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Abstract A new iterative method is suggested based on Jacobi iteration for solving a class of fuzzy

linear systems of equations with crisp coefficient matrix and fuzzy right-hand side. The iterative scheme

is established and the convergence theorems are presented. Numerical examples show that the method

is effective and efficient compared with the classical Jacobi method.

MSC: 65F10; 08A72

Keywords: fuzzy linear system; Jacobi iterative method; new iterative scheme

Submission date: 12.04.2021 / Acceptance date: 14.10.2022

1. Introduction

Fuzzy linear systems (FLSs) occur in many fields, such as control problems, informa-
tion, physics, statistics, engineering, economics, finance and even social sciences [1]. Thus,
it is significant to study the numerical methods for solving FLSs.

In [1], a general model was proposed by Friedman et al. with embedding technique for
solving a class of n× n FLSs

Ax = y, (1.1)

where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


is a crisp matrix, y =

[
y1, y2, · · · , yn

]T
is a fuzzy vector, and x =

[
x1, x2, · · · , xn

]T
is

unknown. The details of an FLS and the embedding model see in Section 2. With this
model, many numerical methods [2–19] were developed to solve FLS (1.1). Abbasbandy,
Ezzati and Jafarian discussed LU decomposition method [2], steepest descent method
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[3] and conjugate gradient method [4]. Allahviranloo considered the Jacobi and Gauss
Sidel methods [6], SOR method [7] and Adomian decomposition method [8]. Dehghan
and Hashemi [9] extended several well-known numerical algorithms of solving system of
linear equations. Ezzati [10] designed a general model. Fariborzi Araghi and Fallahzadeh
[11] used the inherited LU factorization. By introducing the width function of a fuzzy
number, Li, Li and Kong [13] established a new algorithm model based on generalized
elimination method. Miao, Wang, Wu, Yin and Zheng studied SOR [17], Uzawa-SOR
[16], block (SOR) [14, 18] and new splitting [19] iterative methods. Nasseri, Matinfar and
Sohrabi [15] proposed QR-decomposition method. Akram, Allahviranloo, Pedrycz and Ali
[5] suggested a technique to solve (1.1) with LR-bipolar fuzzy numbers. Koam, Akram,
Muhammad and Hussain [12] presented a new scheme for solving (1.1) with m-polar fuzzy
numbers.

It is generally known that the classical Jacobi method is simple to implement and
suitable to be used in parallel computing. Allahviranloo [6] investigated the Jacobi method
for (1.1). In this paper, a new improved method based on Jacobi iteration is provided for
solving (1.1), compared with the Jacobi method.

The rest of the paper is organized as follows. Section 2 gives some basic definitions and
results of FLS. In Section 3, the new method is established with convergence theorems.
Two numerical examples in Section 4 are discussed and the conclusion is in Section 5.

2. Preliminaries

Generally, following [1], a fuzzy number is a pair of (u(r), u(r)), 0 6 r 6 1, satisfying,

• u(r) is a bounded left continuous nondecreasing function over [0, 1],
• u(r) is a bounded left continuous nonincreasing function over [0, 1],
• u(r) 6 u(r), 0 6 r 6 1.

The arithmetic operations of arbitrary fuzzy numbers x = (x(r), x(r)), y = (y(r), y(r)),
0 6 r 6 1, and real number k, are as follows,

(1) x = y if and only if x(r) = y(r) and x(r) = y(r),
(2) x+ y = (x(r) + y(r), x(r) + y(r)), and

(3) kx =

{
(kx(r), kx(r)), k > 0,
(kx(r), kx(r)), k < 0.

Definition 2.1. [1] A fuzzy number vector X = (x1, x2, · · · , xn)T given by

xi = (xi(r), xi(r)), 1 6 i 6 n, 0 6 r 6 1,

is called a solution of the fuzzy linear system (1.1) if
n∑

j=1

aijxj =
n∑

j=1

aijxj = y
i
,

n∑
j=1

aijxj =
n∑

j=1

aijxj = yi.

(2.1)

By (2.1), Friedman et al. [1] extend FLS (1.1) to a 2n× 2n crisp linear system (embed-
ding model)

SX = Y (2.2)
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where S = (skl), skl are determined as follows

aij > 0 ⇒ sij = aij , sn+i, n+j = aij ,
aij < 0 ⇒ si, n+j = aij , sn+i, j = aij ,

1 6 i, j 6 n,

and any skl which is not determined by the above items is zero, 1 6 k, l 6 2n, and

X =



x1
...
xn
x1
...
xn


, Y =



y
1
...
y
n
y1
...
yn


.

Further, the matrix S has the structure

[
S1 S2

S2 S1

]
, A = S1 + S2, and (2.2) can be

rewritten as{
S1X + S2X = Y ,
S2X + S1X = Y ,

(2.3)

where

X =


x1
x2
...
xn

 , X =


x1
x2
...
xn

 , Y =


y
1
y
2
...
y
n

 , Y =


y1
y2
...
yn

 .

The following theorem indicates when FLS (1.1) has a unique solution.

Theorem 2.2. [1] The matrix S is nonsingular if and only if the matrices A = S1 + S2

and S1 − S2 are both nonsingular, that is, only when A = S1 + S2 and S1 − S2 are
nonsingular, FLS (1.1) has a unique solution.

In the next section, a new iterative scheme based on Jacobi iteration is presented for
nonsingular FLS (1.1), in fact, (2.2).

3. The New Method Based on Jacobi Iteration

For nonsingular system (2.2), that is A = S1 + S2 and S1 − S2 are invertible, with the
following splitting,

S = D − L− U, (3.1)

where

D =

[
D1 0
0 D1

]
, L =

[
L1 0
−S2 L1

]
, U =

[
U1 −S2

0 U1

]
,

D1 = diag (sii) , sii 6= 0, i = 1, 2, · · · , n, D1 − L1 − U1 = S1 and L1 and U1 are strictly
lower and upper triangular matrices, the Jacobi iterative scheme is as follows [6],

Xk+1 = HJXk +D−1Y, k = 0, 1, · · · , (3.2)
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where Xk =

[
Xk

Xk

]
and

HJ = D−1(L+ U)

=

[
D−1

1 (L1 + U1) −D−1
1 S2

−D−1
1 S2 D−1

1 (L1 + U1)

]
.

By (2.3), the iterative scheme (3.2) is also{
Xk+1 = D−1

1 (L1 + U1)Xk −D−1
1 S2Xk +D−1

1 Y ,
Xk+1 = D−1

1 (L1 + U1)Xk −D−1
1 S2Xk +D−1

1 Y ,
k = 0, 1, · · · . (3.3)

For (3.2) or (3.3), the follow convergence theorems hold.

Theorem 3.1. The Jacobi iterative scheme (3.2) or (3.3) converges if and only if the
spectral radius of HJ is less than one, i.e., ρ (HJ) < 1.

Theorem 3.2. If S is symmetric and sii > 0, the Jacobi iterative scheme (3.2) or (3.3)
converges if and only if S and 2D − S are positive definite.

Theorem 3.3. If S is strictly diagonally dominant matrix, the Jacobi iterative scheme
(3.2) or (3.3) is convergent.

Remark 3.4. Theorems 3.1-3.3 are well-known results for systems of linear equations,
see [20], thus hold for (3.2) or (3.3).

In [21], Wang and Chen discussed a modified Jacobi method for linear system of equa-
tions. The improvement of the proposed method is to use the combination of the current
point obtained by Jacobi method and the previous point to get the new point to get the
optimal factor of linear combination by solving the least square optimization. By that
idea, a new improved Jacobi iterative scheme for FLS (2.2) or (2.3), referred to NJ, can
be established:{

Xk+ 1
2

= HJXk +D−1Y,

Xk+1 = ωkXk+ 1
2

+ (1− ωk)Xk,
k = 0, 1, · · · , (3.4)

where

ωk = −
(SXk − Y )

T
(
SXk+ 1

2
− SXk

)
(
SXk+ 1

2
− SXk

)T (
SXk+ 1

2
− SXk

) ,
or 

Xk+ 1
2

= D−1
1 (L1 + U1)Xk −D−1

1 S2Xk +D−1
1 Y ,

Xk+1 = ωkXk+ 1
2

+ (1− ωk)Xk,

Xk+ 1
2

= D−1
1 (L1 + U1)Xk −D−1

1 S2Xk +D−1
1 Y ,

Xk+1 = ωkXk+ 1
2

+ (1− ωk)Xk,

k = 0, 1, · · · , (3.5)

where

ωk = −
(SXk − Y )

T
(
SXk+ 1

2
− SXk

)
(
SXk+ 1

2
− SXk

)T (
SXk+ 1

2
− SXk

) .
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Remark 3.5. The combination factor ωk is the solution of the least square optimization

min
ωk

∥∥∥S (ωkXk+ 1
2

+ (1− ωk)Xk

)
− Y

∥∥∥2 .
The NJ method is described as the following algorithm.

Algorithm 1 NJ algorithm

1: Given initial vector X and error precision ε, calculate R = Y − SX and set k = 0;
2: While ‖R‖2 > ε ‖Y ‖2 and k < kmax, do

Xp = X,

X = HJX +D−1Y,

ω = − (SX − Y )
T

(SX − SXp)

(SX − SXp)
T

(SX − SXp)
,

X = ωX + (1− ω)Xp,

R = Y − SX,
k = k + 1.

Remark 3.6. According to [21], the NJ method is convergent if and only if ρ (HJ) < 1,
thus, Theorems 3.1-3.3 also hold for the NJ method.

4. Numerical Examples

This section gives two examples to show the effectiveness of the new method. All
implements using Matlab 7 run in a Windows 7 DELL laptop with Intel 2.80GHz CPU
and 8.00GB RAM. In the numerical experiments, the initial guess is 0 and the stopping
criterion is

‖Rk‖2 < 10−6,

where Rk is the residual vector after k iterations, i.e., Rk = Y − SXk.
In the tables, xa and xb mean that SX = Y is solved as two numeric systems

S


xa1
xa2

...
xa,2n

 =


ya1
ya2
...

ya,2n

 and S


xb1
xb2
...

xb,2n

 =


yb1
yb2
...

yb,2n


not one symbolic system

S


xa1 + xb1r
xa2 + xb2r

...
xa,2n + xb,2nr

 =


ya1 + yb1r
ya2 + yb2r

...
ya,2n + yb,2nr


in the actual calculations.
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Example 4.1. Consider n× n fuzzy linear system Ax = y with

A =



8 −1 −1 −1

−1 8 −1 −1
. . .

−1 −1 8 −1
. . .

. . .

−1 −1 −1 8
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . . 8 −1 −1 −1
. . .

. . . −1 8 −1 −1

. . . −1 −1 8 −1
−1 −1 −1 8


and

y =


(2 + r, 2 + r)
(2 + r, 2 + r)

...
(2 + r, 2 + r)

 .

Table 1
Iterations (IT) and Residual (RES) for Example 4.1

Jacobi NJ
n

ITxa
RESxa

ITxb
RESxb

ITxa
RESxa

ITxb
RESxb

16 46 7.2625e-007 44 7.4434e-007 30 5.2909e-007 28 7.7411e-007
32 54 9.0938e-007 52 8.4110e-007 33 4.1344e-007 30 8.5933e-007
64 58 8.6441e-007 56 7.7656e-007 39 5.5691e-007 38 9.7607e-007

128 60 8.6662e-007 58 7.7297e-007 35 8.7319e-007 35 4.3660e-007
256 62 7.5204e-007 59 8.9320e-007 36 6.0221e-007 35 9.1825e-007
512 63 8.2970e-007 60 9.8431e-007 35 7.8261e-007 34 6.8072e-007

1024 64 8.9668e-007 62 7.9730e-007 32 7.4043e-007 30 8.4049e-007
2048 65 9.5986e-007 63 8.5334e-007 40 8.3323e-007 39 7.4473e-007

From Table 1, one can see that the NJ method needs less iterations and the number
of iterations increases slow with the size of the system increasing. This shows that the
combination technique of the NJ method works.

Example 4.2. Consider n2 × n2 fuzzy linear system Ax = y with

A =



D BT

B D
. . .

. . .
. . .

. . .

. . . D BT

B D


,
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where

B =



0.5 −0.25

−0.25 0.5
. . .

. . .
. . .

. . .

. . . 0.5 −0.25
−0.25 0.5


, D =



5 −1

−1 5
. . .

. . .
. . .

. . .

. . . 5 −1
−1 5


,

and

y =


(1 + r, 1 + r)
(2 + r, 2 + r)

...
(n2 + r, n2 + r)

 .

Table 2
Iterations (IT) and Residual (RES) for Example 4.2

Jacobi NJ
n

ITxa
RESxa

ITxb
RESxb

ITxa
RESxa

ITxb
RESxb

10 52 8.9286e-007 36 8.2241e-007 44 9.4757e-007 36 7.3886e-007
15 68 9.9214e-007 49 9.6275e-007 45 8.2494e-007 35 8.7850e-007
20 68 9.7114e-007 48 9.0557e-007 46 8.3219e-007 35 8.8229e-007
25 75 9.5463e-007 51 8.1862e-007 47 8.1817e-007 35 9.5329e-007
30 76 9.4190e-007 51 8.5102e-007 48 7.6403e-007 36 6.3217e-007
35 79 8.5899e-007 51 9.7768e-007 49 6.7924e-007 36 6.9445e-007
40 80 9.4393e-007 52 8.4129e-007 49 9.6177e-007 36 7.6013e-007
45 82 8.3391e-007 52 9.1032e-007 50 7.9229e-007 36 8.2780e-007

Table 2 also shows that, as n increases, the classical Jacobi requires more iterations
while the proposed NJ method needs less and the number of iterations is not sensitive to
the size of the system.

5. Conclusion

A new improved method based on Jacobi iteration is presented for solving n×n fuzzy
linear system. The numerical results show that the method is effective and improves the
convergence, which is faster than the classical Jacobi method and seems not sensitive to
the size of the system. Further work would be analyzing the reason of the stable iterations
to improve the method much.
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