
ISSN 1686-0209

Thai Journal of Mathematics

Volume 20 Number 4 (2022)
Pages 1707–1719

http://thaijmath.in.cmu.ac.th

Rough Statistical Convergence in Probabilistic

Normed Spaces

Reena Antal1,∗, Meenakshi Chawla1 and Vijay Kumar2,3

1Department of Mathematics, Chandigarh University, Mohali, Punjab, India
e-mail : reena.antal@gmail.com (R. Antal); chawlameenakshi7@gmail.com (M. Chawla)
2Department of Mathematics, Panipat Institute of Engineering and Technology, Panipat, Haryana, India
3Department of Mathematics, Chandigarh University, Mohali, Punjab, India
e-mail : vjy kaushik@yahoo.com (V. Kumar)

Abstract The main purpose of this work is to define rough statistical convergence in probabilistic

normed spaces. We have proved some basic properties as well as some examples which shows this idea

of convergence in probabilistic normed spaces is more generalized as compared to the rough statistical

convergence in normed linear spaces. Further, we have shown the results on sets of statistical limit points

and sets of cluster points of rough statistically convergent sequences in these spaces.

MSC: 40A05; 26E50; 40G99

Keywords: statistical convergence; rough statistical convergence; probablistic normed space

Submission date: 17.03.2020 / Acceptance date: 25.08.2020

1. Introduction

In 1951, Fast[1] presented a new idea of convergence named as statistical convergence
that is more generalized than the usual convergence for the sequences.

Definition 1.1. [1] A sequence x = {xk} of numbers is said to be statistically convergent

to ξ if for every ε > 0 we have lim
n→∞

1

n
|M(x, ε)| = δ(M(x, ε)) = 0, where |M(x, ε)|

represents the order of the enclosed set M(x, ε) = {k ≤ n : |xk − ξ| ≥ ε}.
An interesting generalization of usual convergence named as rough convergence was

initially introduced by Phu[2] for the sequences on finite dimensional normed linear spaces
and later on introduced on infinite dimensional normed linear spaces[3]. He mainly worked
on rough limits, roughness degree, rough continuity of linear operators and also introduced
rough Cauchy sequences.

Definition 1.2. [2] A sequence x = {xk} in a normed linear space (X, ‖.‖) is said to be
rough convergent to ξ ∈ X for some non-negative number r if for every ε > 0 there exists
k0 ∈ N such that ‖xk − ξ‖ < r + ε for all k ≥ k0.
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Aytar[4] extended the rough convergence to rough statistical convergence like usual
convergence is extended to statistical convergence with the help of natural density.

Definition 1.3. [4] A sequence x = {xk} in a normed linear space (X, ‖.‖) is said to be
rough statistically convergent to ξ ∈ X for some non-negative number r if for every ε > 0
we have

δ({k ∈ N : ‖xk − ξ‖ ≥ r + ε}) = 0,

and ξ is known as r-St-limit of sequence x = {xk}.

Aytar[5] also examined some criteria associated with the convexity and closeness of
the set of rough statistical limit points and rough cluster points of a sequence.

Inspired by the work of Aytar[4], Maity[6] presented rough statistical convergence
of order α(0 < α ≤ 1) in normed linear spaces and explained some important results
for the set of rough statistical limit points of order α. The idea of pointwise rough
statistical convergence and rough statistical Cauchy sequences for real valued functions
was introduced in [7]. The rough convergence has been defined for double sequences in
normed linear spaces by Malik and Maity in [8] and after that the authors extended this
idea in [9] and defined rough statistical convergence for double sequences.

This idea has motivated many authors to use the concepts of ideals also. Pal et
al.[10] introduced rough I-convergence with the help of ideals of N. Later, Malik et al.
in [11] extended this concept of rough I-convergence to rough I-statistical convergence
and described some topological properties of the set of all rough I-statistical limits of
sequences in normed linear spaces. More investigations, generalizations and applications
of the rough convergence can be further revealed using statistical convergence as well as
generalized statistical convergence in different settings [12–20].

In this paper, we are introducing the concept of rough statistical convergence in the
probabilistic normed linear spaces. The probabilistic normed space is an important family
of probabilistic metric spaces which was defined by Serstnev[21]. Further extensively
studied and redefined by Schweizer, Sklar and Alsina [22–24]. The basic terms related to
probabilistic normed spaces are elaborated as:

Definition 1.4. [25] A map φ : R → R+
0 is said to be the distribution function if it is

non-decreasing and left continuous. Also infxφ(x) = 0 and supxφ(x) = 1 for x ∈ R.
The set of all distribution functions is represented by F .

Example 1.5. Unit step function φ(x) is a distribution function, which is defined as

φ(x) =

{
0 x ≤ 0
1 x > 0

Definition 1.6. [24] A t-norm is a map ∗ : [0, 1]× [0, 1]→ [0, 1] which is non-decreasing,
continuous, commutative, associative and has 1 as identity.

Example 1.7. x ∗ y = min{x, y} and x ∗ y = max{x+ y − 1, 0} on [0,1] are t-norms.

Definition 1.8. [25] Let X be a real linear space, ∗ be a t-norm and F be the collection
of distribution functions. Consider a map ℘ : X → F such that ℘(x; t) is the value of
℘(x) at t ∈ R. If the following properties are satisfied, then ℘ and (X, ℘, ∗) are known as
probabilistic norm and probabilistic normed space(PN-Space) respectively.

(1) ℘(x; 0) = 0,
(2) ℘(x; t) = 1 for all t > 0 if and only if x = 0,
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(3) ℘(xα; t) = ℘
(
x; t
|α|

)
where α 6= 0 and α ∈ R,

(4) ℘(x+ y; s+ t) ≥ ℘(x; s) ∗ ℘(y; t) for all x, y ∈ X and s, t ∈ R+
0 = [ 0,∞).

Example 1.9. For a real normed space (X, ‖.‖), we define probabilistic norm ℘ for x ∈ X
and t ∈ R as

℘(x; t) =

{
µ
(

t
‖x‖

)
x 6= 0

h0(t) x = 0

where µ is a distribution function as µ(0) = 0 and µ 6= h0. Also

h0(t) =

{
0 t ≤ 0
1 t > 0

Then (X, ℘, ∗) be a PN-Space under the t-norm ∗ which is defined as x ∗ y = min{x, y}.
For example, define the function µ as

µ(t) =

{
0 t ≤ 0
x

1+x t > 0

Then, we obtain probabilistic norm as

℘(x; t) =

{ t
t+‖x‖ x 6= 0

h0(t) x = 0

Definition 1.10. [26] Let (X, ℘, ∗) be a PN-Space. A sequence x = {xk} in X is said to
be convergent to ξ ∈ X with respect to the norm ℘ if for every ε > 0 and λ ∈ (0, 1), there
exists k0 ∈ N such that

℘(xk − ξ; ε) > 1− λ for all k ≥ k0.

It is denoted by ℘− lim
k→∞

xk = ξ or xk
℘−→ ξ.

Example 1.11. [26] For a real normed space (X, ‖.‖), we define the probabilistic norm
℘ for x ∈ X, t ∈ R as ℘(x; t) = t

t+‖x‖ . Then (X, ℘, ∗) be a PN-Space under the t-norm ∗
which is defined as x ∗ y = min{x, y}.
Also, xk

℘−→ x if and only if xk
‖.‖−−→ x.

Karakus[27] introduced statistical convergence of sequences in PN-space.

Definition 1.12. [27] Let (X, ℘, ∗) be a PN-Space. A sequence x = {xk} in X is said
to be statistically convergent to ξ ∈ X with respect to the norm ℘ if for every ε > 0 and
λ ∈ (0, 1) we have

δ({k ∈ N : ℘(xk − ξ; ε) ≤ 1− λ}) = 0.

It is denoted by St℘ − lim
k→∞

xk = ξ or xk
St℘−−→ ξ.

2. Main Results

In this section, we first define the rough convergence and rough statistical convergence
in probabilistic normed spaces as follows:
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Definition 2.1. Let (X, ℘, ∗) be a PN-Space. A sequence x = {xk} in X is said to be
rough convergent to ξ ∈ X with respect to the norm ℘ if for every ε > 0, λ ∈ (0, 1) and
some non-negative number r there exists k0 ∈ N such that

℘(xk − ξ; r + ε) > 1− λ for all k ≥ k0.

It is denoted by r℘ − lim
k→∞

xk = ξ or xk
r℘−→ ξ.

Definition 2.2. Let (X, ℘, ∗) be a PN-Space. A sequence x = {xk} in X is said to be rough
statistically convergent to ξ ∈ X with respect to the norm ℘ if for every ε > 0, λ ∈ (0, 1)
and some non-negative number r,

δ({k ∈ N : ℘(xk − ξ; r + ε) ≤ 1− λ}) = 0.

It is denoted by r-St℘- lim
k→∞

xk = ξ or xk
r-St℘−−−−→ ξ.

Remark 2.3. For the case r = 0, the notion rough statistical convergence with respect
to the norm ℘ agrees with the statistical convergence with respect to the norm ℘.

The r-St℘-limit of a sequence may be not unique. So we consider r-St℘-limit set of

a sequence x = {xk} as St℘-LIMr
x = {ξ : xk

r-St℘−−−−→ ξ}. The sequence x = {xk} is

r℘-convergent if LIM
r℘
x 6= φ where LIM

r℘
x = {ξ∗ ∈ X : xk

r℘−→ ξ∗}. For unbounded
sequence LIM

r℘
x is always empty.

But in case of rough statistical convergence in PN-Space (X, ℘, ∗), we have St℘-LIMr
x 6= φ

even though sequence may be unbounded. For this we have given the next example.

Example 2.4. For a real normed space (X, ‖.‖), we define the probabilistic norm ℘ for
x ∈ X, t ∈ R as ℘(x; t) = t

t+‖x‖ . Then (X, ℘, ∗) be a PN-Space under the t-norm ∗ which

is defined as x ∗ y = min{x, y}. Then, define a sequence

xk =

{
(−1)k k 6= n2

k otherwise

Then

St℘-LIMr
x =

{
φ r < 1
[1− r, r − 1] otherwise

and St℘-LIMr
x = φ for all r ≥ 0. Thus, this sequence is divergent in ordinary sense as it

is unbounded. Also, the sequence is not rough convergent in PN-Space for any r.

With the help of statistically cluster points defined by Fridy[28], we are giving following
definition as follows:

Definition 2.5. Let (X, ℘, ∗) be a PN-Space. A sequence x = {xk} in X is said to be
rough statistically bounded with respect to the norm ℘ for some non-negative number r
if for every ε > 0 and λ ∈ (0, 1) there exists a real number M > 0 such that

δ({k ∈ N : ℘(xk;M) ≤ 1− λ}) = 0.

In view of above definitions, we obtained the following interesting results on rough
statistical convergence in PN-Spaces.

Theorem 2.6. A sequence x = {xk} is statistically bounded in a PN-Space (X, ℘, ∗) if
and only if St℘-LIMr

x 6= φ for some r > 0.
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Proof. Necessary part :
Let the sequence x = {xk} is statistically bounded in a PN-Space (X, ℘, ∗). Then, for
every ε > 0, λ ∈ (0, 1) and some r > 0, there exists a real number M > 0 such that

δ({k ∈ N : ℘(xk;M) ≤ 1− λ}) = 0.

Let K = {k ∈ N : ℘(xk;M) ≤ 1− λ}. For k ∈ Kc we have ℘(xk;M) > 1− λ.
Also

℘(xk; r +M) ≥ ℘(0; r) ∗ ℘(xk;M)

> 1 ∗ (1− λ)

= 1− λ.
Hence, 0 ∈ St℘-LIMr

x . Therefore, St℘-LIMr
x 6= φ.

Sufficient Part:
Let St℘-LIMr

x 6= φ for some r > 0. Then there exists ξ ∈ X such that ξ ∈ St℘-LIMr
x .

For every ε > 0 and λ ∈ (0, 1) we have

δ({k ∈ N : ℘(xk − ξ; r + ε) ≤ 1− λ}) = 0.

Therefore, almost all xk’s are contained in some ball with center ξ which implies that
sequence x = {xk} is statistically bounded in a PN-Space (X, ℘, ∗).

Next, we discuss the algebraic characterization of rough statistically convergent se-
quences in PN-Spaces.

Theorem 2.7. Let x = {xk} and y = {yk} be two sequences in a PN-Space (X, ℘, ∗).
Then for some non-negative number r the following holds

(1) If xk
r-St℘−−−−→ x0 and α ∈ N then αxk

r-St℘−−−−→ αx0,

(2) If xk
r-St℘−−−−→ x0 and yk

r-St℘−−−−→ y0 then (xk + yk)
r-St℘−−−−→ (x0 + y0).

Proof. Proof of above results are obvious so we are omitting them.

If x′ = {xki} be a subsequence of x = {xk} in a PN-Space (X, ℘, ∗) then LIM
r℘
xk ⊂

LIM
r℘
xki

. But this fact does not hold in case of statistical convergence. This can be
justified by the following example.

Example 2.8. For real normed space (X, ‖.‖), we define the probabilistic norm ℘ for
x ∈ X, t ∈ R as ℘(x; t) = t

t+‖x‖ . Then (X, ℘, ∗) be a PN-Space under the t-norm ∗ which

is defined by x ∗ y = min{x, y}. Then the sequence

xk =

{
k k 6= n2

0 otherwise

have St℘-LIMr
x = [−r, r]. And its subsequence x′ = {1, 4, 9, .......} have St℘-LIMr

x′ = φ.

But this fact is true for nonthin subsequences of the rough statistical convergent se-
quence in a PN-Space which is explained by the next result.

Theorem 2.9. If x′ = {xki} be a nonthin subsequence of x = {xk} in a PN-Space
(X, ℘, ∗) then St℘-LIMr

x ⊂ St℘-LIMr
x′ .

Proof. Proof of above result is obvious so we are omitting it.

Theorem 2.10. The set St℘-LIMr
x of a sequence x = {xk} in a PN-Space (X, ℘, ∗) is a

closed set.
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Proof. We have nothing to prove as St℘-LIMr
x = φ.

Let St℘-LIMr
x 6= φ for some r > 0 and consider y = {yk} be a convergent sequence in

St℘-LIMr
x with respect to the norm ℘ to y0 ∈ X.

For t ∈ (0, 1) choose λ ∈ (0, 1) such that (1 − λ) ∗ (1 − λ) > 1 − t. Then for every ε > 0
and λ ∈ (0, 1) there exists a k1 ∈ N such that

℘
(
yk − y0;

ε

2

)
> 1− λ for all k ≥ k1.

Let us choose ym ∈ St℘-LIMr
x with m > k1 such that

δ
(
{k ∈ N : ℘

(
xk − ym; r +

ε

2

)
≤ 1− λ}

)
= 0. (2.1)

For j ∈ {k ∈ N : ℘
(
xk − ym; r + ε

2

)
> 1− λ} we have ℘

(
xj − ym; r + ε

2

)
> 1− λ. Then,

we have

℘(xj − y0; r + ε) ≥ ℘
(
xj − ym; r +

ε

2

)
∗ ℘
(
ym − y0;

ε

2

)
> (1− λ) ∗ (1− λ)

> 1− t.

Hence, j ∈ {k ∈ N : ℘(xk − y0; r + ε) > 1− t}. Now we have the following inclusion

{k ∈ N : ℘
(
xk − ym; r +

ε

2

)
> 1− λ} ⊆ {k ∈ N : ℘(xk − y0; r + ε) > 1− t}

i.e.

{k ∈ N : ℘(xk − y0; r + ε) ≤ 1− t} ⊆ {k ∈ N : ℘
(
xk − ym; r +

ε

2

)
≤ 1− λ}

Then

δ({k ∈ N : ℘(xk − y0; r + ε) ≤ 1− t}) ≤ δ
(
{k ∈ N : ℘

(
xk − ym; r +

ε

2

)
≤ 1− λ}

)
Using (2.1) we get

δ({k ∈ N : ℘(xk − y0; r + ε) ≤ 1− t}) = 0

Therefore, y0 ∈ St℘-LIMr
x .

In next result, we are proving the convexity of the set St℘-LIMr
x .

Theorem 2.11. Let x = {xk} be a sequence in a PN-Space (X, ℘, ∗). Then, rough
statistical limit set St℘-LIMr

x with respect to the norm ℘ is convex for some non-negative
number r.

Proof. Let ξ1, ξ2 ∈ St℘-LIMr
x . For the convexity of the set St℘-LIMr

x , we have to show
that [(1− β)ξ1 + βξ2] ∈ St℘-LIMr

x for some β ∈ (0, 1).
For t ∈ (0, 1) choose λ ∈ (0, 1) such that (1 − λ) ∗ (1 − λ) > 1 − t. Now for every ε > 0
and λ ∈ (0, 1), we define

M1 = {k ∈ N : ℘

(
xk − ξ1;

r + ε

2(1− β)

)
≤ 1− λ},

M2 = {k ∈ N : ℘

(
xk − ξ2;

r + ε

2β

)
≤ 1− λ}.
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As ξ1, ξ2 ∈ St℘-LIMr
x , we have δ(M1) = δ(M2) = 0. For k ∈M c

1 ∩M c
2 we have

℘(xk − [(1− β)ξ1 + βξ2]; r + ε) ≥ ℘((1− β)(xk − ξ1) + β(xk − ξ2); r + ε)

≥ ℘
(

(1− β)(xk − ξ1);
r + ε

2

)
∗ ℘
(
β(xk − ξ2);

r + ε

2

)
≥ ℘

(
xk − ξ1;

r + ε

2(1− β)

)
∗ ℘
(
xk − ξ2;

r + ε

2β

)
> (1− λ) ∗ (1− λ)

> 1− t.
Thus, δ({k ∈ N : ℘(xk − [(1− β)ξ1 + βξ2]; r + ε) ≤ 1− t}) = 0.
Hence, [(1− β)ξ1 + βξ2] ∈ St℘-LIMr

x i.e. St℘-LIMr
x is a convex set.

Theorem 2.12. A sequence x = {xk} in a PN-Space (X, ℘, ∗) is rough statistically
convergent to ξ ∈ X with respect to the norm ℘ for some non-negative number r if there
exists a sequence y = {yk} in X, which is statistically convergent to ξ ∈ X with respect to
the norm ℘ and for every λ ∈ (0, 1) have ℘(xk − yk; r) > 1− λ for all k ∈ N.

Proof. Let ε > 0 and λ ∈ (0, 1). Consider yk
St℘−−→ ξ and ℘(xk − yk; r) > 1 − λ for all

k ∈ N. For given λ ∈ (0, 1) choose t ∈ (0, 1) such that (1− t) ∗ (1− t) > 1− λ. Define

A = {k ∈ N : ℘(yk − ξ; ε) ≤ 1− t}
B = {k ∈ N : ℘(xk − yk; r) ≤ 1− t}

Clearly, δ(A) = 0 and δ(B) = 0. For k ∈ Ac ∩Bc we have

℘(xk − ξ; r + ε) ≥ ℘(xk − yk; r) ∗ ℘(yk − ξ; ε)
> (1− t) ∗ (1− t)
> 1− λ.

Then ℘(xk − ξ; r + ε) > 1− λ for all k ∈ Ac ∩Bc.
This implies that {k ∈ N : ℘(xk − ξ; r + ε) ≤ 1− λ} ⊆ A ∪B.
Then, δ({k ∈ N : ℘(xk − ξ; r + ε) ≤ 1− λ}) ≤ δ(A) + δ(B).

Hence, we get δ({k ∈ N : ℘(xk − ξ; r + ε) ≤ 1− λ}) = 0. Therefore, xk
r-St℘−−−−→ ξ.

Theorem 2.13. Let x = {xk} be a sequence in a PN-Space (X, ℘, ∗) then there does
not exist elements y, z ∈ St℘-LIMr

x for some r > 0 and every λ ∈ (0, 1) such that
℘(y − z;mr) ≤ 1− λ for m > 2.

Proof. We prove this result by contradiction. Assume there exists elements y, z∈St℘-LIMr
x

such that

℘(y − z;mr) ≤ 1− λ for m > 2 (2.2)

As y, z ∈ St℘-LIMr
x .

For given λ ∈ (0, 1) choose t ∈ (0, 1) such that (1−t)∗(1−t) > 1−λ. Then for every ε > 0
and t ∈ (0, 1) we have δ(K1) = δ(K2) = 0 where K1 = {k ∈ N : ℘

(
xk − y; r + ε

2

)
> 1− t}

and K2 = {k ∈ N : ℘
(
xk − z; r + ε

2

)
> 1− t}. For k ∈ Kc

1 ∩Kc
2 we have

℘(y − z; 2r + ε) ≥ ℘
(
xk − z; r +

ε

2

)
∗ ℘
(
xk − y; r +

ε

2

)
> (1− t) ∗ (1− t)
> 1− λ.
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Hence,

℘(y − z; 2r + ε) > 1− λ. (2.3)

Then, from (2.3) we have

℘(y − z;mr) > 1− λ for m > 2.

which is a contradiction to (2.2). Therefore, there does not exists elements y, z ∈
St℘-LIMr

x such that ℘(y − z;mr) ≤ 1− λ for m > 2.

Next, we define statistical cluster point of a sequence in PN-Space and establish some
results related to it.

Definition 2.14. Let (X, ℘, ∗) be a PN-Space. Then γ ∈ X is called rough statistical
cluster point of the sequence x = {xk} in X with respect to the norm ℘ if for every
ε > 0, λ ∈ (0, 1) and some non-negative number r,

δ({k ∈ N : ℘(xk − γ; r + ε) > 1− λ}) > 0,

i.e.
δ({k ∈ N : ℘(xk − γ; r + ε) > 1− λ}) 6= 0.

In this case, γ is known as r-St℘-cluster point of a sequence x = {xk}.

Let Γ r℘(x) denotes the set of all r-St℘-cluster points of a sequence x = {xk}. If r = 0
then we get ordinary statistical cluster point defined by Karakus[27] i.e. Γ r℘(x) = Γ℘(x).

Theorem 2.15. Let (X, ℘, ∗) be a PN-Space. Then, set Γ r℘(x) of any sequence x = {xk}
is closed for some non-negative real number r.

Proof. (i) If Γ r℘(x) = φ, then we have to prove nothing.

(ii) If Γ r℘(x) 6= φ. Then, take a sequence y = {yk} ⊆ Γ r℘(x) such that yk
℘−→ y∗. It is

sufficient to show that y∗ ∈ Γ r℘(x). For t ∈ (0, 1) choose λ ∈ (0, 1) such that (1−λ) ∗ (1−
λ) > (1− t)
As yk

℘−→ y∗, then for every ε > 0 and λ ∈ (0, 1) there exists kε ∈ N such that ℘(yk −
y∗;

ε
2 ) > 1− λ for k ≥ kε.

Now choose k0 ∈ N such that k0 ≥ kε. Then, we have ℘(yk0 − y∗; ε2 ) > 1 − λ. Again as
y = {yk} ⊆ Γ r℘(x), we have yk0 ∈ Γ r℘(x).

⇒ δ
({
k ∈ N : ℘

(
xk − yk0 ; r +

ε

2

)
> 1− λ

})
> 0 (2.4)

Choose j ∈ {k ∈ N : ℘
(
xk − yk0 ; r + ε

2

)
> 1−λ}, then we have ℘

(
xj − yk0 ; r + ε

2

)
> 1−λ.

℘(xj − y∗; r + ε) ≥ ℘
(
xj − yk0 ; r +

ε

2

)
∗ ℘
(
yk0 − y∗;

ε

2

)
> (1− λ) ∗ (1− λ)

> 1− t.
Thus, j ∈ {k ∈ N : ℘(xk − y∗; r + ε) > 1− t}.
Hence

{k ∈ N : ℘
(
xk − yk0 ; r +

ε

2

)
> 1− λ} ⊆ {k ∈ N : ℘(xk − y∗; r + ε) > 1− t}.

Now,

δ({k ∈ N : ℘
(
xk − yk0 ; r +

ε

2

)
> 1− λ}) ≤ δ({k ∈ N : ℘(xk − y∗; r+ ε) > 1− t}).
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(2.5)

Using equation (2.4), we obtained that the set on left side of (2.5) has natural density
more than 0.

⇒ δ({k ∈ N : ℘(xk − y∗; r + ε) > 1− λ}) > 0.

Therefore, y∗ ∈ Γ r℘(x).

Theorem 2.16. Let Γ℘(x) be the set of all statistical cluster points of a sequence x = {xk}
in a PN-Space (X, ℘, ∗) and r be some non-negative real number. Then, for an arbitrary
γ ∈ Γ℘(x) and λ ∈ (0, 1) we have ℘(ξ − γ; r) > 1− λ for all ξ ∈ Γ r℘(x).

Proof. For λ ∈ (0, 1) choose t ∈ (0, 1) such that (1− t) ∗ (1− t) > 1− λ. Let γ ∈ Γ℘(x).
Then, for every ε > 0 and t ∈ (0, 1) we have

δ({k ∈ N : ℘(xk − γ; ε) > 1− t}) > 0. (2.6)

Now we will show that if for ξ ∈ X we have ℘(ξ − γ; r) > 1− t then ξ ∈ Γ r℘(x).
Let j ∈ {k ∈ N : ℘(xk − γ; ε) > 1− t} then ℘(xj − γ; ε) > 1− t. Now,

℘(xj − ξ; r + ε) ≥ ℘(xj − γ; ε) ∗ ℘(ξ − γ; r)

> (1− t) ∗ (1− t)
> 1− λ.

we have ℘(xj − ξ; r + ε) > 1− λ. Thus j ∈ {k ∈ N : ℘(xk − ξ; r + ε) > 1− λ}. Now the
next inclusion holds.

{k ∈ N : ℘(xk − γ; ε) > 1− t} ⊆ {k ∈ N : ℘(xk − ξ; r + ε) > 1− λ}.
Then

δ({k ∈ N : ℘(xk − γ; ε) > 1− t}) ≤ δ({k ∈ N : ℘(xk − ξ; r + ε) > 1− λ})
Using equation (2.6) we get δ({k ∈ N : ℘(xk − ξ; r + ε) > 1 − λ}) > 0. Therefore,
ξ ∈ Γ r℘(x).

Theorem 2.17. If B(c, λ, r) = {x ∈ X : ℘(x − c; r) ≥ 1 − λ} represents the closure of
open ball B(c, λ, r) = {x ∈ X : ℘(x − c; r) > 1 − λ} for some r > 0, λ ∈ (0, 1) and fixed

c ∈ X then Γ r℘(x) =
⋃

c∈Γ℘(x)

B(c, λ, r).

Proof. For λ ∈ (0, 1) choose t ∈ (0, 1) such that (1 − t) ∗ (1 − t) > 1 − λ. Let γ ∈⋃
c∈Γ℘(x)

B(c, λ, r) then there exists c ∈ Γ℘(x) for some r > 0 and every t ∈ (0, 1) such that

℘(c− γ; r) > 1− t.
Fix ε > 0. Since c ∈ Γ℘(x) then there exists a set K = {k ∈ X : ℘(xk − c; ε) > 1− t} with
δ(K) > 0. Now, for k ∈ K

℘(xk − γ; r + ε) ≥ ℘(xk − c; ε) ∗ ℘(c− γ; r)

> (1− t) ∗ (1− t)
> 1− λ.

This implies that δ({k ∈ N : ℘(xk − γ; r + ε) > 1− λ}) > 0. Hence, γ ∈ Γ r℘(x).

Therefore,
⋃

c∈Γ℘(x)

B(c, λ, r) ⊆ Γ r℘(x).
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Conversely,

Let γ ∈ Γ r℘(x). Then we have to show that γ ∈
⋃

c∈Γ℘(x)

B(c, λ, r).

Let if possible, γ /∈
⋃

c∈Γ℘(x)

B(c, λ, r) i.e. γ /∈ B(c, λ, r) for all c ∈ Γ℘(x).

Then ℘(γ−c; r) ≤ 1−λ for every c ∈ Γ℘(x). By Theorem 2.16 for arbitrary c ∈ Γ℘(x) we
have ℘(γ − c; r) > 1− λ for every c ∈ Γ r℘(x) which is a contradiction to the assumption.

Therefore, γ ∈
⋃

c∈Γ℘(x)

B(c, λ, r). Hence, Γ r℘(x) ⊆
⋃

c∈Γ℘(x)

B(c, λ, r).

Theorem 2.18. Let x = {xk} be a sequence in a PN-Space (X, ℘, ∗) then for any λ ∈
(0, 1),

(1) If c ∈ Γ℘(x) then St℘-LIMr
x ⊆ B(c, λ, r).

(2) St℘-LIMr
x =

⋂
c∈Γ℘(x)

B(c, λ, r) = {ξ ∈ X : Γ℘(x) ⊆ B(ξ, λ, r)}.

Proof. (1) Let ε > 0. For given λ ∈ (0, 1) choose t ∈ (0, 1) such that(1−t)∗(1−t) >
1− λ. Consider ξ ∈ St℘-LIMr

x and c ∈ Γ℘(x).
For every ε > 0 and t ∈ (0, 1) define sets

A = {k ∈ N : ℘(xk − ξ : r + ε) > 1− t} with δ(Ac) = 0,

and

B = {k ∈ N : ℘(xk − c; ε) > 1− t} with δ(B) 6= 0.

Now for k ∈ A ∩B we have

℘(ξ − c; r) ≥ ℘(xk − c; ε) ∗ ℘(xk − ξ; r + ε)

> (1− t) ∗ (1− t)
> 1− λ.

Therefore, ξ ∈ B(c, λ, r). Hence, St℘-LIMr
x ⊆ B(c, λ, r).

(2) By previous part we have St℘-LIMr
x ⊆

⋂
c∈Γ℘(x)

B(c, λ, r).

Assume y ∈
⋂

c∈Γ℘(x)

B(c, λ, r) then ℘(ξ−c; r) ≥ 1−λ for all c ∈ Γ℘(x). This implies

that Γ℘(x) ⊆ B(c, λ, r), i.e.
⋂

c∈Γ℘(x)

B(c, λ, r) ⊆ {ξ ∈ X : Γ℘(x) ⊆ B(ξ, λ, r)}.

Further, let y /∈ St℘-LIMr
x then for ε > 0 we have δ({k ∈ N : ℘(xk − y; r + ε) ≤

1 − λ}) 6= 0, which implies that the existence of a statistical cluster point c of

the sequence x = {xk} with ℘(xk − y; r + ε) ≤ 1 − λ. Thus, Γ℘(x) * B(y, λ, r)

and y /∈ {ξ ∈ X : Γ℘(x) ⊆ B(ξ, λ, r)}. This implies that {ξ ∈ X : Γ℘(x) ⊆
B(ξ, λ, r)} ⊆ St℘-LIMr

x and we get
⋂

c∈Γ℘(x)

B(c, λ, r) ⊆ St℘-LIMr
x .

Therefore, St℘-LIMr
x =

⋂
c∈Γ℘(x)

B(c, λ, r) = {ξ ∈ X : Γ℘(x) ⊆ B(ξ, λ, r)}.
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Theorem 2.19. Let x = {xk} be a sequence in a PN-Space (X, ℘, ∗) which is statistically
convergent to ξ ∈ X with respect to the norm ℘ then there exists λ ∈ (0, 1) such that

St℘-LIMr
x = B(ξ, λ, r) for some r > 0.

Proof. Let ε > 0. For given λ ∈ (0, 1) choose t ∈ (0, 1) such that(1− t) ∗ (1− t) > 1− λ.

Since xk
St℘−−→ ξ then there is a set A = {k ∈ N : ℘(xk − ξ : ε) ≤ 1 − t} with δ(A) = 0.

Consider y ∈ B(ξ, t, r) = {y ∈ X : ℘(y − ξ; r) ≥ 1− t}.
For k ∈ Ac

℘(xk − y; r + ε) ≥ ℘(xk − ξ; ε) ∗ ℘(y − ξ; r)
> (1− t) ∗ (1− t)
> 1− λ.

This implies that y ∈ St℘-LIMr
x , i.e. B(ξ, λ, r) ⊆ St℘-LIMr

x . Also St℘-LIMr
x ⊆

B(ξ, λ, r). Hence, St℘-LIMr
x = B(ξ, λ, r).

Theorem 2.20. Let x = {xk} be a sequence in a PN-Space (X, ℘, ∗) which converges
statistically with respect to the norm ℘ then Γ r℘(x) = St℘-LIMr

x for some r > 0.

Proof. Necessary part :

Suppose xk
St℘−−→ ξ. Then Γ℘(x) = {ξ}. By Theorem 2.17 for some r > 0 and λ ∈ (0, 1)

we have Γ r℘(x) = B(ξ, λ, r). Also by Theorem 2.19 we get B(ξ, λ, r) = St℘-LIMr
x . Hence,

Γ r℘(x) = St℘-LIMr
x .

Sufficient part :

Let Γ r℘(x) = St℘-LIMr
x . By Theorem 2.17 and Theorem 2.18(ii) we have

⋃
c∈Γ℘(x)

B(c, λ, r) =⋂
c∈Γ℘(x)

B(c, λ, r). This implies that either Γ℘(x) = φ or Γ℘(x) is a singleton set. Then

St℘-LIMr
x =

⋂
c∈Γ℘(x)

B(c, λ, r) = B(ξ, λ, r) for some ξ ∈ Γ℘(x), further by Theorem 2.19

we get St℘-LIMr
x = {ξ}.
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