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General Cesàro mean approximation methods

for nonexpansive mappings in Hilbert spaces∗

P. Markshoe and R. Wangkeeree

Abstract : Let C be a nonempty closed convex subset of a real Hilbert space
H, f a contraction on C and A a strongly bounded linear operator on H with
coefficient γ̄ > 0. Consider a general Cesáro mean iterative method

x0 ∈ C, xn+1 = αnγf(xn) + βnxn + ((1 − βn)I + αnA)
1

n + 1

n
∑

j=0

T jxn, n ≥ 0,

where {αn}, {βn} are the sequences in [0, 1] satisfying certain conditions, and T

is a nonexpansive mapping of C into itself. It is proved that the sequence {xn}
generated by above method, converges strongly to a point x̃ ∈ F (T ) which solves
the variational inequality

〈(A − γf)x̃, x̃ − x〉 ≤ 0, x ∈ F (T ). (0.1)

The results presented in this paper generalize, extend and improve the correspond-
ing results of Shimizu and Takahashi [14], Matsushita and Kuroiwa [8] and many
others.

Keywords : Fixed point; Variational inequality; Viscosity approximation; Non-
expansive mapping; Hilbert space.
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1 Introduction

Let C be a nonempty closed convex subset of a Hilbert space H and let x be
an element of C. Let T be a nonexpansive mapping from C into itself such that
the set F (T ) of fixed points of T is nonempty. For each t with 0 < t < 1, let xt

be a unique point of C which satisfies

xt = tx + (1 − t)Txt.

∗Supported by Faculty of Science, Naresuan University, THAILAND.

Copyright c© 2009 by the Mathematical Association of Thailand. All rights

reserved.



36 Thai J. Math. 7(2009)/ P. Markshoe and R. Wangkeeree

Browder [1] showed that {xt} converges strongly as t −→ 0 to the element of
F (T ) which is nearest to x in F (T ). This result was extended to a Banach space
by Reich [12] and Takahashi and Ueda [18]. On the other hand, Wittmann [20]
showed that each sequence {xn} defined by

x0 ∈ C, xn+1 = αn+1x + (1 − αn+1)Txn for n = 0, 1, 2, ...,

converges strongly to the element of F (T ) which is nearest to x if {αn} satisfies
0 ≤ αn ≤ 1, αn −→ 0,

∑

∞

n=1 αn = ∞ and
∑

∞

n=1 |αn+1 − αn| < ∞. Using an
idea of Browder [1], Shimizu and Takahashi [15] studied the convergence of the
following approximated sequence for an asymptotically nonexpansive mapping in
the framework of a Hilbert space:

xn = αnx + (1 − αn)
1

n

n
∑

j=1

T jxn for n = 0, 1, 2, . . . , (1.1)

where {αn} is a real sequence satisfying 0 < αn < 1 and αn −→ 0 as n −→ ∞.
Shimizu and Takahashi [14] also studied the convergence of another iteration pro-
cess for a family of nonexpansive mappings in the framework of a Hilbert space.
The iteration process is a mixed iteration process of Wittmann’s [20] and Shimizu
and Takahash’s [15]. For simplicity, we state their result for a nonexpansive map-
ping T with F (T ) is nonempty. They show that each sequence {xn} defined by

x0 ∈ C, xn+1 = αnx + (1 − αn)
1

n + 1

n
∑

j=0

T jxn for n = 0, 1, 2, . . . , (1.2)

converges strongly to the element of F (T ) which is nearest to x in F (T ) if {αn}
satisfies 0 ≤ αn ≤ 1, αn −→ 0 and

∑

∞

n=1 αn = ∞. But this approximation method
is not suitable for some nonexpansive nonself-mappings. In the framework of a
real Hilbert space, Matsushita and Kuroiwa [8] studied the strong convergence of
the iterative method below. For x ∈ C,

x0 ∈ C, xn+1 = αnx + (1 − αn)
1

n + 1

n
∑

j=0

(PCT )jxn for n = 0, 1, 2, . . . , (1.3)

where {αn} is a real sequence in [0, 1], PC is the metric projection of H onto
C, and T is a nonexpansive nonself-mapping of C into H. Using the nowhere
normal outward condition on T and the appropriate assumptions imposed upon the
parameters sequences {αn}, they proved that {xn} generated by (1.3) converges
strongly as n −→ ∞ to an element of fixed point of T when F (T ) is nonempty.

On the other hand, iterative methods for nonexpansive mappings have recently
been applied to solve convex minimization problems; see, e.g., [3, 23, 22] and the
references therein. Let H be a real Hilbert space, whose inner product and norm
are denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let A be a strongly positive bounded
linear operator on H: that is, there is a constant γ̄ > 0 with property

〈Ax, x〉 ≥ γ̄‖x‖2 for all x ∈ H. (1.4)
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A typical problem is to minimize a quadratic function over the set of the fixed
points of a nonexpansive mapping on a real Hilbert space H :

min
x∈C

1

2
〈Ax, x〉 − 〈x, b〉, (1.5)

where C is the fixed point set of a nonexpansive mapping T on H and b is a
given point in H. In 2003, Xu ([22]) proved that the sequence {xn} defined by the
iterative method below, with the initial guess x0 ∈ H chosen arbitrarily:

xn+1 = (I − αnA)Txn + αnu, n ≥ 0, (1.6)

converges strongly to the unique solution of the minimization problem (1.5) pro-
vided the sequence {αn} satisfies certain conditions that will be made precise in
Section 3.

Using the viscosity approximation method, Moudafi [10] introduced the fol-
lowing iterative iterative process for nonexpansive mappings (see [21] for further
developments in both Hilbert and Banach spaces). Let f be a contraction on H.
Starting with an arbitrary initial x0 ∈ H, define a sequence {xn} recursively by

xn+1 = (1 − σn)Txn + σnf(xn), n ≥ 0, (1.7)

where {σn} is a sequence in (0, 1). It is proved [10, 21] that under certain appro-
priate conditions imposed on {σn}, the sequence {xn} generated by (1.7) strongly
converges to the unique solution x∗ in C of the variational inequality

〈(I − f)x∗, x − x∗〉 ≥ 0, x ∈ C. (1.8)

Recently, Marino and Xu [6] was combine the iterative method (1.6) with the
viscosity approximation method (1.7) and consider the following general iterative
method:

xn+1 = (I − αnA)Txn + αnγf(xn), n ≥ 0. (1.9)

where A is a strongly positive bounded linear operator on H. They proved that if
the sequence {αn} of parameters satisfies appropriate conditions, then the sequence
{xn} generated by (1.9) converges strongly to the unique solution of the variational
inequality

〈(A − γf)x∗, x − x∗〉 ≥ 0, x ∈ C, (1.10)

which is the optimality condition for the minimization problem

min
x∈C

1

2
〈Ax, x〉 − h(x),

where h is a potential function for γf(i.e., h′(x) = γf(x) for x ∈ H)
Inspired and motivated by the above research, we introduce the general Cesáro

mean iterative method for a nonexpansive mapping in a real Hilbert space as
follows:

x0 ∈ C, xn+1 = αnγf(xn) + βnxn + ((1 − βn)I + αnA)
1

n + 1

n
∑

j=0

T jxn, n ≥ 0.
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where f is a contraction on C, A a strongly bounded linear operator on H with
coefficient γ̄ > 0, and investigate the problem of approximating a fixed point of a
nonexpansive mapping which solves some variational inequality. The results of this
paper extend and improve the results of Shimizu and Takahashi [14], Matsushita
and Kuroiwa [8] and many others.

2 Preliminaries

Let H be a real Hilbert space with norm ‖ · ‖ and inner product 〈·, ·〉 and let
C be a closed convex subset of H.

A space X is said to satisfy Opials condition [11] if for each sequence {xn} in
X which converges weakly to a point x ∈ X, we have

lim inf
n−→∞

‖xn − x‖ < lim inf
n−→∞

‖xn − y‖, ∀y ∈ X, y 6= x.

Recall the metric (nearest point) projection PC from a Hilbert space H to a
closed convex subset C of H is defined as follows: Given x ∈ H, PCx is the only
point in C with the property

‖x − PCx‖ = inf{‖x − y‖ : y ∈ C}.

PCx is characterized as follows.

Lemma 2.1. Let H be a real Hilbert space, C a closed convex subset of H. Given
x ∈ H and y ∈ C. Then x = PCx if and only if there holds the inequality

〈x − y, y − z〉 ≥ 0,∀z ∈ C.

Definition 2.1. A mapping T : C −→ H is said to satisfy nowhere normal
outward condition ((NNO) for short) if and only if for each x ∈ C, Tx ∈ SC

x ,
where Sx = {y ∈ H : y 6= x, Py = x} and P is the metric projection from H onto
C.

Lemma 2.2. ([7, Proposition 2, P. 208]). Let H be a Hilbert space, C a nonempty
closed convex subset of H, P the metric projection of H onto C and T : C −→ H

a nonexpansive nonself-mapping. If F (T ) is nonempty, then T satisfies (NNO)
condition.

Lemma 2.3. ([7, Proposition 1, P. 208]). Let H be a Hilbert space, C a nonempty
closed convex subset of H, P the metric projection of H onto C and T : C −→ H

a nonself-mapping. Suppose that T satisfies (NNO) condition. Then F (PT ) =
F (T ).

Lemma 2.4. ([8]). Let H be a Hilbert space, C a closed convex subset of H, and
T : C −→ C a nonexpansive self-mapping with F (T ) 6= ∅. Let {xn} be a sequence

in C such that {xn+1 −
1

n+1

∑n+1
i=1 T ixn} converges strongly to 0 as n −→ ∞ and

let {xnj
} be a subsequnec of {xn} such that {xnj

} converges weakly to x. Then x

is a fixed point of T .
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Lemma 2.5. ([21]). Assume {an} is a sequence of nonnegative real numbers such
that

an+1 ≤ (1 − αn)an + δn, n ≥ 0,

where {αn} is a sequence in (0, 1) and {δn} is a sequence in R such that
(1) limn−→∞ αn = 0 and

∑

∞

n=1 αn = ∞.
(2) lim supn−→∞

δn

αn
≤ 0 or

∑

∞

n=1 |δn| < ∞.

Then limn−→∞ an = 0.

Lemma 2.6. ([17]) Let {xn} and {zn} be bounded sequences in a Banach space E

and let {βn} be a sequence in [0, 1] with 0 < lim infn−→∞ βn ≤ lim supn−→∞
βn <

1. Suppose xn+1 = (1−βn)zn+βnxn for all integers n ≥ 1 and lim supn−→∞
(‖zn+1−

zn‖ − ‖xn+1 − xn‖) ≤ 0. Then, limn−→∞ ‖zn − xn‖ = 0.

Lemma 2.7. ([6]) Assume A is a strongly positive linear bounded operator on a
Hilbert space H with coefficient γ̄ > 0 and 0 < ρ ≤ ‖A‖−1. Then ‖I−ρA‖ ≤ 1−ργ̄.

3 Main Results

In this section, we prove the strong convergence theorem for a nonexpansive map-
pings in a real Hilbert space. Before proving it, we need the following lemma.

Lemma 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let f : C −→ C be a contraction with coefficient α ∈ (0, 1), and A be a strongly
bounded linear operator on H with coefficient γ̄ > 0 and 0 < γ < γ̄

α
. Let T be

a nonexpansive mapping of C into itself such that F (T ) is nonempty. Let the
sequence {xn} be generated by

x1 ∈ C, xn+1 = αnγf(xn) + βnxn + ((1 − βn)I − αnA)
1

n + 1

n
∑

j=0

T jxn, n ≥ 1.

(3.1)
where {αn}, {βn} are the sequences in [0, 1] satisfying
(C1) αn + βn < 1, limn−→∞ αn = 0,

∑

∞

n=1 αn = ∞, and either
(C2) limn−→∞ βn = 0 or
(C3) 0 < lim infn−→∞ βn ≤ lim supn−→∞

βn < 1.
Then
(i) {xn} is bounded and
(ii) limn−→∞ ‖xn+1 −

1
n+1

∑n
j=0 T jxn‖ = 0.

Proof. Note that from the condition limn−→∞ αn = 0, we may assume, without
loss of generality, that αn ≤ (1 − βn)‖A‖−1 for all n ∈ N. From Lemma 2.7, we
know that if 0 ≤ ρ ≤ ‖A‖−1, then ‖I−ρA‖ ≤ 1−ργ̄. Since A is a strongly positive
bounded linear operator on H, we have

‖A‖ = sup{|〈Ax, x〉| : x ∈ H, ‖x‖ = 1}.
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Observe that

〈((1 − βn)I − αnA)x, x〉 = 1 − βn − αn〈Ax, x〉

≥ 1 − βn − αn‖A‖

≥ 0,

this show that (1 − βn)I − αnA is positive. It follows that

‖(1 − βn)I − αnA‖ = sup{|〈((1 − βn)I − αnA)x, x〉| : x ∈ H, ‖x‖ = 1}

= sup{1 − βn − αn〈Ax, x〉 : x ∈ H, ‖x‖ = 1}

≤ 1 − βn − αnγ̄.

For any p ∈ F (T ), we can calculate

‖xn+1 − p‖ = ‖αn(γf(xn) − Ap) + βn(xn − p) + ((1 − βn)I − αnA)(
1

n + 1

n
∑

j=0

T jxn − p)‖

≤ (1 − βn − αnγ̄)‖
1

n + 1

n
∑

j=0

T jxn − p‖ + βn‖xn − p‖ + αn‖γf(xn) − Ap‖

≤ (1 − βn − αnγ̄)‖xn − p‖ + βn‖xn − p‖ + αn‖γf(xn) − Ap‖

≤ (1 − αnγ̄)‖xn − p‖ + αnγ‖f(xn) − f(p)‖ + αn‖γf(p) − Ap‖

≤ (1 − αnγ̄)‖xn − p‖ + αnγα‖xn − p‖ + αn‖γf(p) − Ap‖

= (1 − (γ̄ − γα)αn)‖xn − p‖ + (γ̄ − γα)αn

‖γf(p) − Ap‖

γ̄ − γα
.

It follows from induction that

‖xn − p‖ ≤ max

{

‖x1 − p‖,
‖γf(p) − Ap‖

γ̄ − γβ

}

, n ≥ 1. (3.2)

Hence {xn} is bounded, so are {f(xn)}, { 1
n+1

∑n
j=0 T jxn}. Further, we note that

‖xn+1 −
1

n + 1

n
∑

j=0

T jxn‖ = ‖αnγf(xn) + βnxn + ((1 − βn)I − αnA)
1

n + 1

n
∑

j=0

T jxn −
1

n + 1

n
∑

j=0

T jxn‖

≤ αn‖γf(xn) − A[
1

n + 1

n
∑

j=0

T jxn]‖ + βn‖xn −
1

n + 1

n
∑

j=0

T jxn‖. (3.3)

Assume that (C2) holds. It follows from (3.3) and the conditions (C1) and (C2)
that

lim
n−→∞

‖xn+1 −
1

n + 1

n
∑

j=0

T jxn‖ = 0.

Assume that (C3) holds. For all n ≥ 0, we define Tn := 1
n+1

∑n
j=0 T j . Setting

yn =
αnγf(xn) + ((1 − βn)I − αnA)Wnxn

1 − βn

,
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we have xn+1 = (1 − βn)yn + βnxn, n ≥ 1. It follows that

yn+1 − yn =
αn+1γf(xn+1) + ((1 − βn+1)I − αn+1A)Tn+1xn+1

1 − βn+1

−
αnγf(xn) + ((1 − βn)I − αnA)Tnxn

1 − βn

=
αn+1

1 − βn+1
γf(xn+1) −

αn

1 − βn

γf(xn) + Tn+1xn+1 − Tnxn

+
αn

1 − βn

ATnxn −
αn+1

1 − βn+1
ATn+1xn+1

=
αn+1

1 − βn+1
(γf(xn+1) − ATn+1xn+1) +

αn

1 − βn

(ATnxn − γf(xn))

+Tn+1xn+1 − Tnxn. (3.4)

Consider

‖Tn+1xn+1 − Tnxn‖ = ‖
1

n + 2

n+1
∑

j=0

T jxn+1 −
1

n + 1

n
∑

j=0

T jxn‖

= ‖
1

n + 2

n
∑

n=0

T jxn+1 +
1

n + 2
Tn+1xn+1 −

1

n + 1

n
∑

j=0

T jxn +
1

n + 1

n
∑

j=0

T jxn+1

−
1

n + 1

n
∑

j=0

T jxn+1‖

= ‖
1

(n + 1)

n
∑

j=0

[

T jxn+1 − T jxn

]

+
1

(n + 2)
Tn+1xn+1

−
1

(n + 1)(n + 2)

n
∑

j=0

T jxn+1‖

≤
1

(n + 1)

n
∑

j=0

‖T jxn+1 − T jxn‖ +
1

(n + 2)
‖Tn+1xn+1 − p + p‖

−
1

(n + 2)
‖

1

(n + 1)

n
∑

j=0

T jxn+1 − p + p‖

≤ ‖xn+1 − xn‖ +
1

n + 2
‖xn+1 − p‖ +

1

n + 2
‖xn+1 − p‖ +

2

n + 2
‖p‖

= ‖xn+1 − xn‖ +
2

n + 2
‖xn+1 − p‖ +

2

n + 2
‖p‖. (3.5)

Then

‖yn+1 − yn‖ ≤
αn+1

1 − βn+1
‖γ(f(xn+1)‖ + ‖ATn+1xn+1‖) +

αn

1 − βn

(‖ATnxn‖ + ‖γf(xn)‖) +

+ ‖xn+1 − xn‖ +
2

n + 2
‖xn+1 − p‖ +

2

n + 2
‖p‖, (3.6)
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which implies that

‖yn+1 − yn‖ − ‖xn+1 − xn‖ ≤
αn+1

1 − βn+1
‖γ(f(xn+1)‖ + ‖ATn+1xn+1‖)

+
αn

1 − βn

(‖ATnxn‖ + ‖γf(xn)‖) +
2

n + 2
‖xn+1 − p‖

+
2

n + 2
‖p‖. (3.7)

Thus, we get
lim

n→∞

sup(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Hence, by Lemma 2.6, we obtain ‖yn − xn‖ → 0 as n → ∞. Consequently,

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(1 − βn)‖yn − xn‖ = 0. (3.8)

Now, we will prove ‖Tnxn − xn‖ → 0 as n → ∞.

Observe that

‖xn+1 − Tnxn‖ ≤ αn‖γf(xn) − Tnxn‖ + βn‖xn − Tnxn‖

≤ αn‖γf(xn) − Tnxn‖ + βn‖xn − xn+1‖ + βn‖xn+1 − Tnxn‖

it follows that

(1 − βn)‖xn+1 − Tnxn‖ ≤ αn‖γf(xn) − Tnxn‖ + βn‖xn − xn+1‖. (3.9)

It follows from (C1), (C3), (3.8) and (3.9) that

‖xn+1 − Tnxn‖ −→ 0 as n −→ ∞ (3.10)

that is

lim
n−→∞

‖xn+1 −
1

n + 1

n
∑

j=0

T jxn‖ = 0.

This completes the proof.

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let f : C −→ C be a contraction with coefficient α ∈ (0, 1), and A be a
strongly bounded linear operator on H with coefficient γ̄ > 0 and 0 < γ < γ̄

α
. Let

T be a nonexpansive mapping of C into itself such that F (T ) is nonempty. Let
the sequence {xn} be generated by

x1 ∈ C, xn+1 = αnγf(xn) + βnxn + ((1 − βn)I − αnA)
1

n + 1

n
∑

j=0

T jxn, n ≥ 1.

(3.11)
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where {αn}, {βn} are the sequences in [0, 1] satisfying
(C1) αn + βn < 1, limn−→∞ αn = 0,

∑

∞

n=1 αn = ∞, and either
(C2) limn−→∞ βn = 0 or
(C3) 0 < lim infn−→∞ βn ≤ lim supn−→∞

βn < 1.
Then the sequence {xn} converges strongly to a point x̃ ∈ F (T ) which solves the
variational inequality:

〈(A − γf)x̃, x̃ − z〉 ≤ 0, z ∈ F (T ). (3.12)

Equivalently, we have PF (T )(I − A + γf)x̃ = x̃.

Proof. Observe that PF (I − A + γf) is a contraction of C into itself. Indeed, for
all x, y ∈ C, we have

‖PF (I − A + γf)(x) − PF (I − A + γf)(y)‖ ≤ ‖(I − A + γf)(x) − (I − A + γf)(y)‖

≤ ‖I − A‖‖x − y‖ + γ‖f(x) − f(y)‖

≤ (1 − γ̄)‖x − y‖ + γβ‖x − y‖

= (1 − (γ̄ − γβ))‖x − y‖.

Since H is complete, there exists a unique element x̃ ∈ C such that x̃ = PF (I −
A + γf)(x̃). Next, we show that

lim sup
n−→∞

〈(A − γf)x̃, x̃ − xn〉 ≤ 0. (3.13)

Since {xn} ⊆ C is bounded, there is a subsequence {xnj
} of {xn} such that

lim sup
n−→∞

〈(A − γf)x̃, x̃ − xn〉 = lim
j−→∞

〈(A − γf)x̃, x̃ − xnj
〉. (3.14)

Since {xnj
} is bounded, there exists a subsequence {xnji

} of {xnj
} which converges

weakly to q̃ ∈ C. Without loss of generality, we can assume that xnj
⇀ q̃. Applying

Lemma 3.1 (ii) and Lemma 2.4, we obtain q̃ ∈ F (T ). It follows from the variational
inequality (3.12) and (3.14) that

lim sup
n−→∞

〈(A − γf)x̃, x̃ − xn〉 = 〈(A − γf)x̃, x̃ − q̃〉 ≤ 0.

Using Lemma 3.1 (ii) and (3.13), we obtain

lim sup
n−→∞

〈(A − γf)x̃, x̃ − Tnxn〉 ≤ lim sup
n−→∞

〈(A − γf)x̃, x̃ − xn+1〉 ≤ 0.
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Finally, we show that xn −→ x̃.

‖xn+1 − x̃‖2 = ‖αnγf(xn) + βnxn + ((1 − βn)I − αnA)Tnxn − x̃‖2

= ‖((1 − βn)I − αnA)(Tnxn − x̃) + βn(xn − x̃) + αn(γf(xn) − Ax̃)‖2

= ‖((1 − βn)I − αnA)(Tnxn − x̃) + βn(xn − x̃)‖2 + α2
n‖γf(xn) − Ax̃‖2

+2βnαn〈xn − x̃, γf(xn) − Ax̃〉

+2αn〈((1 − βn)I − αnA)(Tnxn − x̃), γf(xn) − Ax̃〉

≤ ((1 − βn − αnγ̄)‖Tnxn − x̃‖ + βn‖xn − x̃‖)2 + α2
n‖γf(xn) − Ax̃‖2

+2βnαnγ〈xn − x̃, f(xn) − f(x̃)〉 + 2βnαn〈xn − x̃, γf(x̃) − Ax̃〉

+2(1 − βn)γαn〈Tnxn − x̃, f(xn) − f(x̃)〉 + 2(1 − βn)αn〈Tnxn − x̃, γf(x̃) − Ax̃〉

− 2α2
n〈A(Tnxn − x̃), γf(x̃) − Ax̃〉

≤ ((1 − βn − αnγ̄)‖xn − x̃‖ + βn‖xn − x̃‖)2 + α2
n‖γf(xn) − Ax̃‖2

+2βnαnγα‖xn − x̃‖2 + 2βnαn〈xn − x̃, γf(x̃) − Ax̃〉

+2(1 − βn)γαnα‖xn − x̃‖2 + 2(1 − βn)αn〈Tnxn − x̃, γf(x̃) − Ax̃〉

− 2α2
n〈A(Tnxn − x̃), γf(x̃) − Ax̃〉

= [(1 − αnγ̄)2 + 2βnαnγα + 2(1 − βn)γαnα]‖xn − x̃‖2 + α2
n‖γf(xn) − Ax̃‖2

+2βnαn〈xn − x̃, γf(x̃) − Ax̃〉 + 2(1 − βn)αn〈Tnxn − x̃, γf(x̃) − Ax̃〉

− 2α2
n〈A(Tnxn − x̃), γf(x̃) − Ax̃〉

≤ [1 − 2(γ̄ − αγ)αn]‖xn − x̃‖2 + γ̄2α2
n‖xn − x̃‖2 + α2

n‖γf(xn) − Ax̃‖2

+2βnαn〈xn − x̃, γf(x̃) − Ax̃〉 + 2(1 − βn)αn〈Tnxn − x̃, γf(x̃) − Ax̃〉

+2α2
n‖A(Tnxn − x̃)‖‖γf(x̃) − Ax̃‖

= [1 − 2(γ̄ − αγ)αn]‖xn − x̃‖2 + αn{αn(γ̄2‖xn − x̃‖2 + ‖γf(xn) − Ax̃‖2

+2‖A(Tnxn − x̃)‖‖γf(x̃) − Ax̃‖) + 2βn〈xn − x̃, γf(x̃) − Ax̃〉

+2(1 − βn)〈Tnxn − x̃, γf(x̃) − Ax̃〉}. (3.15)

Since {xn}, {f(xn)} and {Tnxn} are bounded, we can take a constant M > 0 such
that

γ̄2‖xn − x̃‖2 + ‖γf(xn) − Ax̃‖2 + 2‖A(Tnxn − x̃)‖γf(x̃) − Ax̃‖ ≤ M,

for all n ≥ 0. It then follows that

‖xn+1 − x̃‖2 ≤ [1 − 2(γ̄ − αγ)αn]‖xn − x̃‖2 + αnσn, (3.16)

where

σn = 2βn〈xn − x̃, γf(x̃) − Ax̃〉 + 2(1 − βn)〈Tnxn − x̃, γf(x̃) − Ax̃〉 + αnM.

We get lim supn−→∞
σn ≤ 0. Applying Lemma 2.5 to (3.16), we conclude that

xn −→ x̃.



General Cesàro mean approximation methods... 45

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let f : C −→ C be a contraction with coefficient α ∈ (0, 1). Let T be
a nonexpansive mapping of C into itself such that F (T ) is nonempty. Let the
sequence {xn} be generated by

x1 ∈ C, xn+1 = αnf(xn) + βnxn + (1 − βn − αn)
1

n + 1

n
∑

j=0

T jxn, n ≥ 1. (3.17)

where {αn}, {βn} are the sequences in [0, 1] satisfying
(C1) αn + βn < 1, limn−→∞ αn = 0,

∑

∞

n=1 αn = ∞, and either
(C2) limn−→∞ βn = 0 or
(C3) 0 < lim infn−→∞ βn ≤ lim supn−→∞

βn < 1.
Then the sequence {xn} converges strongly as t −→ 0 to a fixed point x̃ of T which
solves the variational inequality:

〈(I − f)x̃, x̃ − z〉 ≤ 0, z ∈ F (T ).

Corollary 3.4. [8, Theorem 1] Let H be a real Hilbert space, C a closed convex
subset of H, P the metric projection of H onto C, T a nonexpansive nonself-
mapping from C into H such that F (T ) is nonempty, and {αn} a sequence of
real numbers in [0, 1] satisfying limn−→∞ αn = 0 and

∑

∞

n=0 αn = ∞. Then {xn}
defined by (1.3) converges strongly to Qx, where Q is the metric projection from
C onto F (T ).

Proof. Setting βn ≡ 0 and f := x for some x ∈ C and applying the Theorem 3.2
with the nonexpansive self-mapping PCT , we obtain that {xn} converges strongly
as n −→ ∞ to a fixed point of PCT . Since F (T ) 6= ∅, using Lemma 2.2 and 2.3,
we obtain F (T ) = F (PCT ). The proof is complete.
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