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Abstract Assessing image quality via objective methods basically attempts to quantify or measure the

differences in visibility between a reference image and a distorted image. In this paper, a more general

objective image quality index is given, which is simple to implement and has vast application in image

processing. The relative entropy index is based on the assumption that the image is an information

entropy. Experimental comparisons demonstrate the effectiveness of the proposed method.
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1. Introduction

Objective assessment of image quality is used to construct metrics that can forecast
the quality of the perceived image . It has several roles to play in image processing
applications. Firstly, it can be used to check and adjust image quality. Secondly, it can
be used to optimize parameter settings and algorithms of image and signal processing.
Thirdly, it can be used to standardize image processing systems, signal processing systems
and algorithms. Moreover, quality measurement has an important role in applications
such as image restoration, signal recovery, display and analysis. The widely used reference
image and distortion image estimation algorithms are signal-to-noise ratio index (SNR)
[1], peak signal-to-noise ratio index (PSNR) [1], and structural similarity index (SSIM)
[2].

Among simplest quality metrics are the mean squared error (MSE) and peak signal to
noise (PSNR). They are easily calculated and they have clear physical meanings. Besides,
in the context of optimization, they are mathematically convinient. Since the peak signal
to noise (PSNR) use ratio, it is carefully. However, rarely matches the perceived visual
quality [3–5]. There are a lot of efforts to develop methods for assessing quality that
make use of knowledge of existing features of the human visual system (HVS). Most of
the proposed assessment models that are of perceptual quality go through a process of
modifying MSE metric such that errors are corrected based on their visibility. There are
no precise rule for choosing signal to noise ratio (SNR), peak signal to noise (PSNR),
mean squared error (MSE) and structural similarity index (SSIM) when the assessment
of the quality of image is needed. Therefore, the way of belief is a way to interpret
the given numbers during the evaluation process [6]. Really, some studies have revealed
that as opposed to the structural similarity index (SSIM), the mean squared error (MSE)
and also the peak signal to noise (PSNR) have a poor performance when separating
structural content in images because different types of degradation’s working on the same
image output same value of MSE.

Mathematically determined measures are interesting. First because they are not diffi-
cult to calculate and often have computational complexity. Secondly, they are free from
particular observers and viewing conditions. However, it is believed that viewing the con-
ditions at which viewing is done play a significant role in how image quality is perceived
by human. In general, it is not available for image analysis systems. Now suppose there
are different viewing conditions, then a method of veiwing which is condition-dependent
will beget different measurement results that are not easy to use. Besides, it will become
the responsibility of the user to quantify the conditions under viewing , calculate and pro-
vide the parameters for the quantifying systems. In contrast, an self-reliant measurement
of viewing conditions gives only one quality value that gives an idea of how good is the
image.

In this article, we present a universal mathematical definition of image quality index.
By universal, we mean that the quality measurement method does not depend on the
images being tested, particular observers or viewing conditions. More importantly, it
must apply to several image processing applications and provide reasonable comparisons
in distorting various types of images. Presently, the signal to noise ratio (SNR), peak
signal-to-noise ratio (PSNR), mean squared error (MSE) and structural similarity (SSIM)
are still widely used without considering their shortcomings. This work focus on providing
an alternative index to substitute their functions. This index is called the Relative entropy
index (RE).
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2. Image Quality Assessment

The image signal with quality evaluation is the sum of unsorted references and error
signals. The most widely used hypothesis is that loss of quality, perception is strongly
related to the vision of error signal. Implementing this concept is easy by the use of mean
square error (MSE) which quantifies the strength of error signal of an object. Distorted
images with same MSE may have different types of errors , some of which are more visible
than others. Guidelines for most assessment of perceived image quality available in text
try to weigh, various looks of the signal according to the error visibility as determined by
psychological metrics in human or physiological metrics in animals. Reviews about the
algorithm for evaluating the quality of images, videos and signal processing can be found
in [7–10].

The basic principle of the error-sensitivity approach is approximately the best vision
error. This is achieved by simulating the performance characteristics of the first phase of
the human visual system (HVS). The human visual system (HVS) is a complicated and
very highly dynamical. However, the basic model of vision in the initial stage is based
on linear or quasi-linear operators that have been described by the use of restricted and
simplistic stimuli. Therefore, the methods of error sensitivity has to be based on strong
assumptions and generalizations.

2.1. Quality Definition

It is unclear whether the error display is equal to some loss of quality, because some
distortions may be clearly visible but not so obnoxious. This is a shortcoming with
the usual definition of quality of image. A trivial instance is increase in the number
of intensities via an acceptable scale factor. In [11] it was pointed out that there is a
moderate correlation between image quality and image fidelity.

2.2. Suprathreshold

Experiments that form the basis of several error sensitivity models are in particular
developed to assess almost invisible criteria. These measurable criteria will be used to
determine the sensitivity of the visual error measure. However, very little mental study
states whether the model can be generalized to classify the characteristics of perceived
distortions that are significantly bigger than the threshold level as in most cases of images.
Efforts have been made recently to combine suprathreshold psycophysics for anlysing
image distortions [12, 13].

2.3. Natural Image Complexity

The deception phenomenon often overlays the use of at least two distinct forms. The
format is easier than the image in the real world, which is considered a very simple format.
A model for the interaction between a few simple forms to assess the response. This is an
experiment with a limited amount of stimulation to create a model that can predict the
visual quality of natural images with complex structures. The festival of recently created
models are both easy and complicated and should trigger further reserach [14].

2.4. De-correlation

The moment people choose using indicators for spatial consolidation, then they are in-
directly suppose in-dependency of errors at distinct locations. This is correct if processing
before pooling remove dependencies in the input signals. Unfortunately, the reverse is the
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case for wavelet transform which is a linear channel decomposition method. In addition,
direct dependency exists between inter- and intra-channel wavelet coefficients of natural
images [6], [15]. From statistics point of view, there is a huge decline of dependencies of
the transform coefficients can be achieved by a well constructed non-linear gain control
model where the optimal parameters are used to decrease dependencies instead of fitting
data from masking experiments [16]. Furthermore, in [17, 18] optimal design of transfor-
mationand masking models were shown to have reduced both perceptual and statistical
dependencies.

2.5. Cognitive Interaction

A popular fact is that quality of images are affected cognitive understanding and inter-
active visual processing. For example, given different instructions, a human observer give
different quality scores to the same image [7]. Other things that may affect evaluation are,
already known idea of what the image entails or observation and addiction [7]. However,
a very good number of metrics for rating quality of image do not take into account such
consequences because quantifying them is not easy.

3. Philosophy

Metrics for quality of image are based on the assumption that HVS adapt extremely
when extracting structural information [19]. A very good approximation to perceived
image distortion is expected when structural information change metric is considered. A
better understanding of the ideology by comparing with the error sensitivity ideology via
three contents.

Firstly, the error sensitivity procedure estimates perceived errors when quantifying
image degradation. However, latest ideology used degradation of images as perceived
variation in structural information. An instance is given in Figure 1 in which the original
“Cmeraman” image is adjusted using disparate distortions, each of which is altered to
produce closely uniform MSE comparable to the exact. Moreover, the images considered
may have gravely different perceived quality. Taking into account the visual difference of
the exact image is easily distinguished when error sensitivity ideology is used, it will not
be easy to expatiate why the quality of the contrast-stretched image is very high. However
with latest ideology, it can be easily understood because almost all structured insight of
the exact image is maintained. This means that the main input can be almost fully
recovered by a effortless point-wise inverse linear transform. In different circumstances,
a few structural information from the exact image will be indefinitely lost in the blurry
images, hence a lower quality score than motion blur, Gaussian blur, and salt & pepper
blur image should be obtained.

Secondly, the criterion for error-sensitivity is a grassroot process, replicating relevant
duty of the first-phase component in the HVS. However, the latest criterion is a top-
bottom process copying the supposed functionality of the whole HVS. From another angle,
it avoids the suprathreshold mentioned previously since it is independent of threshold
psycho-physics to measure the distortion. Moreover, the cognitive interaction reduces to
a definite level because checking the structures of the observed entities is believed to be
the reason for the whole activity of visual observations including effective and collective
process.

Thirdly, complexity of natural images and interiors can be steer clear of to a certain
level because the latest ideology try not to predict the quality of images by compiling
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errors related to the patterns that are easy to understand. rather, compute directly the
structural changes between two complicated signals.

Figure 1. Main image (top left), degraded image (top right) with MSE=
15.0742, PSNR= 36.3485, SNR= 30.7657, SSIM= 0.9501, the motion
blurred image (bottom left) with MSE= 770.5704, PSNR= 19.2627,
SNR= 13.6800, SSIM= 0.6138 and the salt & pepper blurred image
(bottom left) with MSE= 434.2821, PSNR= 21.7531, SNR= 16.1704,
SSIM= 0.5690.

3.1. Mathematics & Entropy

In this subsection, we give some useful definitions and theorems.

Definition 3.1. A random variable X̄ is a function from the sample space to the set of
real numbers. The range of a random variable X̄, denoted by RX̄ , is the set of possible
values of X̄.

Definition 3.2. Denote X̄ as a discrete random variable (drv) with rangeRX̄ ={x1, ..., xn}.
The map PX̄(xk) = P (X = xk), for k = 1, . . . , n is called probability density function
(pdf) of X̄.

Definition 3.3. The entropy of X̄ withpX̄(x) as pdf, is

H(X̄) = −
∑
x

pX̄(x) log2 pX̄(x). (3.1)

As pX̄(x) ∈ [0, 1], Then, log2pX̄(x) ≤ 0 and H(X̄) ≥ 0.
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Definition 3.4. Kullback-Leibler distance between distributions, pX̄(x) and qX̄(x) is
defined as

H(pX̄(x)||qX̄(x)) =
∑
x

pX̄(x) log2

pX̄(x)

qX̄(x)
. (3.2)

It is sometimes called relative entropy. It is not a metric mathematically because it is not
symmetric, that is

H(pX̄(x)||qX̄(x)) 6= H(qX̄(x)||pX̄(x)). (3.3)

Theorem 3.5. [20] The Kullback-Leibler distance between two distributions, pX̄(x) and
qX̄(x) of the drv X̄, is positive and zero only when pX̄(x) = qX̄(x).

Definition 3.6. A map g : M → N is continuous at a point b ∈ M if lim
m→b

g(m) = g(b).

Also, it is continuous on E ⊆M if g for all e ∈ E, g is continuous at e.

Theorem 3.7. [21] Sequential Continuity Suppose g : M → N and m ∈ M . g is
continuous at m if and only if g(mn)→ g(m) for all sequences mn in M with mn → m.

3.2. Relative Entropy (RE) Index

In this subsection, we defined probability density function as a vector. Thus we can
compute entropy of a vector and the relative entropy between any two vectors. It is called
the Relative Entropy (RE) Index.

Consider the following functions defined as f : Rn → (−π2 ,
π
2 )n by

f(x1, . . . , xn) = (arctan(x1), . . . , arctan(xn)), (3.4)

g : (−π2 ,
π
2 )n → (0, π2 )n by

g(x1, . . . , xn) = (
x1 + 0.5π

2
, . . . ,

xn + 0.5π

2
), (3.5)

and h : (0, π2 )n → A by

h(x1, . . . , xn) = (
cos2(x1)

n
,

sin2(x1)

n
, . . . ,

cos2(xn)

n
,

sin2(xn)

n
), (3.6)

where A = {(a1, b1, . . . , an, bn) ∈ (0, 1)2n : ∀i ∈ {1, . . . , n}, ai + bi = 1
n}. Let u, v ∈ Rn

such that u = (u1, . . . , un) and v = (v1, . . . , vn). Let X be a discrete random variable
with range Rx = {1, . . . , 2n}. Define p and q probability density function of X as

pX(i) = Πi(h(g(f(u)))) and qX(i) = Πi(h(g(f(v)))), (3.7)

where Πi is a projection at i-th entry. So we can defined the entropy of a vector u by

E(u) = H(X). (3.8)

Moreover, we can define the relative entropy between vector u and vector v by

RE(u, v) = H(pX(x)||qX(x)). (3.9)

It is called Relative Entropy Index where u is a reference vector and v is an approximate
vector. See Fig 2.
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Figure 2. Diagram of the Relative Entropy Index (RE)

Theorem 3.8. Let ū, v̄ ∈ Rn such that ū = (ū1, . . . , ūn) and v̄ = (v̄1, . . . , v̄n). Then the
Relative Entropy Index (RE) satisfy these properties:

(1) RE(ū, v̄) ≥ 0,
(2) RE(ū, v̄) = 0 if and only if ū = v̄,
(3) RE is a continuous on Rn × Rn.
(4) RE(ūj , v̄)→ 0 if and only ūj → v.

Proof. Let X̄ be a discrete random variable with range Rx = {1, . . . , 2n}. Define p and q
pdf of X̄ by

pX̄(i) = Πi(h(g(f(ū)))) and qX̄(i) = Πi(h(g(f(v̄)))),

where Πi is a projection at i-th entry. Thus RE(ū, v̄) = H(pX̄(x)||qX̄(x)).

(1) Since Relative Entropy Index defined by relative entropy, RE(ū, v̄) ≥ 0 by
Theorem 3.5.

(2) By Theorem 3.5, RE(ū, v̄) = 0 if and only if pX̄(x) = qX̄(x). Clearly h ◦ g ◦ f
is a bijective function. Therefore, ū = v̄.

(3) Let (ūj , v̄j) be a sequence in Rn × Rn such that (ūj , ūj) → (ū, v̄). Define pj
and qj probability density function of X by

pjX (i) = Πi(h(g(f(ū)))) and qjX (i) = Πi(h(g(f(v̄)))),

where Πi is a projection at i-th entry. Thus RE(ūj , v̄j) = H(pjX (x)||qjX (x)).
It easy to see that Πi ◦ h ◦ g ◦ f is continuous at any vector in Rn. Therefore,
RE(ūj , v̄j)→ RE(ū, v̄). By Theorem 3.7, RE is a continuous on Rn × Rn.

(4) Since RE is continuous on Rn, RE(ūj , v̄)→ 0 if and only if (ūj , v̄)→ (v̄, v̄) if
and only if v̄j → v̄.

We applied Relative Entropy Index (RE) to measuring image quality. Let I be a
reference image and let R be an approximate image of I. Assume that I and R image
have size K × L × D. Set up I ′ = h(g(f(I))) and R′ = h(g(f(R))) where n = NMD.
The RE index is defined by

RE(I,R) = H(R′‖I ′).

4. Experiment

All the program were coded in MatLabR2018 and compute on PC Intel(R), Core(TM)
i5-72000U, CPU @2.50 GHz (4CPUs), ∼2.7GHz and Ram 4 GB. We test image quality
index by using result’s in Padcharoen et al. in [22]. The test images and restored images
are given in Figure 3. Table 1, 2, 3 4 gives image quality index. See Code 5.1 and 5.2.
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Figure 3. Restoration results. First column is original images, second
column is blur and noisy images, and third column is restored results.
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Table 1. SSIM

Figure
SSIM

original with original with
blur and noise restored

1 0.9226 0.9978
2 0.9628 0.9982
3 0.9592 0.9995
4 0.8493 0.9872
5 0.9242 0.9938
6 0.9088 0.9935

Table 2. SNR

Figure
SNR

original with original with
blur and noise restored

1 21.3928 44.2628
2 23.5586 43.5520
3 21.1065 44.6516
4 18.7265 35.2650
5 21.3746 42.8516
6 21.3211 45.0002

Table 3. PSNR

Figure
PSNR

original with original with
blur and noise restored

1 22.6380 45.5081
2 25.9929 45.9863
3 22.9896 46.5347
4 20.5175 37.0560
5 23.3222 44.7992
6 23.1583 46.8374

Table 4. RE

Figure
RE

original with original with
blur and noise restored

1 8.6331× 10−3 4.3238× 10−4

2 5.4414× 10−3 7.1372× 10−7

3 7.6× 10−2 2.2× 10−3

4 1.2674× 10−2 3.9216× 10−5

5 7.9019× 10−3 5.3147× 10−6

6 1.0072× 10−2 7.4178× 10−5
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5. Conclusion

This article initiates a relative entropy index (RE). However, a theoretical study was
carried out to compare the MSE, SNR, PSNR, SSIM with the RE index. There are many
iterative algorithms to solve such problems thatb constructs sequence which converge to
the solution.As the relative entropy index is continuous, the sequence converges to the
solution if and only if the relative entropy index converges to zero. As a conclusion, it
look like the values of the MSE, SNR, PSNR, SSIM can be forcast from the RE index
and conversely. The mean square error (MSE), signal to noise ratio (SNR), peak signal to
noise ratio (PSNR), structural similarity (SSIM), and relative entropy index (RE). The
above metrics vary on the level of their sensitivity to image degradation.

Appendix

Structural Similarity

Structural similarity (SSIM) [2, 23] is a way of forecasting quality of perceived images.
SSIM measures the similarity between two images. The SSIM index is a metric for
assessing image quality using a reference image. The index is defined as

SSIM(I,R) = (2µIµR+C1)(2σIR+C2)
(µ2

I+µ2
R+C1)(σ2

I+σ2
R+C2)

where I is a reference image, R is an approximate image of I, µI is the mean of I, µR is
the mean of R, σI is the variance of I, σR is the variance of R, σIR is the covariance of I
and R, C1 and C2 are small constant by C1 = (K1L)2 and C2 = (K2L)2 where L is the
range of the pixel and K1,K2 � 1. It satisfy the following properties:

(1) symmetry: SSIM(I,R) = SSIM(R, I),
(2) boundedness: 0 ≤ SSIM(I,R) ≤ 1,
(3) unique maximum: SSIM(I,R) = 1 if and only if I = R.
(4) continuous: SSIM(I,R) at point (I,R).

Signal to Noise Ratio

Signal to noise ratio (SNR) [1] is a metric used in science and engineering to differentiate
the degree of a desired signal to the level of background noise. SNR is the ratio of signal
power to that of the noise with decibels as its unit. The index is defined as

SNR(I,R) = 10 log10
‖I‖2
‖I−R‖2

where I is a reference image, and R is the approximate image of I. If I = R, then we
defined SNR(I,R) =∞. It satisfy the following properties:

(1) unboundedness: There is a SNR(I,R) =∞ when I = R,
(2) unique maximum: SNR(I,R) =∞ if and only if I = R.
(3) continuous: SNR(I,R) at point (I,R) except I 6= R or I = 0.

Peak Signal to Noise Ratio

Peak signal to noise ratio (PSNR) [1] is the ratio between the maximum possible power
of a signal to that of the noise that affects the loyalty of its representation with decibels as
its unit. Due to very wide range of many signals , PSNR is defined in terms of logarithmic
decibel scale. The index is defined as
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PSNR(I,R) = 10 log10
max2 I

MSE(I,R) such that

MSE(I,R) = 1
MND

M∑
i=1

N∑
j=1

D∑
k=1

(I(i, j, k)−R(i, j, k))2,

where I is a reference image, R is the approximate image of I, I is a image of size N ×M
with D channel, and R is a image of size N ×M with D channel. If I = R, then we
defined PSNR(I,R) =∞. It satisfies the following properties:

(1) unboundedness: There is a PSNR(I,R) =∞ when I = R,
(2) unique maximum: PSNR(I,R) =∞ if and only if I = R.
(3) continuous: PSNR(I,R) at point (I,R) except I 6= R or I = 0.

Code of Relative Entropy

Code 5.1. Example code RE index
clc
clear
O = imread(′O1.jpg′);
B = imread(′B1.jpg′);
R = imread(′R1.jpg′);
RE(1) = REindex(B,O);
RE(2) = REindex(R,O);
Result = [RE; ]

Code 5.2. sub program
function RE = REindex(x, y)
%x is approximate
%y is solution
[nmd] = size(x);
p = 1/(n ∗m ∗ d) ∗ ones(n,m, d);
x = double(x);
y = double(y);
anglex = (atan(x) + pi/2)/2;
angley = (atan(y) + pi/2)/2;
px(:, :, :, 1) = p. ∗ (cos(anglex).2);
px(:, :, :, 2) = p. ∗ (sin(anglex).2);
py(:, :, :, 1) = p. ∗ (cos(angley).2);
py(:, :, :, 2) = p. ∗ (sin(angley).2);
%D(P ||Q) = sumP (x)log2(P (x)/Q(x))
RE = sum(sum(sum(sum(px. ∗ log2(px./py)))));
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