α+3)
ξα+2

]∥∥u− v∥∥
≤

[
k1 + k2

Γ(α+ 1)
+

k3

Γ(α+ 2)
+
|σ|k1 + |σ|k2

|1− σξ|Γ(α+ 2)
ξα+1 +

|σ|k3

|1− σξ|Γ(α+ 3)
ξα+2

]∥∥u− v∥∥.
By exploiting estimation (3.5), it follows that P is a contraction. All assumptions of
Lemma 2.4 are satisfied, then there exists u ∈ C(J,R) such that Pu = u which is the
unique solution of problem (1.2) in C(J,R). This completes the proof of Theorem 3.2.
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Example 3.3. Consider the following nonlocal fractional integro-differential problem

CD
1
2

0+u(t) =
1

48
sin(u(t)) +

u(t)

90 + e−t
+

∫ t

0

es−t

64
u(s)ds, t ∈ [0, 1],

u(0) =
1

10

1
4∫

0

u(s)ds.

(3.8)

where α =
1

2
, σ =

1

10
, ξ =

1

4
, h(u) =

1

48
sin(u), f(t, u) =

u

90 + e−t
, and K(t, s, u) =

es−t

64
u. For u, v ∈ R+ and t ∈ [0, 1], we have:∣∣h(u(t))− h(v(t))

∣∣ ≤ 1

48

∥∥u− v∥∥,∣∣f(t, u)− f(t, v)
∣∣ ≤ 1

90

∥∥u− v∥∥,
and ∣∣K(t, s, u(s))−K(t, s, v(s))

∣∣ ≤ 1

64

∥∥u− v∥∥.
Now, the assumptions (H1), (H2) and (H3) are satisfied with k1 =

1

48
, k2 =

1

90
and

k3 =
1

64
, then after some computations, we find that:

k1 + k2

Γ(α+ 1)
+

k3

Γ(α+ 2)
+
|σ|k1 + |σ|k2

|1− σξ|Γ(α+ 2)
ξα+1 +

|σ|k3

|1− σξ|Γ(α+ 3)
ξα+2 ≈ 0.0479 < 1.

Therefore, by applying Theorem 3.2 the problem (3.8) has a unique solution on [0, 1].

4. Existence Result

In the present section, we will demonstrate an existence result of the fractional integro-
differential problem (1.2). For this fact, we need the following assumptions.
(H4) h : J −→ R is continuous and there exists 0 < M < 1 such that

|h(u(t))− h(v(t))| ≤M‖u− v‖, t ∈ J, u, v ∈ R. (4.1)

(H5) f : J × R −→ R is continuous and there exists φ ∈ L∞(J,R+) such that

|f(t, u(t))− f(t, v(t))| ≤ φ(t)‖u− v‖, t ∈ J, u, v ∈ R. (4.2)

(H6) K : D × R −→ R is continuous on D and there exists ρ ∈ L1(J,R+) such that

|K(t, s, u(s))−K(t, s, v(s))| ≤ ρ(t)‖u− v‖, (t, s) ∈ D , u, v ∈ R, (4.3)

where D = {(t, s) : 0 ≤ s ≤ t ≤ 1}.

Theorem 4.1. Suppose that the assumptions (H4), (H5) and (H6) hold. If

|σ|
|1− σξ|Γ(α+ 2)

[
M + ‖φ‖L∞ + ‖ρ‖L1

]
ξα+1 < 1. (4.4)

Then, the fractional integro-differential problem (1.2) has at least one solution in C(J,R)
on J.
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Proof. First, we transform the problem (1.2) into a fixed point problem. For this fact we
define the operator P : C(J,R) −→ C(J,R) by

Pu(t) =
σ

(1− σξ)Γ(α+ 1)

∫ ξ

0

(ξ − τ)α
[
h(u(τ)) + f(τ, u(τ)) +

∫ τ

0

K(τ, λ, u(λ))dλ

]
dτ

+
1

Γ(α)

∫ t

0

(t− s)α−1

[
h(u(s)) + f(s, u(s)) +

∫ s

0

K(s, τ, u(τ))dτ

]
ds

Before starting the proof of our theorem, we decompose the operator P into a sum of two
operators F and G, where

Fu(t) =
σ

(1− σξ)Γ(α+ 1)

∫ ξ

0

(ξ − τ)α
[
h(u(τ)) + f(τ, u(τ)) +

∫ τ

0

K(τ, λ, u(λ))dλ

]
dτ

and

Gu(t) =
1

Γ(α)

∫ t

0

(t− s)α−1

[
h(u(s)) + f(s, u(s)) +

∫ s

0

K(s, τ, u(τ))dτ

]
ds

For any function u ∈ C(J,R), we define the norm

‖u‖ = max
{
|u(t)| : t ∈ J

}
.

Now, our existence result will be discussed in several steps:

Step (1):

Let µ = sup
(s,u)∈J×Sr

|f(s, u)|, µ? = sup
(s,τ,u)∈D×Sr

∫ s

0

|K(s, τ, u(τ))|dτ and η = sup
u∈Sr

|h(u)|,

define the set Sr =
{
u ∈ C(J,R) : ‖u‖ ≤ r

}
, where r is a real constant positive number

such that

r ≥

[
|σ|ξα+1

|1− σξ|Γ(α+ 2)
+

1

Γ(α+ 1)

]
(η + µ+ µ?) (4.5)

and prove that Fu+Gv ∈ Sr ⊂ C(J,R), for every u, v ∈ Sr.
For u ∈ Sr and t ∈ J, we have

|Fu(t)| ≤ |σ|
|1− σξ|Γ(α+1)

∫ ξ

0

(ξ−τ)α
[
|h(u(τ))|+ |f(τ, u(τ))|+

∫ τ

0

|K(τ, λ, u(λ))|dλ
]
dτ

≤ |σ|
|1− σξ|Γ(α+ 1)

∫ ξ

0

(ξ − τ)α

×
[

sup
u∈Sr

|h(u)|+ sup
(τ,u)∈J×Sr

|f(τ, u)|+ sup
(τ,λ,u)∈D×Sr

∫ τ

0

|K(τ, λ, u)|dλ
]
dτ

=
|σ|
[
η + µ+ µ?

]
|1− σξ|Γ(α+ 2)

ξα+1.

Thus,

‖Fu‖ ≤
|σ|
[
η + µ+ µ?

]
|1− σξ|Γ(α+ 2)

ξα+1. (4.6)
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In a similar way, for v ∈ Sr and t ∈ J, we find

|Gv(t)| ≤ 1

Γ(α)

∫ t

0

(t− s)α−1

[
|h(v(s))|+ |f(s, v(s))|+

∫ s

0

|K(s, τ, v(τ))|dτ
]
ds

≤ 1

Γ(α)

∫ t

0

(t− s)α−1

×
[

sup
v∈Sr

|h(v)|+ sup
(s,v)∈J×Sr

|f(s, v)|+ sup
(s,τ,v)∈D×Sr

∫ s

0

|K(s, τ, v)|dτ
]
ds

≤ η + µ+ µ?

Γ(α+ 1)
.

Therefore,

‖Gv‖ ≤ η + µ+ µ?

Γ(α+ 1)
. (4.7)

Consequently, in view of inequalities (4.5)-(4.7), we get

‖Fu+Gv‖ ≤ ‖Fu‖+ ‖Gv‖

≤
|σ|
[
η + µ+ µ?

]
|1− σξ|Γ(α+ 2)

ξα+1 +
η + µ+ µ?

Γ(α+ 1)

≤ r.

This means that Fu+Gv ∈ Sr.

Step (2):
We show that F is contraction map on Sr. From the definition of the operator F and by
using Fubini’s theorem, we can write

Fu(t) =
σ

(1− σξ)Γ(α+ 1)

∫ ξ

0

(ξ − τ)α
[
h(u(τ)) + f(τ, u(τ)) +

∫ τ

0

K(τ, λ, u(λ))dλ

]
dτ

=
σ

(1− σξ)Γ(α+ 1)

∫ ξ

0

(ξ − τ)α
[
h(u(τ)) + f(τ, u(τ))

]
dτ

+
σ

(1− σξ)Γ(α+ 1)

∫ ξ

0

∫ ξ

λ

(ξ − τ)αK(τ, λ, u(λ))dτdλ.

Therefore, for u, v ∈ Sr and t ∈ J we find

|Fu(t)− Fv(t)|

≤ |σ|
|1− σξ|Γ(α+ 1)

∫ ξ

0

(ξ − τ)α
[
|h(u(τ))− h(v(τ))|+ |f(τ, u(τ))− f(τ, v(τ))|

]
dτ

+
|σ|

|1− σξ|Γ(α+ 1)

∫ ξ

0

∫ ξ

λ

(ξ − τ)α|K(τ, λ, u(λ))−K(τ, λ, v(λ))|dτdλ
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≤ |σ|
|1− σξ|Γ(α+ 1)

∫ ξ

0

(ξ − τ)α
[
M |u(τ)− v(τ)|+ φ(τ)‖u(τ)− v(τ)|

]
dτ

+
|σ|

|1− σξ|Γ(α+ 1)

∫ ξ

0

∫ ξ

λ

(ξ − τ)αρ(τ)|u(λ)− v(λ)|dτdλ.

≤ |σ|
|1− σξ|Γ(α+ 1)

∫ ξ

0

(ξ − τ)α
[
M |u(τ)− v(τ)|+ φ(τ)|u(τ)− v(τ)|

]
dτ

+
|σ|

|1− σξ|Γ(α+ 1)

∫ ξ

0

∫ ξ

λ

(ξ − λ)αρ(τ)|u(λ)− v(λ)|dτdλ.

≤ |σ|
|1− σξ|Γ(α+ 2)

[
M‖u− v‖+ ‖φ‖L∞‖u− v‖+ ‖ρ‖L1‖u− v‖

]
ξα+1

≤ |σ|
|1− σξ|Γ(α+ 2)

[
M + ‖φ‖L∞ + ‖ρ‖L1

]
ξα+1‖u− v‖.

Thus,

‖Fu− Fv‖ ≤ |σ|
|1− σξ|Γ(α+ 2)

[
M + ‖φ‖L∞ + ‖ρ‖L1

]
ξα+1‖u− v‖

Therefore, by using (4.4) we conclude that F is a contraction map on Sr.

Step (3):

To show that G is a compact operator, we claim that G(Sr) is a compact subset of C(J,R).
To show this, we need only to prove that G(Sr) is uniformly bounded and equicontinuous
subset of C(J,R).
Firstly, it is clear by inequality (4.7), that G(Sr) is uniformly bounded.
Next, we will prove that G(Sr) is equicontinuous subset of C(J,R)..
For this we have for any u ∈ Sr and for each t1, t2 ∈ J where t1 ≤ t2 :∣∣Gu(t2)−Gu(t1)

∣∣
≤ 1

Γ(α)

∫ t2

t1

(t2 − s)α−1

[
|h(u(s))|+ |f(s, u(s))|+

∫ s

0

|K(s, τ, u(τ))|dτ
]
ds

+
1

Γ(α)

∫ t1

0

∣∣∣(t2−s)α−1− (t1−s)α−1
∣∣∣[|h(u(s))|+|f(s, u(s))|+

∫ s

0

|K(s, τ, u(τ))|dτ
]
ds

≤ 1

Γ(α)

[ ∫ t2

t1

(t2 − s)α−1ds+

∫ t1

0

∣∣∣(t2 − s)α−1 − (t1 − s)α−1
∣∣∣ds]

×
[

sup
v∈Sr

|h(u)|+ sup
(s,u)∈J×Sr

|f(s, u)|+ sup
(s,τ,u)∈D×Sr

∫ s

0

|K(s, τ, u)|dτ
]

≤ η + µ+ µ?

Γ(α+ 1)

[
2(t2 − t1)α + tα2 − tα1

]
where η, µ, and µ? are the constants defined in step (1). The right hand side of the
above inequality is independent of u and tends to zero when t2 −→ t1, then ‖Gu(t2) −
Gu(t1)‖ −→ 0, which means that G(Sr) is equicontinuous.
Finally, from the continuity of h, f and K, it follows that the operator G : Sr −→ Sr is
continuous. So the operator G is compact on Sr. Now, all assumptions of lemma 2.5 are
satisfied. Therefore, the operator P = F +G has a fixed point on Sr. Then the fractional
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integro-differential problem (1.2) has a solution u ∈ C(J,R). This completes the proof of
the theorem 4.1.

Example 4.2. Consider the following nonlocal fractional integro-differential problem

CD
1
2

0+u(t) =
1

10
sin2(u(t)) +

2u(t)

13 + et
+

∫ t

0

e2t

5 + es
u(s)ds, t ∈ [0, 1],

u(0) =
1

3

1
4∫

0

u(s)ds.

(4.8)

In this example, we have: α =
1

2
, σ =

1

3
, ξ =

1

4
, h(u) =

1

10
sin2(u),

f(t, u) =
2u

13 + et
, and K(t, s, u) =

e2t

5 + es
u. Then for u, v ∈ R+ and t ∈ J, we have:∣∣h(u(t))− h(v(t))

∣∣ ≤ 1

5

∥∥u− v∥∥,
∣∣f(t, u)− f(t, v)

∣∣ ≤ 2

13 + et
∥∥u− v∥∥

and ∣∣K(t, s, u(s))−K(t, s, v(s))
∣∣ ≤ 1

6
e2t
∥∥u− v∥∥.

So, The assumptions (H4), (H5) and (H6) are satisfied with M = 1
5 , φ(t) =

2

13 + et

and ρ(t) = 1
6e

2t where ‖φ‖L∞ =
1

7
and ‖ρ‖L1 = 1

12 (e2 − 1). Now, some elementary

computations give us

|σ|
|1− σξ|Γ(α+ 2)

[
M + ‖φ‖L∞ + ‖ρ‖L1

]
ξα+1 ≈ 0.0299 < 1

which means that the condition (4.4) holds. Therefore, by applying theorem 4.1, we
deduce that the nonlocal fractional integro-differential problem (4.8) has a solution on
[0, 1].

Conclusion

In this paper, we considered a new fractional class of integro-differential equation in the
context of the standard Caputo fractional derivative. The main goal in the present paper
is to derive several criteria of the existence and uniqueness of solutions for mentioned
initial value problem. To acheive our aim, we first transformed our main problem into
equivalent fixed point problem. After that with the help of the fixed point theorems of
Banach and Krasnoselskii we proved our results of existence and uniqueness of solutions
to our problem in a well-defined Banach space. Finally, we have illustrated our theoretical
results with examples.
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