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Abstract The key aim of the present work is to study the fractional differential equations (FDEs)

pertaining to generalized fractional operators in Fp,ν space. First, we derive the Laplace transform of

the generalized fractional operators in terms of generalized modified Bessel function type transform L(σ)
α,β

in Fp,ν space. The results obtained are used to solve the FDEs involving constant as well as variable

coefficients in Fp,ν space. Due to the general nature of M-S-M integral operators many new and useful

special cases of the key results can be obtained.
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1. Introduction and Definitions

It is known that there exists a clear structural and spatial interpretation for the inte-
gral derivatives and integrations. However, unlike the integer-order calculus. Fractional
calculus represents a rapidly growing field both in theoretical and in applied aspects to
scientific and engineering problems, it is not so. Arbitrary ordered derivatives and inte-
grals offer an outstanding instrument for the illustrations of memory effects along with
hereditary properties of different materials and processes in this reference one can see the
work conducted by Miller and Ross [1], Podlubny [2], Srivastava et al. [3, 4], Singh et al.
[5], Choudhary et al. [6], Zhao et al. [7], etc.
Motivated by the well proven ability for their uses in significant investigation areas such
as mathematical biology, biomedical engineering, and statistical sciences. The primary
aim of this work is to study the applications of fractional differential equations with aid

*Corresponding author. Published by The Mathematical Association of Thailand.
Copyright c© 2022 by TJM. All rights reserved.



1670 Thai J. Math. Vol. 20 (2022) /M.K. Bansal et al.

of the M-S-M arbitrary-order integral operator.
We recall here fractional integral operators [8, 9] involving Appell’s hypergeometric func-
tion F3 (see details, [10, p. 23, Eq. 4]) as defined as below:(

Iα,β,σ,δ,η0,u ψ
)

(u) =
u−α

Γ(η)

u∫
0

(u− v)η−1v−βF3

(
α,β,σ, δ;η; 1− v

u
, 1− u

v

)
ψ(v)dv,

(u > 0 and α,β,σ, δ,η ∈ C, R(η) > 0) (1.1)

and (
Iα,β,σ,δ,ηu,∞ ψ

)
(u) =

u−β

Γ(η)

∞∫
u

(v − u)η−1v−αF3

(
α,β,σ, δ;η; 1− u

v
, 1− v

u

)
ψ(v)dv,

(u > 0 and α,β,σ, δ,η ∈ C, R(η) > 0) (1.2)

given that the above integrand is existing.
We recall here classical definition of Riemann-Liouville (RL) fractional operators [1, 11, 12]
defined by:

(Jρa+ψ)(u) =
1

Γ(ρ)

∫ u

a

ψ(t)

(u− t)1−ρ
dt,

(
<(ρ) > 0

)
(1.3)

and

(Dρ
a+ψ)(u) =

(
d

du

)n

(Jn−ρa+ ψ)(u),
(
<(ρ) > 0; n = [<(ρ)] + 1), (1.4)

where [.] is the greatest integer function.
Hilfer fractional derivative operator [13] is more generalization of R-L and Caputo oper-
ator which is defined by:

(Dρ,κ
a+ ψ)(u) =

(
J
κ(1−ρ)
a+

d

du

(
J
(1−κ)(1−ρ)
a+ ψ

))
(u), (0 < ρ < 1, 0 ≤ κ ≤ 1).

(1.5)

If κ = 0 and κ = 1, then (1.5) reduces into R-L operator (1.4) and Caputo Operator [12],
respectively.
The following result is recalled (see, for details, [14] and [15]):

L[(Dρ,κ
a+ ψ)(u)](s) =sρL[ψ(u)](s)− s−κ(1−ρ)

(
J
(1−κ)(1−ρ)
0+ ψ

)
(0+),(

<(s) > 0; 0 < ρ < 1
)
. (1.6)

The Fp,ν space [16–18] is defined by

Fp,ν =

{
g ∈ C∞0 (R+) : xk

dk

dxk
(x−νg(x)) ∈ Lp(R+)(k ∈ N0)

}
, (1.7)

where

(ν ∈ C, 1 ≤ p ≤ ∞).

The modified Bessel-type integral transform L(β)
γ,σ is given by [19, p.159, Eq.(4.1)](

L(σ)
α,βg

)
(u) =

∞∫
0

λ
(σ)
α,β(uw)g(w)dw, (1.8)



Fractional Differential Equations Associated ... 1671

where λ
(σ)
α,β(w) is an extension of modified Bessel function of the third kind, which was

given by Kilbas et al. [20]

λ
(σ)
α,β(w) =

σ

Γ(α+ 1− 1/σ)

∞∫
1

(tσ − 1)α−1/σtβe−wtdt, (1.9)

(
σ > 0; <(β) >

1

σ
− 1; β ∈ R; <(w) > 0

)
.

Bonilla et al.[21] used this kind of function to give the solutions of certain homogeneous
FDEs and Volterra integral equations.
The H-function is given by [22, p. 10]:

Hm,n
p,q [w] = Hm,n

p,q

w
∣∣∣∣∣∣

(ej ,Ej)1,p

(fj ,Fj)1,q

 = Hm,n
p,q

w
∣∣∣∣∣∣

(e1,E1), · · · , (ep,Ep)

(f1,F1), · · · , (fq,Fq)


=

1

2πi

∫
L

Θ(s)ws ds. (1.10)

In Eq. (1.10), the value of Θ(s) is expressed as

Θ(s) =

m∏
j=1

Γ(fj − Fjs)
n∏
j=1

Γ(1− ej + Ejs)

q∏
j=m+1

Γ(1− fj + Fjs)
p∏

j=n+1

Γ(ej − Ejs)

, (1.11)

and the set of conditions and details are given in the text book [12, 22].

2. Classical Transform of the Generalized Fractional
Operator in Terms of Generalized Modified Bessel Function
Type Transform

Laplace transforms (LT) of a function ϕ(z) is presented as [23]

L[ϕ(u)](s) =

∞∫
0

e−suϕ(u)du, R(s) > 0, (2.1)

provided that the existence conditions for the integral (2.1) are satisfied. Now, we present
the integral transform result for the generalized fractional operator in terms of extended
modified Bessel function type transform.

Theorem 2.1. If u > 0,R(s) > 0, α,η,β,σ, ρ, δ ∈ C and R(η) > 0. Then, the LT
of generalized fractional operator in terms of generalized modified Bessel function type
transform is given as follows:

L
[
uρ−1

(
Iα,β,σ,δ,η0,u ψ

)
(u)
]

(s)

=

∞∑
m,n=0

(α)m(β)n(σ)m(δ)n
m!n!

(−1)nsα+β−ρ−η+1 (Lm−ρ+α,β−η−mψ) (s), (2.2)

where ψ ∈ Fp,ν.
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Proof. To establish (2.2), first, Laplace transform of (1.1), is taken and following (say
∆(s)) is obtained:

∆(s) =

∫ ∞
0

e−suuρ−1

 u−α

Γ(η)

u∫
0

(u− v)η−1v−βF3

(
α,β,σ, δ; η; 1 − v

u
, 1 − u

v

)
ψ(v)dv

 du.
Further, Appell’s Function F3 is expressed in series and then the order of series and u, v-

integrals is interchanged (the conditions stated permit such an interchange), following is
obtained:

∆(s) =

∞∑
m,n=0

(α)m(β)n(σ)m(δ)n
Γ(η)(η)m+nm!n!

(−1)n
∞∫
0

v−β−nψ(v)

×
[∫ ∞

v

e−suuρ−α−m−1(u− v)η+m+n−1du

]
dv.

Next step involves evaluation of the resulting z-integral using [24, p.348, Eq.(4.11)]

∆(s) =

∞∑
m,n=0

(α)m(β)n(σ)m(δ)n
m!n!

(−1)n

×
∞∫
0

e−
sv
2 v−β−nψ(v)s−

ρ−α+η+n
2 v

ρ−α+η+n−2
2 Wρ−α−η−2m−n

2 , 1−ρ+α−η−n
2

(sv)dv.

Further, using the result [22, p. 18, Eq. (2.6.7)], following is obtained:

∆(s) =

∞∑
m,n=0

(α)m(β)n(σ)m(δ)n
m!n!

(−1)nsα+β−ρ−η+1

×
∞∫
0

H2,0
1,2

sv
∣∣∣∣∣∣

(η− β+ m, 1)

(−β− n, 1), (η+ ρ− α− β, 1)

 ψ(v)dv.

Now, with the aid of result [20, p.155, Eq.(2.6)], following equation is got:

∆(s) =

∞∑
m,n=0

(α)m(β)n(σ)m(δ)n
m!n!

(−1)nsα+β−ρ−η+1

∞∫
0

λm−ρ+α,β−η−m(sv)ψ(v)dv.

Finally, making use of [20, p.151, Eq.(1.1)], the require result is obtained:

3. Solutions of FDEs Involving M-S-M Operator

The FDEs associated with the M-S-M operator (1.1) are given by Theorem 3.1 and
Theorem 3.2 and solutions of these theorems are given in Fp,ν space.

Theorem 3.1. If τ > 0, α,η,β,σ, δ ∈ C and R(η) > 0. Then the solution of the
following FDE with Hilfer fractional derivative

(Dµ,νy) (τ) = λτρ−1
(
Iα,β,σ,δ,η0,τ 1

)
+ψ(τ), (3.1)
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with initial condition (IC)(
J
(1−ν)(1−µ)
0+ y

)
(0+) = C (3.2)

is presented as

y(τ) =
Cτµ+ν(1−µ)−1

Γ(µ+ ν(1− µ))
+ λ∆

τµ+ρ+η−α−β−1

Γ(µ+ ρ+ η− α− β)
+

1

Γ(µ)

τ∫
0

(τ− t)µ−1ψ(t)dt,

where

∆ =
Γ(1 + η− α− β− σ)Γ(1 + δ− β)Γ(ρ+ η− α− β)

Γ(1 + δ)Γ(1 + η− α− β)Γ(1 + η− β− σ)
. (3.3)

Proof. Taking the LT on the both sides of (3.1), we obtain

sµy(s) − Cs−ν(1−µ) =λs−ρ−η+α+β Γ(1 + η− α− β− σ)Γ(1 + δ− β)Γ(ρ+ η− α− β)

Γ(1 + δ)Γ(1 + η− α− β)Γ(1 + η− β− δ)
+ ψ̄(s)

or

y(s) = Cs−µ−ν(1−µ) + λs−µ−ρ−η+α+β∆ + s−µψ̄(s).

Now, on taking the inverse LT, we get

y(τ) =
Cτµ+ν(1−µ)−1

Γ(µ+ ν(1− µ))
+ λ∆

τµ+ρ+η−α−β−1

Γ(µ+ ρ+ η− α− β)
+

1

Γ(µ)

τ∫
0

(τ− t)µ−1ψ(t)dt,

which is the solution of (3.1) for y ∈ Fp,ν.

Theorem 3.2. If τ > 0, α,η,β,σ, δ ∈ C and R(η) > 0. Then, the solution of the
following FDE with Hilfer fractional derivative

τ
(
Dµ,ν

0+ y
)

(τ) = λτρ−1
(
Iα,β,σ,δ,η0,τ 1

)
(τ), (3.4)

with initial condition(
J
(1−ν)(1−µ)
0+ y

)
(0+) = C (3.5)

is written as

y(τ) =
Cτµ+ν(1−µ)−1

Γ(µ+ ν(1− µ))
+ λ∆′

τµ+ρ+η−α−β−2

Γ(µ+ ρ+ η− α− β− 1)
+
C2τ

µ−1

Γ(µ)
,

where

∆′ =
Γ(1 + η− α− β− σ)Γ(1 + δ− β)Γ(ρ+ η− α− β)

Γ(1 + δ)Γ(1 + η− α− β)Γ(1 + η− β− σ)(−ρ− η+ α+ β+ 1)
. (3.6)

Proof. Taking the LT of (3.4), we obtain

d

ds

(
sµy(s)− Cs−ν(1−µ)

)
= λ∆s−ρ−η+α+β.

Now integrate on the both side, we get

sµy(s) = Cs−ν(1−µ) + λ∆
s−ρ−η+α+β+1

(−ρ− η+ α+ β+ 1)
+ C2
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or

y(s) = Cs−µ−ν(1−µ) + λ∆′s−µ−ρ−η+α+β+1 + C2s
−µ.

where ∆′ is defined in (3.6) and taking the inversion of LT, we get

y(τ) =
Cτµ+ν(1−µ)−1

Γ(µ+ ν(1− µ))
+ λ∆′

τµ+ρ+η−α−β−2

Γ(µ+ ρ+ η− α− β− 1)
+
C2τ

µ−1

Γ(µ)
,

which is the solution of (3.4) for y ∈ Fp,ν.

Setting ν = 0 in Eq. (3.1), we find the below result:

Corollary 3.3. If τ > 0, α,η,β,σ, δ ∈ C and R(η) > 0. Then the solution of the
following FDE with Riemann-Liouville (RL) fractional derivative

(Dµy) (τ) = λτρ−1
(
Iα,β,σ,δ,η0,τ 1

)
(τ) +ψ(τ), (3.7)

with initial condition(
J
(1−µ)
0+ y

)
(0+) = C (3.8)

is given by

y(τ) =
Cτµ−1

Γ(µ)
+ λ∆

τµ+ρ+η−α−β−1

Γ(µ+ ρ+ η− α− β)
+

1

Γ(µ)

τ∫
0

(τ− t)µ−1ψ(t)dt,

where ∆ is given in (3.3).

Setting ν = 0 in Eq. (3.4), we find the subsequent result:

Corollary 3.4. If τ > 0 and α,η,β,σ, δ ∈ C, R(η) > 0. Then the solution of the
following FDE with RL fractional derivative

τ (Dµy) (τ) = λτρ−1
(
Iα,β,σ,δ,η0,τ 1

)
(τ), (3.9)

with initial condition(
J
(1−µ)
0+ y

)
(0+) = C (3.10)

is given by

y(τ) =
Cτµ−1

Γ(µ)
+ λ∆

τµ+ρ+η−α−β−2

Γ(µ+ ρ+ η− α− β− 1)
+
C2τ

µ−1

Γ(µ)
,

where ∆′ is given in (3.6).

Taking ν = 1 in Eq. (3.1), we achieve the below result:

Corollary 3.5. If τ > 0, α,η,β,σ, δ ∈ C and R(η) > 0. Then, the solution of the
following FDE with Caputo fractional derivative

(Dµy) (τ) = λτρ−1
(
Iα,β,σ,δ,η0,τ 1

)
(τ) +ψ(τ) (3.11)

with initial condition

y(0) = C (3.12)
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is given by

y(τ) = C + λ∆
τµ+ρ+η−α−β−1

Γ(µ+ ρ+ η− α− β)
+

1

Γ(µ)

τ∫
0

(τ− t)µ−1ψ(t)dt,

where ∆ is given in (3.3).

Taking ν = 1 in Eq. (3.4), we achieve the below result:

Corollary 3.6. If τ > 0, α,η,β,σ, δ ∈ C and R(η) > 0. Then, the solution of the
following FDE with Caputo fractional derivative

τ
(
Dµ

0+y
)

(τ) = λτρ−1
(
Iα,β,σ,δ,η0,τ 1

)
(τ), (3.13)

with initial condition

y(0) = C (3.14)

is expressed as

y(τ) = C + λ∆′
τµ+ρ+η−α−β−2

Γ(µ+ ρ+ η− α− β− 1)
+
C2τ

µ−1

Γ(µ)
,

where ∆′ is given in (3.6).

Remark : If we specialize the operator Iα,β,σ,δ,η0,τ involved in the right hand side of (3.1)

and (3.4) to Saigo operator. We obtain interesting unknown special cases of Theorems
3.1-3.2.

4. Conclusion

The generalized fractional operators defined by (1.1) and (1.2) are very general in
nature and generalize a lot of known fractional integral operators. Further solution of
Fractional differential equations associated with M-S-M fractional integral operator have
been obtained in Fp,ν space. Therefore, it can be winded up that the solution obtained
in this paper are very important with respect to physical mathematical problems and can
lead to interpretation of many physical phenomena.
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