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General Cesaro mean approximation methods
for nonexpansive mappings in Hilbert spaces*

P. Markshoe and R. Wangkeeree

Abstract : Let C' be a nonempty closed convex subset of a real Hilbert space
H, f a contraction on C' and A a strongly bounded linear operator on H with
coefficient 4 > 0. Consider a general Cesaro mean iterative method

Iy
g € C, Tpy1 = anyf(xn) + Bprn + (1= Bo) + a"A)m ZTjIm n >0,
=0

where {a,}, {0n} are the sequences in [0, 1] satisfying certain conditions, and T
is a nonexpansive mapping of C into itself. It is proved that the sequence {z,}
generated by above method, converges strongly to a point & € F'(T') which solves
the variational inequality

(A=~fz, 2 —z) <0, z € F(T). (0.1)
The results presented in this paper generalize, extend and improve the correspond-
ing results of Shimizu and Takahashi [141], Matsushita and Kuroiwa [3] and many
others.

Keywords : Fixed point; Variational inequality; Viscosity approximation; Non-
expansive mapping; Hilbert space.
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1 Introduction

Let C' be a nonempty closed convex subset of a Hilbert space H and let = be
an element of C'. Let T be a nonexpansive mapping from C into itself such that
the set F(T') of fixed points of T is nonempty. For each ¢ with 0 < ¢ < 1, let
be a unique point of C' which satisfies

xy =te+ (1 —t)Ta,.
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Browder [1] showed that {z;} converges strongly as ¢ — 0 to the element of
F(T) which is nearest to z in F(T). This result was extended to a Banach space
by Reich [12] and Takahashi and Ueda [18]. On the other hand, Wittmann [20]

showed that each sequence {z,} defined by
x9 € C,xpy1 = app12+ (1 — apy1)Tz, for n=0,1,2, ...,

converges strongly to the element of F(T') which is nearest to z if {«,,} satisfies
0<a, <lya, — 0,57 a, =00 and Y o |ans1 — an| < co. Using an
idea of Browder [1], Shimizu and Takahashi [15] studied the convergence of the
following approximated sequence for an asymptotically nonexpansive mapping in
the framework of a Hilbert space:

1
xn:anx—k(l—an)EZszn forn=0,1,2,..., (1.1)
j=1

where {a,,} is a real sequence satisfying 0 < o, < 1 and o, — 0 as n — oo.
Shimizu and Takahashi [14] also studied the convergence of another iteration pro-
cess for a family of nonexpansive mappings in the framework of a Hilbert space.
The iteration process is a mixed iteration process of Wittmann’s [20] and Shimizu
and Takahash’s [15]. For simplicity, we state their result for a nonexpansive map-
ping T with F(T) is nonempty. They show that each sequence {z,} defined by

1 .
xg € C, wnﬂzanm—f—(l—an)mZTjwn forn=20,1,2,..., (1.2)
j=0

converges strongly to the element of F(T') which is nearest to z in F(T) if {a,}
satisfies 0 < o, < 1,0, —> 0 and Zzo:l «a, = oo. But this approximation method
is not suitable for some nonexpansive nonself-mappings. In the framework of a
real Hilbert space, Matsushita and Kuroiwa [3] studied the strong convergence of
the iterative method below. For x € C,

n
29 €C, Tpi1 =apr+ (1 - an)%ﬂ ZO(PCT)jxn forn=0,1,2,..., (1.3)
J=
where {a,,} is a real sequence in [0,1], Po is the metric projection of H onto
C, and T is a nonexpansive nonself-mapping of C into H. Using the nowhere
normal outward condition on 7" and the appropriate assumptions imposed upon the
parameters sequences {«, }, they proved that {z,} generated by (1.3) converges
strongly as n — oo to an element of fixed point of T' when F(T') is nonempty.
On the other hand, iterative methods for nonexpansive mappings have recently
been applied to solve convex minimization problems; see, e.g., [3, 23, 22] and the
references therein. Let H be a real Hilbert space, whose inner product and norm
are denoted by (-,-) and || - ||, respectively. Let A be a strongly positive bounded
linear operator on H: that is, there is a constant 4 > 0 with property

(Az,z) > 7||z||* for all z € H. (1.4)
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A typical problem is to minimize a quadratic function over the set of the fixed
points of a nonexpansive mapping on a real Hilbert space H :

1
where C is the fixed point set of a nonexpansive mapping T on H and b is a
given point in H. In 2003, Xu ([22]) proved that the sequence {z,,} defined by the
iterative method below, with the initial guess x¢y € H chosen arbitrarily:

Tpy1 = (I — apA)Tx, + ayu, n >0, (1.6)

converges strongly to the unique solution of the minimization problem (1.5) pro-
vided the sequence {a,} satisfies certain conditions that will be made precise in
Section 3.

Using the viscosity approximation method, Moudafi [10] introduced the fol-
lowing iterative iterative process for nonexpansive mappings (see [21] for further
developments in both Hilbert and Banach spaces). Let f be a contraction on H.
Starting with an arbitrary initial g € H, define a sequence {x,} recursively by

Tpt1 = (L —op)Tan +onf(zn), n >0, (1.7)

where {0, } is a sequence in (0,1). It is proved [10, 21] that under certain appro-
priate conditions imposed on {c,}, the sequence {xz,} generated by (1.7) strongly
converges to the unique solution z* in C' of the variational inequality

(I-f)a*,z—2") >0,z €C. (1.8)

Recently, Marino and Xu [6] was combine the iterative method (1.6) with the
viscosity approximation method (1.7) and consider the following general iterative
method:

Tpt1 = (I — anA) Tz, + apyf(z,),n > 0. (1.9)

where A is a strongly positive bounded linear operator on H. They proved that if
the sequence {«,, } of parameters satisfies appropriate conditions, then the sequence
{zn} generated by (1.9) converges strongly to the unique solution of the variational
inequality

(A=~f)z*,z—2") >0,z € C, (1.10)

which is the optimality condition for the minimization problem
1
ggg §<Ax7 x> - h(:L')7

where h is a potential function for vf(i.e., h'(z) = v f(x) for x € H)

Inspired and motivated by the above research, we introduce the general Ceséro
mean iterative method for a nonexpansive mapping in a real Hilbert space as
follows:

1
20 € C, Tpt1 = anVf(xn) + Bnxn + (1= B)I + oznA)m ZTﬂxn, n > 0.
j=0
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where f is a contraction on C, A a strongly bounded linear operator on H with
coefficient 4 > 0, and investigate the problem of approximating a fixed point of a
nonexpansive mapping which solves some variational inequality. The results of this
paper extend and improve the results of Shimizu and Takahashi [14], Matsushita
and Kuroiwa [8] and many others.

2 Preliminaries

Let H be a real Hilbert space with norm || - || and inner product (-,-) and let
C be a closed convex subset of H.
A space X is said to satisfy Opials condition [11] if for each sequence {z,} in

X which converges weakly to a point z € X, we have
liminf |z, — z|| < liminf ||z, — y||, Yy € X,y # =.
n——-ao0 n—aoo

Recall the metric (nearest point) projection Po from a Hilbert space H to a
closed convex subset C of H is defined as follows: Given x € H, Pcox is the only
point in C' with the property

|z — Pox| = inf{||z —y| : y € C}.
Pox is characterized as follows.

Lemma 2.1. Let H be a real Hilbert space, C' a closed convex subset of H. Given
x € H andy € C. Then x = Pox if and only if there holds the inequality

(x —y,y—2) >0,¥Vz e C.

Definition 2.1. A mapping T : C — H is said to satisfy nowhere normal
outward condition ((NNO) for short) if and only if for each x € C, Tx € SS,
where S, = {y € H : y # x, Py = x} and P is the metric projection from H onto
C.

Lemma 2.2. ([7, Proposition 2, P. 208]). Let H be a Hilbert space, C' a nonempty
closed convex subset of H, P the metric projection of H onto C and T : C' — H
a nonexpansive nonself-mapping. If F(T) is nonempty, then T satisfies (NNO)
condition.

Lemma 2.3. ([7, Proposition 1, P. 208]). Let H be a Hilbert space, C' a nonempty
closed convez subset of H, P the metric projection of H onto C and T : C — H
a nonself-mapping. Suppose that T satisfies (NNO) condition. Then F(PT) =
F(T).

Lemma 2.4. ([8]). Let H be a Hilbert space, C' a closed convex subset of H, and
T :C — C a nonexpansive self-mapping with F(T) # 0. Let {z,} be a sequence
in C such that {x,11 — %ﬂ Z?:ll Tix,} converges strongly to 0 as n — oo and
let {x,;} be a subsequnec of {x,} such that {x,,} converges weakly to x. Then x
is a fized point of T.
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Lemma 2.5. ([21]). Assume {a,} is a sequence of nonnegative real numbers such
that
Ap+41 < (1 - an)an + 6117 n > 07

where {an} is a sequence in (0,1) and {0,} is a sequence in R such that
(1) lim,—.oo ap, =0 and Y07 | o, = 0.

(2) limsup,, ., 2= <0 or Y00 [0, < oo

Then lim,, . a, 0.

Lemma 2.6. ([17]) Let {z,} and {z,} be bounded sequences in a Banach space E

and let {8} be a sequence in [0,1] with 0 < liminf,_ .. B, <limsup,__, . On <

1. Suppose xp11 = (1=0p) zn+8n2n for all integersn > 1 and limsup,, , (||znt+1—
Znll = |@nt1 — znll) < 0. Then, lim,— . ||2n, — x| = 0.

Lemma 2.7. ([0]) Assume A is a strongly positive linear bounded operator on a
Hilbert space H with coefficient 7 > 0 and 0 < p < ||A|| 1. Then ||[I—pA|| < 1—p7.

3 Main Results

In this section, we prove the strong convergence theorem for a nonexpansive map-
pings in a real Hilbert space. Before proving it, we need the following lemma.

Lemma 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let f : C — C be a contraction with coefficient o € (0,1), and A be a strongly
bounded linear operator on H with coefficient ¥ > 0 and 0 < v < g Let T be
a nonexpansive mapping of C into itself such that F(T) is nonempty. Let the
sequence {x,} be generated by

1 -y
1 € C, Tpy1 = anyf(xn) + Bprn + (1 — By)] — @nA)m ZT]In, n>1
=0

(3.1)
where {an}, {Bn} are the sequences in [0,1] satisfying
(C1) o + Bn < L, limy,oo y = 0,307 1 v, = 00, and either
(C2) limy 00 B =0 or
(C3) 0 < liminf,, o Bn <limsup,_, . Gn < 1.
Then
(i) {zn} is bounded and
(if) limy, oo [Tny1 — 725 Do T = 0.

Proof. Note that from the condition lim,,_ .~ o, = 0, we may assume, without
loss of generality, that o, < (1 — 8,)||A]|~! for all n € N. From Lemma 2.7, we
know that if 0 < p < ||A|| 7%, then ||[I —pA|| < 1—p¥. Since A is a strongly positive
bounded linear operator on H, we have

[All = sup{[{(Az,z)| : = € H,[lx|| = 1}.
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Observe that
(1= B — anA)z, )

1— 06, — ap(Azx, x)
> 1= B —anllA]
> 0,

this show that (1 — 8,)I — «, A is positive. It follows that
[(1 =B —anAll = sup{|((1 = Bu)] — anA)z,2)| : 2 € H, [|z]| = 1}
= SuP{l_ﬂn_an<AI7x> tx € H, ”:CH :1}
< 1- Bn - anfy

For any p € F(T), we can calculate

e ol = lon(3f () — Ap) + Balen —p) + (1= )T - anA><,%+1 > -
A P Zmn pll + Ballen = pll + anllr S (wa) — Apl
< (1= B — ) on =l + Bl — gl + a1 @) — Al
< (L= and)lzn - pll + 0wt (@) = F@) + aallnf () - Apl
< (1 =an¥) s —pll + anyalzn — pll + anllvf(p) — Ap|

(

_ _ vf(p) — Ap

1= (7 = ya)an) |2n - pll + (7 — ya)an L@ — 221
vy =«

It follows from induction that

(3.2)

A
T <max{||x1 ol i””f ®) p”},n> y

-8
Hence {z,} is bounded, so are {f(z,)}, {n—+1 E?:o Tz, }. Further, we note that

|Znt1 — m Trp| = |lewyf(@n) + Buzn + (1= Ba)] — anA Z e zjnH
=0 j=0 =0
< an|vf(zn) - A[m sz:Ozjn]H + Ballzn — ? zjn” (3.3)

Assume that (C2) holds. It follows from (3.3) and the conditions (C1) and (C2)
that

n

1
= N i | =
n+1 Zall =0,

7=0
Assume that (C3) holds. For all n > 0, we define T}, := %_H Z?:o T7. Setting

_anyf (@) + (1= B — an AWz,
Yn = =3, )

lim ||zp41 —
n——-:uo0
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we have z,4+1 = (1 — Bn)yn + Bnn,n > 1. It follows that

Q17 f(@ni1) + (1 = By — an1A) T 12041

Yni+1 —Yn =

1—Bny1
1- ﬁn
Qp
= — 0y f(zng1) — v f(@n) + Tos1Zns1 — T
1- Bn-l—l ﬁn
anJrl
4+ — AT 2z, — ——— AT 120
1- 677, 1- ﬂn—&-l 1 1
- ol A AT,
= ﬁ(ﬁf(xnﬂ) — AT, 1%nq1) + = 5 (AT, @, — v f(xn))
+Tn+1xn+1 - Tnxn~ (34)
Consider
1 n+1 ] 1 n
ITht12n+1 — Tnxnl| = ”n 3 ZTJQC”H - ? T]xn||
= = ZT.Z‘ 1+7T"+1 1—Lnzj —&—71 iTj:v 1
n+2 s Tt n+1 4 "ln414 n
7=0 7=0
- ZTjiU +1]]
n+14 "
7=0
= | ! " [T72p 41 — T2y + ! T e,
(n+1) n "+ 2) nt
7=0
1 ZT H
- T
(n+1)(n+2) 1
1 1 n—+1
S ZHT Zups = Toall + oo T s —p + ]
1 1
_ T N
(n+2)”(n+1 Z a1 =P+

< I+ ] || I+ —— ]| I+ ——
Tp4l — Tn —||Tnt1 — Tpg1 — R
> +1 nt2 +1—D nt2 +1—D n+2p

2 2
= ||Tpy1 — zal + . 2||517n+1 —pll + m”pH- (3.5)
Then
Ap41 n

nt1 —wnll < —— I (f@nsr) | + AT 1204 ]]) + ([ATzn || + |Ivf (@a)l) +

1—Bnt1 1= fn
2 2

Hllzass = zall + s llzass = pll + = ol (3.6)
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which implies that

Ap41
ot =l = lns =l S 22 (@)l + ATl
- Mn+1
o, 2
+ 1 g, ATwzall + v f @a)ll) + =5 2
=l
nt 2Pl
Thus, we get
lim_ sup({|ynt1 = ynll = 2041 — zal)) < 0.
n—0oo
Hence, by Lemma 2.6, we obtain ||y, — z,|| — 0 as n — oo. Consequently,
lim ||zp11 — 2,) = lm (1= 8,)[|lyn — zall = 0. (3.8)
n—oo n—oo

Now, we will prove ||T,,2, — z,| — 0 as n — oo.
Observe that

anl|vf(@n) = Toxn|l + Bullzn — Tnwal|
an”’Yf(xn) - Tnxn” + ﬁonn - xn-i-l” + 6n“xn+1 - Tnan

||5L'n+1 - Tnzn” S
<

it follows that

(1= Bulllznsr — Toznll < anllvf(@n) — Tnznll + Bulltn — oyl (3.9)

It follows from (C1), (C3), (3.8) and (3.9) that

|Znt1 — Thzn|| — 0 as n — oo (3.10)
that is
1 &
S fnes = o= ) OT]wnll = 0.
j=

This completes the proof.
O

Theorem 3.2. Let C' be a nonempty closed convex subset of a real Hilbert space
H. Let f : C — C be a contraction with coefficient o« € (0,1), and A be a
strongly bounded linear operator on H with coefficient ¥ > 0 and 0 < v < g Let
T be a nonexpansive mapping of C into itself such that F(T) is nonempty. Let
the sequence {x,} be generated by

J N
z1 €C, Tpy1 = Oln'Yf(zn) + Bnxy + ((1 - ﬂn)I - O‘nA)m Zzjm n > 1.
7=0

(3.11)

-l

(3.7)
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where {an }, {Bn} are the sequences in [0,1] satisfying

(C1) ay + Bn < Llimy,— ooy, = 0,07 @ty = 00, and either

(C2) limy,— 00 B =0 or

(C3) 0 < liminf,, o B <limsup,,_ . Bn < 1.

Then the sequence {x,} converges strongly to a point & € F(T) which solves the
variational inequality:

(A—~f)i, & —z) <0,z € F(T). (3.12)

Equivalently, we have Ppiry(I — A+~ f)T = .

Proof. Observe that Pr(I — A+ ~f) is a contraction of C into itself. Indeed, for
all z,y € C, we have

[1Pr(I = A+~f)(x) = Pr(I = A+~7f) )] <
< = Alllle =yl + 1/ (@) = fFW)

< (=Wlz =yl +8lz -yl

= (1=(O=-18)lz -yl

Since H is complete, there exists a unique element € C' such that £ = Pp(I —
A+~f)(Z). Next, we show that

limsup((A —vf)Z, T — x,) < 0. (3.13)

n——oo

Since {z,} C C is bounded, there is a subsequence {z,,} of {x,} such that

limsup((A —vf)%,2 —x,) = lim ((A—~f)Z, T — xy,). (3.14)

i
n—so00 J——00

Since {x,,, } is bounded, there exists a subsequence {z,, } of {y,} which converges
weakly to § € C. Without loss of generality, we can assume that Ty, — q. Applying
Lemma 3.1 (ii) and Lemma 2.4, we obtain ¢ € F(T'). It follows from the variational
inequality (3.12) and (3.14) that

limsup((A — 1£)2,& — ) = (A= 7f)&, & — ) < 0.

n——:o0

Using Lemma 3.1 (ii) and (3.13), we obtain

n—-:oo n——ao0

(I = A+7f)(z) = (I - A+ /)l
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Finally, we show that x,, — 2.

|1 — iHZ = |lanvf(@n) + Bazn + (1 — B) — an A) Tz, — 5”2
(1 = B = anA)(Tpwn — &) + fn(xn — ) + an(yf () — AD)||”
= (1 =B — anA)(Thwyn — T) + BnlTn — i')HQ + ai”'yf(xn) - AjHQ
+ 28nan{xy — &, vf(xn) — AT)
+ 20, (1 = B — an A)(Thxy — &),y f(xn) — AZ)

< (=B = anTozn = &l| + Bullzn — 2[)* + b Iy f(za) — AZ|?
+28nanY(Tn — T, f(25) — f(T)) + 2Bnan (v, — T,7f(T) — AT)
+2(1 = Bu)yon(Tnrn — 2, f(xn) — f(2)) + 2(1 = Bu)an Tz — 2,7f(2) — AT)
— 202 (A(Thxn — 7),7f(Z) — A)

< (=B = anWzn = 2| + Bollzn — Z))* + g Iy f(2a) — AZ|?
+ 2Bnanyal|z, — 2| + 28nan (x, — &, 7f(Z) — AT)
+2(1 = Bp)yamallzn, — 2|2 + 2(1 — Bn)an(Toxy — &, v () — AZ)
— 20}, (A(Thn — &),7f (&) — AZ)

= [(1=an?)® + 2Bnanya +2(1 = Bp)yana] |z, — E[|* + ap|lvf (z,) — AZ|?
+ 28nan{xy — Z,vf(Z) — AZ) + 2(1 — Bn)an(Thzn — Z,7f(Z) — AZ)
— 202 (A(Thxn — 7),7f(Z) — AZ)

< =207 — ay)an]lzn — 2 + 720l e, — E|° + ap Iy f(2a) — AZ|?

+2Bnan{xn — &,7f (%) — AZ) + 2(1 — Bp)an(Thzn — Z,7f(Z) — AZ)
+ 205 || A(Tyzn — 2) ||V f(2) — AZ|
= [1-2(y — enanllzn = &* + an{an (3 |len — 2| + [Ivf (2n) — AZ|?
+2(|A(Than — T)|IVf(Z) — AZ|) + 28n(2n — T,7f(T) — AZ)
+2(1 = B ){(Thzn — 2,7f(T) — AT)}. (3.15)

Since {zn}, {f(zn)} and {T,,x,} are bounded, we can take a constant M > 0 such
that

Vllwn = 2l + 7f () — AZ|? + 2| A(Town — 2)|17f(7) — AZ|| < M,
for all n > 0. It then follows that
Jonsr — 3l < [1— 207 — ay)an]lzn — 7 + Ao, (3.16)
where
On = 20n(xn — Z,7f(Z) — AZ) + 2(1 — Bp)(Thxyn — Z,7f(Z) — AZ) + o, M.

We get limsup,,_ . 0, < 0. Applying Lemma 2.5 to (3.16), we conclude that
T, — . O
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Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let f: C — C be a contraction with coefficient o € (0,1). Let T be
a nonexpansive mapping of C into itself such that F(T) is nonempty. Let the
sequence {x,} be generated by

1 =,
21 €C, Tpy1 = anf(@n) + Bnan+ (1 —Fn — 04,1)717Jrl ZTJ:vn, n>1. (3.17)
j=0

where {an}, {Bn} are the sequences in [0, 1] satisfying

(C1) ay + Bn < Llimy,—oo ayy = 0,07 vy = 00, and either

(C2) limy, 00 B =0 or

(C3) 0 < liminf,, o Bn <limsup,_ . Gn < 1.

Then the sequence {x,} converges strongly ast — 0 to a fized point & of T which
solves the variational inequality:

(I—-f)az,z—=2)<0,z€ F(T).

Corollary 3.4. [8, Theorem 1] Let H be a real Hilbert space, C a closed convex
subset of H, P the metric projection of H onto C, T a nonexpansive nonself-
mapping from C into H such that F(T) is nonempty, and {a,} a sequence of
real numbers in [0,1] satisfying lim, .o o, = 0 and >~ o, = co. Then {x,}
defined by (1.3) converges strongly to Qx, where Q is the metric projection from
C onto F(T).

Proof. Setting 3, =0 and f := x for some x € C and applying the Theorem 3.2
with the nonexpansive self-mapping P-T', we obtain that {z,} converges strongly
as n — oo to a fixed point of PcT. Since F(T) # 0, using Lemma 2.2 and 2.3,
we obtain F(T) = F(PcT). The proof is complete. O
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