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Abstract In this paper, a class Lip
(ω)
α [0, 1) is introduced. This class of functions is the generalization of

known Lipschitz class Lipα[0, 1), 0 < α ≤ 1 of functions. Four new estimators E
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N (f), E

(2)
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(3)
N (f)

and E
(4)
N (f) of functions of Lipα[0, 1) and Lip

(ω)
α [0, 1) classes have been obtained. These estimators are

new, sharper and best possible in the approximation of functions by wavelet methods.
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1. Introduction

The classical idea of approximation theory is applied in more technical ways in
the modern field of wavelet analysis. In wavelet analysis, complicated functions are
approximated by their simple expressions in the form of wavelet series. This concept plays
a desirable role as applications in many branches of pure as well as applied
mathematics.

Thus there is a need to describe wavelets more in words than symbols so that
fundamental ideas like removing noise from music recording and storing fingerprints
electronically using the approximation of functions can be solved by involving the
concept of wavelets. Presently, the wavelet era has been begun and several applications
of wavelet analysis and approximation of functions by their wavelet series are found in
signal processing, image processing, engineering, and technology.

Several mathematicians like Chui, Daubechies, Debnath, Khalil Ahmad, Meyer,
Morlet, Natanson, Lal and Kumari [1–15] have studied some theories of wavelets in detail.
In 1950, Natanson [3] initiated a well ordered study of approximation theory in wavelet
analysis.

One of the main advantages of wavelet analysis is that a function is approximated
by few coefficients of its wavelet expansion. This is good enough approximation in
comparison of other techniques. This method is applicable in signal expansion.
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The aims of this paper are mentioned below;
1. To introduce the generalized Haar scaling function φ(λ) and generalized Haar mother
wavelet ψ(λ).
2. To introduce the expansion of a function f by generalized Haar scaling function and
generalized Haar mother wavelet.

3. To introduce the generalized Lipschitz class of function,i.e., Lip
(ω)
α [0, 1).

4. The approximation of a function f ∈ Lipα[0, 1) and f ∈ Lip(ω)α [0, 1) by partial sums
of the wavelet expansions of associated functions.
5. To generalize the results of Christensen [9] and Walnut [16].

2. Definitions and Preliminaries

Definition 2.1. Function of Lipα[0, 1) class: A function f ∈ Lipα[0, 1), 0 < α ≤ 1 if

|f(x)− f(y)| = O(|x− y|α),∀x, y ∈ [0, 1] (Titchmarsh [17]).

Consider a function f(x) = x2α,∀x ∈ [0, 1].
For this,

|f(x)− f(y)| = |x2α − y2α|∀x, y ∈ [0, 1]

= |xα − yα||xα + yα|
≤ 2|xα − yα|
≤ 2|x− y|α, since |xα − yα| ≤ |x− y|α, 0 < α ≤ 1.

Thus f ∈ Lipα[0, 1).

Definition 2.2. Generalized Lipschitz class: A function f ∈ Lip(ω)α [0, 1) if

|f(x+ t)− f(x)| = O(ω(t)|t|α); 0 < α < 1, x, t, x+ t ∈ [0, 1],

where ω(t) is positive monotonic increasing function of t such that ω(t)|t|α → 0 as t→ 0+.
Remark: It is important to note that if ω(t) = c where c is a positive real number, then

Lip
(ω)
α [0, 1) reduces to the class Lipα[0, 1).

Definition 2.3. Haar scaling function φ (Father wavelet) and Haar wavelet ψ
(Mother wavelet): Haar scaling function can be defined as;

φ(t) = χ[0,1)(t) =

{
1 0 ≤ t < 1

0 otherwise.
(2.1)

For each j, k ∈ Z, {φj,k(t)}j,k∈Z = 2j/2φ(2jt − k) = D2jTkφ(t), where dilation operator

Daf(t) = a1/2f(at) and the translation of operator Tkf(t) = f(t− k).
If ψ ∈ L2(R) satisfies the “admissibility condition”, i.e.,

Cψ =

∫ ∞
−∞

|ψ̂(ω)|2

|ω|
dω <∞,

then ψ is called a basic wavelet. The basic wavelet is known as the mother wavelet. The
father wavelet and mother wavelet are jointly known as parent wavelet. Some different
dilations and translations of ψ mother wavelet using the relation

ψj,k(t) = 2j/2ψ(2jt− k), j, k ∈ Z,
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the basis can be generated. A function defined on the real line R as;

ψ(t) =


1 for t ∈

[
0, 12
)
,

−1 for t ∈
[
1
2 , 1
)
,

0 otherwise

(2.2)

is known as Haar function.
Haar wavelet is discontinuous at t = 0, 1/2, 1 and it is very well localized in the time
domain.

Definition 2.4. Generalized Haar scaling function φ
(λ)
N,k and Generalized Haar

wavelet ψ
(λ)
j,k : For λ = 1, 2, 3...., generalized Haar scaling function φ(λ) in the interval

[0,1] can be defined as follows;

φ
(λ)
N,k(t) = λN/2φ(λN t− k) =

{
λN/2 : k

λN
≤ t < k+1

λN

0 : otherwise

where k = 1, 2, ...λj − 1.
The generalized Haar wavelet over the interval [0,1] is defined as;

ψ
(λ)
j,k (t) = λj/2ψ(λjt− k) =


λj/2 : k

λj ≤ t < k+1/2
λj

−λj/2 : k+1/2
λj ≤ t < k+1

λj

0 : otherwise.

Definition 2.5. Generalized Haar wavelet series: Let f ∈ L2[0, 1]. A wavelet series
of f using generalized Haar scaling function φ(λ) and Haar mother wavelet ψ(λ) is given
by

f(t) =

λN−1∑
k=0

< f, φ
(λ)
N,k > φ

(λ)
N,k(t) +

∞∑
j=N

λj−1∑
k=0

< f,ψ
(λ)
j,k > ψ

(λ)
j,k (t)

= (PNf)(t) + (RNf)(t), say

where < f, φ
(λ)
N,k >=

∫ k+1

λN

k

λN

f(t)φ
(λ)
N,k(t)dt and < f, ψ

(λ)
j,k >=

∫ k+1

λj

k

λj

f(t)ψ
(λ)
j,k (t)dt and the

basis functions ψ
(λ)
j,k are orthonormal signals , each of which is associated by scale 1

λj and

position k
λj .

Definition 2.6. Multiresolution analysis: A multiresolution analysis of L2(R) is

defined as a sequence of closed subspaces V
(G)
j of L2(R), j ∈ Z, with the following

properties;

(1) V
(G)
j ⊂ V (G)

j+1 ,

(2) f(t) ∈ V (G)
j ⇔ f(µt) = V

(G)
j+1 ,

(3) f(t) ∈ V (G)
0 ⇔ f(t+ 1) ∈ V (G)

0 ,

(4)

∞⋃
j=−∞

V
(G)
j is dense in L2(R) and

∞⋂
j=−∞

V
(G)
j = {0},

(5) Suppose a function φ ∈ V (G)
0 exists such that the collection {φ(t− k); k ∈ Z}

is Riesz basis of V
(G)
0 .
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If some wavelet ψ ∈ L2(R) has to be constructed, then it is advisable to study the
structure of the L2(R) decomposition it generates. As usual, let

ψ
(λ)
j,k (t) = µj/2ψ(µjt− k)

and

W
(G)
j = closL2(R)

{
ψ
(λ)
j,k ; k ∈ Z

}
.

Then this family of subspaces of L2(R) gives a direct sum decomposition of L2(R) in the
sense that every f ∈ L2(R) has a unique decomposition

f(t) = ...+ g−2 + g−1 + g0 + g1 + g2 + ...

where gj ∈W (G)
j for all j ∈ Z, and we shall describe by writing

L2(R) =
∑
j∈Z

W
(G)
j = ...⊕W (G)

−2 ⊕W
(G)
−1 ⊕W

(G)
0 ⊕W (G)

1 ⊕W (G)
2 ⊕ ... (2.3)

Being in W
(G)
j , the component gj of f has a unique wavelet series representation, where

the coefficient sequence gives localized spectral information of f in the jth octave (or
frequency band) in terms of the integral wavelet transform of f with dual ψ of ψ as
the basis wavelet. Using the decomposition of L2(R) in Eq.(2.3), we also have a nested

sequence of closed subspaces V
(G)
j , j ∈ Z of L2(R) defined by

V
(G)
j = ...⊕W (G)

j−2 ⊕W
(G)
j−1.

Let φ ∈ V (G)
0 , since V

(G)
0 ⊂ V (G)

1 , a sequence {hk} ∈ l2(Z) exists such that the φ function
satisfies,

φ(t) = λ

∞∑
j=−∞

hkφ(µt− k). (2.4)

This functional equation is known as the refinement equation or the dilation equation

or the two-scale difference equation. The collection of functions
{
φ
(λ)
j,k ; k ∈ Z

}
, with

φ
(λ)
j,k (t) = λj/2φ(λjt− k), is a Riesz basis of V

(G)
j . Integrating equation(2.4) and dividing

by the (non-vanishing) integral of φ, we have

∞∑
k=−∞

hk = 1.

A function φ(λ) ∈ L2(R) is called a generalized Haar scaling function, if the subspace

V
(G)
j = closL2(R)

{
φ
(λ)
j,k ; k ∈ Z

}
, j ∈ Z

satisfy the properties (1) to (5) stated above in this section. It is important to note that

the generalized Haar scaling function φ(λ) generates a multiresolution analysis
{
V

(G)
j

}
of

L2(R).
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Definition 2.7. Projection PN (f): Let PN (f) be the orthogonal projection of L2(R)
onto VN . Then

(PNf)(t) =

λN−1∑
k=0

< f, φ
(λ)
N,k > φ

(λ)
N,k(t), N = 1, 2, 3..., [18].

Definition 2.8. Wavelet approximation: The wavelet approximation EN (f) of f by
PN (f) under || ||2 is defined by

EN (f) = min||f − PN (f)||2.

Let

(SJf)(t) =

λN−1∑
k=0

< f, φ
(λ)
N.k > φ

(λ)
N,k(t) +

J∑
j=N

λj−1∑
k=0

< f,ψ
(λ)
j,k > ψ

(λ)
j,k (t).

Wavelet approximation of f by (SJf)(t) is defined by

EJ(f) = min||f − SJ(f)||2.

If EN (f) → 0 as N → ∞ then EN (f) is called the best approximation of f of order N
(Zygmund [19], p.115).

Definition 2.9. Mean value theorem for definite integrals: Let f : [a, b] → R be
a continuous function, then there exists c in [a, b] such that∫ b

a

f(t)dt = f(c)(b− a) (Rudin [20]).

3. Theorems

In this paper, we prove the following theorems;

Theorem 3.1. If a function f ∈ L2[0, 1] is continuous in [0,1] and its wavelet expansion
by generalized Haar scaling function φ(λ) and generalized Haar wavelet ψ(λ) is given by

f(t) =

λN−1∑
k=0

< f, φ
(λ)
N,k > φ

(λ)
N,k(t) +

∞∑
j=N

λj−1∑
k=0

< f, φ
(λ)
j,k > ψ

(λ)
j,k (t)

= (PNf)(t) + (RNf)(t),

where φ
(λ)
N,k(t) = λN/2φ(λN t − k) and ψ

(λ)
j,k (t) = λN/2ψ(λjt − k), µ = 1, 2, 3..., then the

wavelet approximation EN (f) of f by PN (f) satisfies;

E
(1)
N (f) = ||f − PN (f)||2 = O

(
1

λN/2

)
and

||RN (f)||2 = ||
∞∑
j=N

λN−1∑
k=0

< f,ψ
(λ)
j,k > ψ

(λ)
j,k || = O

(
1

λN/2

)
.
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Proof. By defining the error between f(t) and expansion over any subinterval as;

(ekf)(t) =< f, φ
(λ)
N,k > φ

(λ)
N,k(t)− f(t), t ∈

[
k

λN
,
k + 1

λN

)
, N = 1, 2, 3...

We obtain

||ek(f)||22 =

∫ k+1

λN

k

λN

|ekf(t)|2dt

=

∫ k+1

λN

k

λN

| < f, φ
(λ)
N,k > φ

(λ)
N,k(t)− f(t)|2dt

=
(
< f, φ

(λ)
N,k > λN/2 − f(ζk)

)2 1

λN
, ζk ∈

[
k

λN
,
k + 1

λN

)
, (3.1)

by first mean value theorem for integrals.
Now,

< f, φ
(λ)
N,k >= λN/2

∫ k+1

λN

k

λN

f(t)dt =
1

λN/2
f(ρk), ρk ∈

[
k

λN
,
k + 1

λN

)
, (3.2)

by first mean value theorem of integrals.
By Eqs.(3.1) and (3.2), we have

||ek(f)||22 = (f(ρk)− f(ζk))
2 1

λN
. (3.3)

Since f(t) is continuous in the closed interval [0,1] and hence it is uniformly continuous
in [0,1] and in each sub-interval of [0,1], therefore for ε = 1

λN/2
∃ δ > 0 s.t.,

|f(ρk)− f(ζk)| ≤ 1

λN/2
,∀ρk, ζk ∈

[
k

λN
,
k + 1

λN

)
< δ. (3.4)

Then, from Eqs.(3.3) and (3.4), we have

||ek(f)||22 ≤
1

λ2N
, (3.5)

which leads to;

(E
(1)
N (f))2 =

∫ 1

0

λN−1∑
k=0

(ekf)(t)

2

dt

=

∫ 1

0

λN−1∑
k=0

(e2kf)(t)

 dt+ 2
∑∑

0≤k 6=k′≤λN−1

∫ 1

0

(ekf)(t)(e′kf)(t)dt.

Due to disjointness of the supports of these basis functions, we have;

(E
(1)
N (f))2 =

∫ 1

0

λN−1∑
k=0

e2k(f)

 dt =

λN−1∑
k=0

||ek(f)||22 ≤
λN−1∑
k=0

(
1

λ2N

)
= O

(
1

λN

)
,

i.e.,

E
(1)
N (f) = O

(
1

λN/2

)
.
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Remainder operator RN (f) is given by

(RNf)(t) =

∞∑
j=N

λj−1∑
k=0

< f,ψ
(λ)
j,k > ψ

(λ)
j,k (t).

Thus

(RNf(t))
2

=

 ∞∑
j=N

λj−1∑
k=0

< f, ψ
(λ)
j,k > ψ

(λ)
j,k (t)

2

=

∞∑
j=N

λj−1∑
k=0

< f,ψ
(λ)
j,k >

2 ψ
(λ)2
j,k (t)

+

∞∑
j=N

∑
0≤k 6=

∑
k′≤µj−1

< f,ψ
(λ)
j,k >< f,ψ

(λ)
j,k′ > ψ

(λ)
j,k (t)ψ

(λ)
j,k′(t)

+
∑
N≤j 6=

∑
j′<∞

λj−1∑
k=0

< f,ψ
(λ)
j,k >< f,ψ

(λ)
j′,k > ψ

(λ)
j,k (t)ψ

(λ)
j′,k(t)

+
∑
N≤j 6=

∑
j′<∞

∑
0≤k 6=

∑
k′≤λj−1

< f,ψ
(λ)
j,k >< f,ψ

(λ)
j′,k′ > ψ

(λ)
j,k (t)ψ

(λ)
j′,k′(t).

Then,

||RN (f)||22 =

∫ 1

0

|(RNf)(t)|2dt

=

∞∑
j=N

λJ−1∑
k=0

| < f,ψ
(λ)
j,k > |

2

∫ 1

0

ψ
(λ)
j,k (t)2dt

+

∞∑
j=N

∑
0≤k 6=

∑
k′≤λj−1

< f,ψ
(λ)
j,k >< f,ψ

(λ)
j,k′ >

∫ 1

0

ψ
(λ)
j,k (x)ψ

(λ)
j,k′(t)dt

+
∑
N≤j 6=

∑
j′<∞

λj−1∑
k=0

< f,ψ
(λ)
j,k >< f, ψ

(λ)
j′,k >

∫ 1

0

ψ
(λ)
j,k (t)ψ

(λ)
j′,k(t)dt

+
∑
N≤j 6=

∑
j′<∞

∑
0≤k 6=

∑
k′≤λj−1

< f,ψ
(λ)
j,k >< f,ψ

(λ)
j′,k′ >

∫ 1

0

ψ
(λ)
j,k (t)ψ

(λ)
j′,k′(t)dt

=

∞∑
j=N

λj−1∑
k=0

| < f,ψ
(λ)
j,k > |

2||ψ(λ)
j,k ||

2,by orthogonality of ψ
(λ)
j,k

=

∞∑
j=N

λj−1∑
k=0

| < f,ψ
(λ)
j,k > |

2. (3.6)
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Since

| < f,ψ
(λ)
j,k > | = |

∫ k+1

µj

k

λj

f(t)ψ
(λ)
j,k (t)dt| =

∫ k+1

λj

k

λj

|f(t)||ψ(λ)
j,k (t)|dt

≤
∣∣∣∣f (k + 1

λj

)∣∣∣∣ ∫ k+1

λj

k

λj

|ψ(λ)
j,k (t)|dt,by first mean value theorem for integrals

=

∣∣∣∣f (k + 1

λj

)∣∣∣∣ 1

λj/2
.

Next,

∞∑
j=N

λj−1∑
k=0

| < f,ψ
(λ)
j,k > |

2 ≤
∞∑
j=N

λj−1∑
k=0

∣∣∣∣f (k + 1

λj

)∣∣∣∣2 1

λj
=

∞∑
j=N

(
1

λj

) λj−1∑
k=0

∣∣∣∣f (k + 1

λj

)∣∣∣∣2

=

∞∑
j=N

O

(
1

λj

)
, since

λj−1∑
k=0

∣∣∣∣f (k + 1

λj

)∣∣∣∣2 = O(1)

= O

(
1
λN

1− 1
λ

)
= O

(
1

λN

)
. (3.7)

By Eqs.(3.6) and (3.7), we have

||RN (f)||22 = O

(
1

λN

)
.

Hence,

||RN (f)||2 = O

(
1

λN/2

)
.

Thus the proof of Theorem 3.1 is completely established.

Theorem 3.2. Let f ∈ L2[0, 1] is continuous in [0,1] and

(SJf)(t) =

λN−1∑
k=0

< f, φ
(λ)
N,k > φ

(λ)
N,k(t) +

J∑
j=N

λj−1∑
k=0

< f,ψ
(λ)
j,k > ψ

(λ)
j,k (t)

= (PNf)(t) + (RN (f)−RJ(f)) (t),

then the Haar wavelet approximation EJ(f) of f by SJ(f) of its wavelet expansion is
given by

E
(2)
J (f) = min||f − SJ(f)||2 = O

(
1

λ(J+1)/2

)
.

Proof. Now,

f(t)− SJ(f)(t) =

∞∑
j=N

λj−1∑
k=0

< f, ψ
(λ)
j,k > ψ

(λ)
j,k (t)−

J∑
j=N

λj−1∑
k=0

< f,ψ
(λ)
j,k > ψ

(λ)
j,k (t)

=

∞∑
j=J+1

λj−1∑
k=0

< f,ψ
(λ)
j,k > ψ

(λ)
j,k (t).
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Then,

(f(t)− (SJf)(t))2 =

 ∞∑
j=J+1

λj−1∑
k=0

< f,ψ
(λ)
j,k > ψ

(λ)
j,k (t)

2

.

Following the proof of Theorem 3.1, we have

||f − SJ(f)||22 =
∞∑

j=J+1

λj−1∑
k=0

| < f, ψ
(λ)
j,k > |

2 = O

(
1

λJ+1

)
.

So

E
(2)
J (f) = min||f − SJ(f)|| = O

(
1

λ(J+1)/2

)
.

Thus the Theorem 3.2 is proved.

Theorem 3.3. f ∈ Lipα[0, 1), 0 < α ≤ 1, i.e.,|f(x+ t)− f(x)| = O(|t|α) then

E
(3)
N (f) = O

(
1

λαN

)
and ||RN (f)||2 = O

(
1

λαN

)
.

Proof. Following the proof of Theorem 3.1,

||ek(f)||22 = (f(ρk)− f(ζk))
2 1

λN
. (3.8)

Since f ∈ Lipα[0, 1), therefore

|f(ρk)− f(ζk)| = O(|ρk − ζk|α),∀ρk, ζk ∈
[
k

λN
,
k + 1

λN

)
. (3.9)

Then, from Eqs.(3.8) and (3.9), we have

||ek(f)||22 = O(|ρk − ζk|α)2
1

λN
= O

(
1

λ2αN

)
1

λN
= O

(
1

λ(2α+1)N

)
,

which leads to;

(E
(3)
N (f))2 =

∫ 1

0

λN−1∑
k=0

(ekf)(t)

2

dt =

λN−1∑
k=0

||ek(f)||22 = O

(
1

λ2αN

)
.

Thus, E
(3)
N (f) = O

(
1

λαN

)
.

Also,

||RN (f)||22 =

∞∑
j=N

λj−1∑
k=0

| < f, ψ
(λ)
j,k > |

2.
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Now,

| < f,ψ
(λ)
j,k > | =

∣∣∣∣∣
∫ k+1

λj

k

λj

f(t)ψ
(λ)
j,k (t)dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ k+1

λj

k

λj

(
f(t)− f

(
k

λj

)
+ f

(
k

λj

))
ψ
(λ)
j,k (t)dt

∣∣∣∣∣
≤

∫ k+1

λj

k

λj

∣∣∣∣f(t)− f
(
k

λj

)∣∣∣∣ |ψ(λ)
j,k (t)|dt

+

∣∣∣∣f ( k

λj

)∣∣∣∣
∣∣∣∣∣
∫ k+1

λj

k

λj

ψ
(λ)
j,k (t)dt

∣∣∣∣∣
=

∫ k+1

λj

k

λj

∣∣∣∣f(t)− f
(
k

λj

)∣∣∣∣ |ψ(λ)
j,k (t)|dt+ 0, since

∫ k+1

λj

k

λj

ψ
(λ)
j,k dt = 0

= O

(
1

(λj)α

)∫ k+1

λj

k

λj

|ψ(λ)
j,k (t)|dt = O

(
1

(λj)α

)
1

λj/2
.

Next,

||RN (f)||22 =

∞∑
j=N

λj−1∑
k=0

| < f,ψ
(λ)
j,k > |

2 = O

(
1

λ2αN

)
.

Thus, ||RNf ||2 = O
(

1
λαN

)
. Thus Theorem 3.3 is completely established.

Theorem 3.4. Let ω(t) is a positive monotonic increasing function of t such that

f(x+ t)− f(x) = O(ω(t)|t|α), 0 < α < 1

and ω(t)|t|α → 0 as t → 0+. Then the wavelet approximation EN (f) of a function

f ∈ Lip(ω)α [0, 1) satisfies;

E
(4)
N (f) = min||f − PN (f)||2 = O

(
ω(1/λN )

λαN

)
and

||RN (f)||2 = ||
∞∑
j=N

λj−1∑
k=0

< f,ψ
(λ)
j,k > ψ

(λ)
j,k ||2 = O

(
ω(1/λN )

λαN

)
.

Proof. Following the proof of Theorem 3.1,

||ek(f)||22 = (f(ρk)− f(ζk))2
1

λN
. (3.10)

Since f ∈ Lip(ω)α [0, 1), therefore

|f(ρk)− f(ζk)| = O(ω(ρk − ζk)|ρk − ζk|α),∀ρk, ζk ∈
[
k

λN
,
k + 1

λN

)
. (3.11)
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Then from Eqs.(3.10) and (3.11), we have

||ek(f)||22 = O(ω(ρk − ζk)|ρk − ζk|α)2
1

λN
= O

(
ω(1/λN )

λαN

)2
1

λN
,

which leads to;

(E
(4)
N (f))2 =

λN−1∑
k=0

||ek(f)||22 =

λN−1∑
k=0

O

(
ω2(1/λN )

λ(2α+1)N

)
= O

(
ω2(1/λN )

µ2αN

)
.

Thus, E
(4)
N (f) = O

(
ω(1/λN )
λαN

)
.

Also,

||RN (f)||22 =

∞∑
j=N

λj−1∑
k=0

| < f, ψ
(λ)
j,k > |

2.

Since

< f,ψ
(λ)
j,k >=

∫ k+1

λj

k

λj

f(x)ψ
(λ)
j,k (t)dt.

Then,

| < f,ψ
(λ)
j,k > | ≤

∫ k+1

λj

k

λj

∣∣∣∣f(x)− f
(
k

λj

)∣∣∣∣ |ψ(λ)
j,k (t)|dt+

∣∣∣∣f ( k

λj

)∣∣∣∣ |∫ k+1

λj

k

λj

ψ
(λ)
j,k (t)dt|

≤
∣∣∣∣f(k + 1

λj

)
− f

(
k

λj

)∣∣∣∣ ∫ k+1

λj

k

λj

|ψ(λ)
j,k (t)|dt, by first mean value theorem

= O

(
ω(1/λj)

λαN

)∫ k+1

λj

k

λj

|ψ(λ)
j,k (t)|dt = O

(
ω(1/λj)

λαj

)
1

λj/2
.

Next,

||RN (f)||22 =

∞∑
j=N

λj−1∑
k=0

| < f,ψ
(λ)
j,k > |

2 = O

(
ω2
(

1
λN

)
λ2αN

)
.

Thus,

||RN (f)||2 = O

(
ω(1/λN )

λαN

)
.

This proves the Theorem 3.4.

4. Corollaries

Following corollaries are deduced from Theorem 3.4;

Corollary 4.1. If ω(t) = 1
tβ
, 0 < β < α ≤ 1, i.e.,

|f(x+ t)− f(x)| = O(|t|α−β), 0 < β < α ≤ 1
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then the wavelet approximation EN (f) of f satisfies;

EN (f) = O

(
1

λ(α−β)N

)
and ||RN (f)||2 = O

(
1

λ(α−β)N

)
.

Proof: Proof of the Cor.4.1 can be developed parallel to the proof of Theorem 3.4 by taking
ω(t) = 1

tβ
, 0 < β < α ≤ 1,∀t ∈ (0, 1).

Corollary 4.2. If f ∈ Lip(ω)α [0, 1) and

f(t) =

2N−1∑
k=0

< f, φN,k > φN,k(t) +

∞∑
j=N

2j−1∑
k=0

< f,ψj,k > ψj,k(t),

where φN,k(t) = 2N/2φ(2N t− k) and ψj,k(t) = 2j/2ψ(2jt− k) then

EN (f) = O

(
ω(1/2N )

2αN

)
and ||RN (f)||2 = O

(
ω(1/2N )

2αN

)
.

Proof: Proof of the Cor.4.2 can be obtained following the same lines of the proof of
Theorem 3.4.

Corollary 4.3. If f ∈ Lipα[0, 1) and

f(t) =

2N−1∑
k=0

< f, φN,k > φN,k(t) +

∞∑
j=N

2j−1∑
k=0

< f,ψj,k > ψj,k(t),

where φN,k and ψj.k are defined as Cor.4.2 then

EN (f) = O

(
1

2αN

)
and ||RN (f)||2 = O

(
1

2αN

)
.

Proof: Proof of Cor.4.3 is very trivial.

5. Remark

Remark 5.1. Christensen([9], p.126) proved;

Theorem 5.2. If x0 ∈ [0, 1]−Q and f = χ[0,x0] then

||f− < f, χ[0,1) > χ[0,1) −
J−1∑
j=0

2j−1∑
n=0

< f, ψj,n > ψj,n||2 = O

(
1

2J/2

)
.

Remark 5.3. Walnut([16], Lemma(5.37), p.135) proved the following Lemma;

Theorem 5.4. Given f(x) ∈ C0
c on R,then limN→∞||PN (f)− f ||2 = 0.

Remark 5.5. Let f(t) = t, ∀t ∈ [0, 1). Then f ∈ Lip1[0, 1].

||f ||22 =

∫ ∞
−∞
|f(t)|2dt =

∫ 1

0

t2dt =
1

3
. (5.1)

Thus f ∈ L2[0, 1). Then wavelet series of f using generalized Haar scaling function φ(λ)

and generalized Haar wavelet ψ(λ) is given by

f(t) =

λN−1∑
k=0

< f, φ
(λ)
N,k > φ

(λ)
N,k(t) +

∞∑
j=N

λj−1∑
k=0

< f,ψ
(λ)
j,k > ψ

(λ)
j,k (t).



A note on wavelet approximation ... 1691

By orthogonality of ψ
(λ)
j,k , we have

||f ||22 =

λN−1∑
k=0

| < f, φ
(λ)
N,k > |

2 +

∞∑
j=N

λj−1∑
k=0

| < f,ψ
(λ)
j,k > |

2. (5.2)

Now,

< f, φ
(λ)
N,k >=

∫ k+1

λN

k

λN

f(t)φ
(λ)
N,k(t)dt =

∫ k+1

λN

k

λN

tλN/2φ(λN t−k)dt =
1

λ3N/2

(
k +

1

2

)
.

Then,

λN−1∑
k=0

| < f, φ
(λ)
N,k > |

2 =

λN−1∑
k=0

1

λ3N

(
k +

1

2

)2

=
1

3
− 1

12

1

λ2N
. (5.3)

Now,

< f,ψ
(λ)
j,k >=

∫ k+1

λj

k

λj

f(t)ψ
(λ)
j,k (t)dt =

∫ k+1

λj

k

λj

tλj/2ψ(λjt− k)dt = −1

4

1

λ3j/2
.

Next,

∞∑
j=N

λj−1∑
k=0

| < f, ψ
(λ)
j,k > |

2 =

∞∑
j=N

λj−1∑
k=0

1

16

1

λ3j
=

1

16

1

λ2N

(
λ2

λ2 − 1

)
. (5.4)

Substituting values from Eqs.(5.3) and (5.4) in Eq.(5.2), we have

λN−1∑
k=0

| < f, φ
(λ)
N,k > |

2 +

∞∑
j=N

λj−1∑
k=0

| < f,ψ
(λ)
j,k > |

2 =
1

3
− 1

12

1

λ2N
+

1

16

(
λ2

λ2 − 1

)
1

λ2N

=
1

3
− 1

λ2N

[
1

12
− 1

16

(
µ2

λ2 − 1

)]
≤ 1

3
= ||f ||22.

Thus the series

λN−1∑
k=0

| < f, φ
(λ)
N,k > |

2 +

∞∑
j=N

λj−1∑
k=0

| < f,ψ
(λ)
j,k > |

2

is convergent and

λN−1∑
k=0

| < f, φ
(λ)
N,k > |

2 +

∞∑
j=N

λj−1∑
k=0

| < f,ψ
(λ)
j,k > |

2 ≤ ||f ||22.



1692 Thai J. Math. Vol. 20 (2022) /S. Lal and P. Kumari

6. Conclusions

1. Theorem 5.2 (Christensen[9] p.126) and Theorem 5.4 (Walnut[16] Lemma 5.37,
p.135) are particular cases of our Theorem 3.4.

2. E
(1)
N (f) = O

(
1

λN/2

)
→ 0 as N →∞,

E
(2)
J (f) = O

(
1

λ(J+1)/2

)
→ 0 as J →∞,

E
(3)
N (f) = O

(
1

λαN

)
→ 0 as N →∞,

E
(4)
N (f) = O

(
ω( 1

λN
)

λαN

)
→ 0 as N →∞.

Then wavelet approximation E
(1)
N (f), E

(2)
J (f), E

(3)
N (f) and E

(4)
N (f) are best

possible in wavelet analysis(Zygmund[19]).

3. f(t) =
µN−1∑
k=0

< f, φ
(λ)
N,k > φ

(λ)
N,k(t) +

∞∑
j=N

µj−1∑
k=0

< f,ψ
(λ)
j,k > ψ

(λ)
j,k (t).

f(t) = (PNf)(t) + (RNf)(t), i.e., f(t)− (PNf)(t) = (RNf)(t).

Researchers have estimated either ||f − PN (f)||2 or ||RN (f)||2 for wavelet
estimation EN (f) for very easy functions under uncomplicated supposition. In
this paper, in Theorems 3.1, 3.3 and 3.4, ||f − PN (f)||2 and ||RN (f)||2 are
calculated by slightly different methods and their estimates are same. This is
a remarkable achievement of this research paper in approximation of functions in
wavelet theory.
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