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Abstract The transformation-based methods are indeed the convenient ways for constructing a new

copula using known copulas. In this research, we characterize linear rational transformations for mul-
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the bivariate case. We found that this type of transformations extended naturally for the multivariate

quasi-copulas. Yet, the only linear rational transformation of multivariate copulas is the identity function
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such sets in the case of the trivariate product copula.
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1. Introduction

One of the important problems in statistics, especially in the probability theory, is to
describe the intercorrelation between random variables. To tackle these problems, the
concept of a copula was first introduced by Abe Sklar during his research in the 1950s,
and this concept is known as Sklar’s theorem. The theorem states that each joint distri-
bution function can be represented by composing a multivariate copula with univariate
marginal distribution functions, see for example [1]. In detail, a copula can be viewed as
a multivariate distribution function for which each random variable has a uniform distri-
bution on [0, 1].

Since resources available for analyzing tremendous amounts of data are often limited,
the concepts of copulas are widely studied in various fields such as finance, risk man-
agement [2], hydrology [3], and recently machine learning [4]. These came from the
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application of Sklar’s theorem as it can conveniently perform the multivariate modeling
by considering a copula and marginal distribution functions separately.

Later, more general concepts of a copula, a quasi-copula, were proposed in [5] in order
to study the behavior of operations on distribution functions that are associated with
operations on random variables [6]. Also, another concrete usage of quasi-copulas is their
application in the areas of fuzzy logic and fuzzy preference modeling [7].

In addition, we can conclude from [8] that for a set of non-empty multivariate func-
tions S that shares a common domain D, the pointwise infimum and supremum, which
are given by

S(u1, ..., uk) = inf{S(u1, ..., uk) : S ∈ S}

and

S(u1, ..., uk) = sup{S(u1, ..., uk) : S ∈ S}

are the best possible point wise bounds for S. Note that, neither S nor S is necessary in
S. Moreover, S and S of a set of copulas are quasi-copulas.

Unfortunately, finding the appropriate (quasi-)copulas to a given statistical model ob-
taining from experiments can sometimes be complicated. To deal with such a situation,
several methods of constructing different (quasi-)copula families were presented, for in-
stance, the inversion method, the geometric method, and the gluing method [1, 9].

The construction methods that we focus on in this research are the transformation-
based methods that can yield a new (quasi-)copula by transforming known (quasi-)copulas.
In 2013, Kolesrov et al. [10] proved that for any copula C : [0, 1]2 → [0, 1], the function
DC : [0, 1]2 → [0, 1], given by

DC = C(x, y)(x+ y − C(x, y))

is a copula. After that, [11] noted that the mentioned transformation can be considered
a subcase of the transformation KP : [0, 1]2 → [0, 1] under the quadratic polynomial P
given by

KP,C(x, y) = P (x, y, C(x, y)).

They also gave the conditions required of P that make KP,C still a copula. Later, [12]
extended the results to the transformation K ′P,C1,C2

: [0, 1]2 → [0, 1] by composing one
more copula to the extended quadratic polynomial P , given by

K ′P,C1,C2
(x, y) = P (x, y, C1(x, y), C2(x, y))

where C1, C2 are copulas. A short time later, [13] extended the result from the previous
results to the transformation ζP ′,C1,...,Ck

: [0, 1]2 → [0, 1] under any polynomial P ′, given
by

ζP ′,C1,...,Ck
(x, y) = P ′(x, y, C1(x, y), ..., Ck(x, y))

for any bivariate copula C1, ..., Ck.
Quasi-copulas and copulas can also be seen as special types of aggregation functions.

In [14], transformations for semi-copulas and quasi-copulas via quadratic functions P are
studied as special types of transformations of aggregation functions. Formally, for a given
P : [0, 1]3 → R, they study a transformation τP , given by

τP (A)(x, y) = P (x, y,A(x, y))
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where x, y ∈ [0, 1] and for A : [0, 1]2 → R. Also, they gave necessary conditions of the
coefficients of P so that τP transforms semi-copulas to semi-copulas and quasi-copulas to
quasi-copulas, respectively.

We define Sk,Qk as a class of k-variate semi-copulas and k-variate quasi-copulas, re-
spectively. In [15], they study a transformation τP , given by

τP (A)(x1, ..., xn) = P (x1, ..., xn, A(x1, ..., xn))

which is a multivariate version of the study in [14]. They showed that τP transforms
aggregation functions if and only if P itself is an aggregation function. (For the charac-
terization of such quadratic polynomial P , see [16].) They also characterized quadratic
polynomial P for which τP transforms semi-copulas and quasi-copulas. It follows from
their characterization that for the multivariate case where k > 2, τP (Sk) ⊆ Sk if and only
if τP (Qk) ⊆ Qk. Note that this result is not true for the bivariate case. Later, [17] con-
sidered the case of multivariate transformations and characterized quadratic polynomial
P such that

τP (S1, ..., Sk)(x1, ..., xn) = P (x1, ..., xn, S1(x1, ..., xn), ..., Sk(x1, ..., xn)).

is a semi-copula transformation. However, no analogous result is given for quasi-copulas.
It can be seen that all of these transformations focus on polynomial functions, espe-

cially quadratic polynomials. Other types of functions can also be considered. Actually,
[20] considered the affine rational transformation of copulas and quasi-copulas. They
characterized affine rational transformations of both copulas and quasi-copulas, showing
that transformations of both cases are the same. To date, no study has been done for the
multivariate case. Thus, we are curious to find out whether or not these properties still
hold true under similar rational transformations for copulas and quasi-copulas in higher
dimensions.

2. Preliminaries

A function Q : [0, 1]k → R is said to be Lipschitz if

|Q(x1, ..., xk)−Q(y1, ..., yk)| ≤
k∑
i=1

|xi − yi|

for all xi, yi ∈ [0, 1]. Also, the volume of Q over a box
∏k
i=1[ai, bi] ⊆ [0, 1]k is defined via

VQ

(
k∏
i=1

[ai, bi]

)
=

∑
~x∈

∏k
i=1{ai,bi}

(−1)N((a1,...,ak),~x)Q(~x)

where N((a1, ..., ak), (x1, ..., xk)) is the number of i such that ai = xi.

Definition 2.1. A function Q : [0, 1]k → [0, 1] is said to be a k-dimensional quasi-copula
if Q satisfies the following conditions:

(1) Q is grounded, that is, Q(x1, ..., xi−1, 0, xi+1, ..., xk) = 0 for all xi ∈ [0, 1] and for
every i = 1, 2, ..., k ;

(2) Q has uniform marginals, that is, C(1, ..., 1, x, 1, ..., 1) = x for all x ∈ [0, 1];
(3) Q is increasing in each place; and
(4) Q is Lipschitz.
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A k-dimensional copula is a function C : [0, 1]k → [0, 1], which is grounded, has

uniform marginals and satisfies the k-increasing property, that is VC

(∏k
i=1[ai, bi]

)
≥ 0

for all
∏k
i=1[ai, bi] ⊆ [0, 1]k.

Notice that for a continuously differentiable function Q, Q is increasing in each place
and satisfies the Lipschitz condition if and only if 0 ≤ ∂iQ ≤ 1 for all i = 1, . . . , k.

Consider the following functions defined on [0, 1]k to the set of real number:

(1) Wk(x1, ..., xk) = max{0,
k∑
i=1

xi − k + 1}; and

(2) Mk(x1, ..., xk) = min{x1, ..., xk},
both Wk and Mk are quasi-copulas. Also,

Wk(x1, ..., xk) ≤ Q(x1, ..., xk) ≤Mk(x1, ..., xk)

for all x1, . . . , xk ∈ [0, 1] and all k-dimensional quasi-copulas Q. The function Wk is called
the Frechet-Hoeffding lower bounds and the function Mk is called the Frechet-Hoeffding
upper bounds, see for example [15] for more information. We note that the Frechet-
Hoeffding lower bound Wk is not a copula if its dimension k is greater than 2.

Consider, a product function Π : [0, 1]k → R is given by

Π(x1, ..., xk) = x1 · · ·xk is a copula.

In fact, Π is known as the (k-dimensional) product copula for more details, see [18].
For an absolutely continuous function C : [0, 1]k → [0, 1],

VC

(
k∏
i=1

[ai, bi]

)
=

∫
∏k

i=1[ai,bi]

∂1 · · · ∂kC(~x)d~x (2.1)

for all
∏k
i=1[ai, bi] ⊆ [0, 1]k. In particular, C is k-increasing if and only if its density

∂1 · · · ∂kC ≥ 0 a.e. We note here that the latter is usually easier to check than the former.
This includes, for example, the Frechet-Hoeffding bounds. However, the density of the
considered copula is not necessary to exist. Therefore, in order to show that all linear
rational transformations of copulas are still satisfied the k-increasing property, we show
that their k-mixed derivative (density) is non-negative whenever they exist. After that,
we use the denseness property in the set of copulas to guarantee this must also holds for
all copulas.

2.1. Bernstein Polynomials

Another key concept we used in this work came from [19]. The m-th degree Bernstein
polynomial bi,m : [0, 1]→ R, which is defined by

bi,m(t) =

(
m

i

)
ti(1− t)m−i

where i = 0, 1, ...,m. We extend this to Bki,m : [0, 1]k → R by taking i to be a multi-index,
i = (i1, .., ik), where each ij ∈ {0, 1, ...,m} and setting

Bki,m(x) = bi1,m(x1) · · · bik,m(xk)
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where x = (x1, ..., xk) ∈ [0, 1]k. If f : [0, 1]k → R, we define the Bernstein approximation
to f to be

Bkm(f) =
∑
i

f

(
i

m

)
Bki,m

where i ranges over all multi-indices i = (i1, ..., ik) such that each ij ∈ {0, 1, ...,m}, and

by i
m we mean the vector ( i1m , ...,

ik
m ).

From now on, we denote Ck, Qk as the set of k-variate copulas and the set of k-variate
quasi-copulas, respectively.

Theorem 2.2. [19] If f : [0, 1]k → R is continuous, then Bnm(f)→ f uniformly on [0, 1]k

as m→∞. Moreover, if C ∈ Ck, then Bkm(C) ∈ Ck.

Notice that ∂1 · · · ∂kBkm(C) exists and is continuous for all copula C. We also prove the
next Theorem by adjusting Theorem 2.2 for the purpose of applying in the quasi-copulas.

Theorem 2.3. Let Q ∈ Qk and Qm = Bkm(Q). Then Qm is a quasi-copula. Moreover,
Qm → Q as m→∞ and each ∂lQm exists and is continuous.

3. Results

In this work, we will characterize affine rational transformations F (C) of multivariate
(quasi-)copulas C given in the form

F (C) (x1, . . . , xk) =
a0 +

∑k
i=1 aixi + ak+1C (x1, . . . , xk)

b0 +
∑k
i=1 bixi + bk+1C (x1, . . . , xk)

where x1, . . . , xk ∈ [0, 1]. A special case of the above transformation is the transformation
Fλ (C) given by

Fλ (C) (x1, . . . , xk) =
C (x1, . . . , xk)

1− λ+ λ
∑k
i=1 (1− xi) + λC (x1, . . . , xk)

where x1, . . . , xk ∈ [0, 1]. It has been proved in [20] for the case k = 2, that is, for the
bivariate case, that F is a transformation of (quasi-)copulas if and only if it is equal
to Fλ for some λ ∈ [0, 1]. Thus, it is interesting to know whether this result still hold
in the multivariate setting. First, we will show that at least the form of affine rational
transformations remains unchanged when the dimension k varies.

3.1. The affine rational transformation of quasi-copulas

Theorem 3.1. Assume that F (C) is a (quasi-)copula for all copula C : [0, 1]k → [0, 1].
Then F = Fλ for some λ ∈ R.

Proof. We first consider the grounded property, by plugging xi = 0 to F (C) separately
for all i = 1, ..., k. We obtain that a1x1 = ... = akxk for all x1, ..., xk ∈ [0, 1]. That is
a1 = ... = ak = 0. Next, substitute the coefficients ai = 0 back to the equation yields
a0 = 0. Thus, F (C) must be in the form

F (C)(x1, ..., xk) =
ak+1C (x1, . . . , xk)

b0 +
∑k
i=1 bixi + bk+1C (x1, . . . , xk)
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In order for F (C) to be a (quasi-)copula, we must have ak+1 > 0. Thus, we can let

b̂i = bi
ak+1

for all i = 0, 1, ..., k + 1 and write

F (C)(x1, ..., xk) =
C (x1, . . . , xk)

b̂0 +
∑k
i=1 b̂ixi + b̂k+1C (x1, . . . , xk)

By the uniform marginals of F (C), we substitute xi = 1 for all i = 1, ..., k to get

b̂0 + b̂1 + · · ·+ b̂k+1 = 1

and substitute xi = 1 for all i = 1, ..., k such that i 6= l for every l = 1, ..., k to get

b̂0 +
∑
i 6=l

b̂i +
(
b̂l + b̂k+1

)
xl = 1.

We get b̂1 = ... = b̂k = −b̂k+1. This would imply b̂0 = 1 + (k − 1)b̂k+1. Finally, take

λ = b̂k+1 and then substitute all these back to the F (C) yields F = Fλ for some λ ∈ R
as desired.

Next, we will investigate the possible range of λ. The idea is to recursively shown that
the range of possible λ decrease as the dimension k increases. Again, Ck is the set of
k-variate copulas and Qk is the set of k-variate quasi-copulas.

Theorem 3.2. For any λ, if Fλ (Ck+1) ⊆ Qk+1, then Fλ (Ck) ⊆ Qk. In particular, we
must have 0 ≤ λ ≤ 1.

Proof. Let C ∈ Ck. Define

π̂k (C) (x1, . . . , xk, xk+1) = xk+1C (x1, . . . , xk) .

We see that π̂k(C) ∈ Ck+1. Also, define

πk (D) (x1, . . . , xk) = D (x1, . . . , xk, 1)

for all D ∈ Ck+1. Again, πk (D) is always a copula. Moreover,

πkFλπ̂k(C)(x1, ..., xk) =
1 · C(x1, ..., xk)

1− λ+ λ
∑k
i=1(1− xi) + 0 + λ · 1 · C(x1, ..., xk)

.

Therefore, Fλ(C) = πkFλπ̂k(C) ∈ Qk. This concludes that Fλ(Ck+1) ⊆ Qk+1 implies
Fλ(Ck) ∈ Qk.

By induction, Fλ(Ck) ⊆ Qk would imply Fλ(C2) ⊆ Q2. The latter is only true when
0 ≤ λ ≤ 1.

Henceforth, we will denote γ (x1, . . . , xk) =
∑k
i=1 (1− xi) so that we may simply write

Fλ (C) =
C

1 + λ (γ + C − 1)

for all quasi-copula C. Next, we will show that 0 ≤ λ ≤ 1 is sufficient to guarantee that
Fλ(Qk) ⊆ Qk for all k ≥ 2. The proof will be based on the following lemmas.

Lemma 3.3. For any 0 ≤ λ ≤ 1 and any quasi-copula(copula) C, the range of Fλ (C) is
in the unit interval [0, 1].



Affine Rational Transformations of Copulas and Quasi-Copulas 1655

Proof. Since 1 − λ, λγ and λC are non-negative, (1 − λ) + λγ + λC ≥ 0. This implies
1+λ (γ + C − 1) ≥ 0 for all x1, ..., xk ∈ [0, 1]. Now, we assume that 1+λ (γ + C − 1) = 0
for some x1, ..., xk ∈ [0, 1]. Since 1− λ, λγ and λC are non-negative, 1− λ = 0, λγ = 0,
and λC = 0. Thus, (1− λ) + λγ + λC = 0. That is, γ = 0 and C = 0 simultaneously, a
contradiction. That is, 1 + λ (γ + C − 1) > 0 for all x1, ..., xk ∈ [0, 1].

Next, we will show that C ≤ 1 + λ (γ + C − 1) for any λ ∈ [0, 1]. First, if λ = 1, we
automatically obtain the result. After that, we consider the case 0 ≤ λ < 1. We have
that (1− λ)C ≤ 1− λ for all x1, ..., xk ∈ [0, 1]. We have that

(1− λ)C ≤ 1− λ
≤ 1− λ+ λγ

C ≤ 1 + λ (γ + C − 1)

Therefore, 0 ≤ C

1 + λ (γ + C − 1)
≤ 1 for all x1, ..., xk ∈ [0, 1] .

Now, we are in a position to prove the first main result.

Theorem 3.4. If 0 ≤ λ ≤ 1, then Fλ (Qk) ⊆ Qk for all integer k > 1.

Proof. We note that

∂iFλ (C) = Fλ (C)

(
∂iC

C
+

λ (1− ∂iC)

1 + λ (γ + C − 1)

)
.

Next, we denote Gλ (C) = ∂iC
C + λ(1−∂iC)

1+λ(γ+C−1) . Then Gλ (C) is non-decreasing in λ ≥ 0

since both (1− ∂iC) and (γ + C − 1) are non-negative. Thus, G0 (C) ≤ Gλ (C) ≤ G1 (C).
Also, Fλ (C) is non-increasing in λ ≥ 0 so that F1 (C) ≤ Fλ (C) ≤ F0 (C). It follows that

∂iFλ (C) ≥ F1 (C)G0 (C) =
∂iC

γ + C
≥ 0

and

∂iFλ (C) ≤ F0 (C)G1 (C)

= ∂iC +
(1− ∂iC)C

γ + C

≤ ∂iC + (1− ∂iC)

= 1

for all quasi-copula C such that ∂iC exists. Thus, Fλ (C) must be a quasi-copula for such
C. By Theorem 2.3, the result must holds for all quasi-copula and we are done.

Example 3.5. Johnson and Kott [21] denote a FGM copula by

Cθ(x1, x2, x3) = x1x2x3(1 + θ(1− x1)(1− x2)(1− x3))

where θ ∈ [−1, 1]. The transformation FλCθ of the mentioned FGM copula is in the form

x1x2x3(1 + θ(1− x1)(1− x2)(1− x3))

1 + 2λ− λ(x1 + x2 + x3) + λx1x2x3(1 + θ(1− x1)(1− x2)(1− x3))
.

It follows that FλCθ is a quasi-copula for all 0 ≤ λ ≤ 1 for all θ ∈ [−1, 1].
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3.2. The iterations of quasi-copulas transformation

We define the iterations Fnλ (C), which is defined recursively by Fn+1
λ := Fnλ ◦Fλ where

F 1
λ := Fλ for all n ≥ 1. Also, for any k-variable continuous functions f, g : [0, 1]k → [0, 1],

we define d∞(f, g) by

d∞(f, g) := sup
~x∈[0,1]k

|f(~x)− g(~x)|.

Theorem 3.6. Let 0 < λ ≤ 1. Then for every Q ∈ Qk where k ≥ 2 we have that
limn→∞ d∞(FnλQ,W ) = 0. Moreover, Fλ has W as the unique fixed point where W is the
Frechet-Hoeffding lower bound of Q.

Proof. We will first show that for Q ∈ Qk,

d∞(FλQ,W ) ≤ d∞(Q,W )

1 + λd∞(Q,W )
.

Before moving to the next step, it is followed from the definition of d∞(FnλQ,W ) that

Q−W ≤ d∞(FnλQ,W ).

Since
x

1 + λx
is increasing over x for any λ ∈ [0, 1], we have

Q−W
1 + λ(Q−W )

≤ d∞(Q,W )

1 + λd∞(Q,W )
.

By mathematical induction, we have

d∞(FnλQ,W ) ≤ d∞(Q,W )

1 + nλd∞(Q,W )
.

for all n ≥ 2.
Thus, lim

n→∞
d∞(FnλQk,W ) = 0. Moreover, if C is any fixed point of Fλ, we get that

d∞(FλC,W ) = d∞(C,W ) ≤ d∞(C,W )

1 + λd∞(C,W )
which is only possible when d∞(C,W ) = 0.

That is C = W .

Now, we are in a position to prove that Fλ is not a multivariate copula transformation
unless λ = 0. Therefore, the class of affine linear transformations of multivariate quasi-
copulas is different from the class of affine linear transformations of multivariate copulas.
Thus, the situation is different from what happens in the bivariate case.

Theorem 3.7. Fλ is not a multivariate copula transformation unless λ = 0.

Proof. Assume that Fλ is a multivariate copula transformation. By Theorem 3.2, λ ≥ 0.
Suppose that λ > 0. Then by mathematical induction, Cn = Fnλ (Π) is a copula for all n.
However, Cn → W by Theorem 3.6. Since the space of copula is complete, W must also
be a multivariate copula. However, W is not a copula which leads to a contradiction.

The above result states that Fλ(C) is not necessary a copula when C is a copula but
this is not a guarantee either. In general, the range of λ for which Fλ(C) is a copula with
depends on C and has to be analyzed case by case and it could also be very complicated.
We demonstrate this for C = Π in the next section.
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3.3. The affine transformation of a product copula with the suitable

range of λ

Theorem 3.8. Let Π (x, y, z) = xyz for all x, y, z ∈ [0, 1] and λ ≥ 0. Then Fλ (Π) is
copula if and only if λ ≤ 1

4 .

Proof. Denote qλ = Π/Fλ (Π), that is,

qλ (x, y, z) = 1 + λ (2− x− y − z + xyz)

so that

q4λ∂z∂y∂xFλ (Π) = 1 + 2β (x, y, z)λ+ γ (x, y, z)λ2 + 2α (x, y, z)λ3

where

β (x, y, z) = 3− x− y − z − 2xyz,

γ (x, y, z) = 12− 8x− 8y − 8z + x2 + y2 + z2 + 4xy + 4xz + 4yz − 16xyz

+ 4x2yz + 4xy2z + 4xyz2 + x2y2z2

and

α (x, y, z) = 4− 4x− 4y − 4z + x2 + y2 + z2 + 4xy + 4xz + 4yz − x2y − x2z
− xy2 − y2z − xz2 − yz2 − 8xyz + 4x2yz + 4xy2z + 4xyz2 − 2x2y2z

− 2x2yz2 − 2xy2z2 + x2y2z2.

If Fλ (Π) is a copula, then ∂z∂y∂xFλ (Π) ≥ 0 on [0, 1]
3
. In particular,

1− 4λ = ∂z∂y∂xFλ (Π) (1, 1, 1) ≥ 0

which yields λ ≤ 1
4 as desired.

Now, we will prove the sufficiency. Notice that

α (x, y, z) = (1− x)
2

(1− y)
2

(1− z)2 + (1− x) (1− y) (1− xy)

+ (1− x) (1− z) (1− xz) + (1− y) (1− z) (1− yz)
≥ 0

for all x, y, z ∈ [0, 1]. Thus,

q4λ∂z∂y∂xFλ (Π) ≥ 1 + 2β (x, y, z)λ+ γ (x, y, z)λ2. (3.1)

For x, y, z ∈ [0, 1] such that γ (x, y, z) ≥ 0,

q4λ∂z∂y∂xFλ (Π) ≥ 1 + 2β (x, y, z)λ.

Since the right side is a linear function of λ, its minimum occurs at the end points -
either λ = 0 or λ = 1

4 . If the minimum occurs at λ = 0, then clearly, ∂z∂y∂xFλ (Π) ≥ 0.
Otherwise,

q4λ∂z∂y∂xFλ (Π) ≥ 1 +
1

2
β (x, y, z)

= 1 +
1

2
(3− x− y − z − 2xyz)

≥ 1 +
1

2
(−2)

≥ 0

which also implies ∂z∂y∂xFλ (Π) ≥ 0.
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For x, y, z ∈ [0, 1] such that γ (x, y, z) < 0, the right side of the equation , considered as
a function of λ, is a downward parabola. Thus, its minimum again occurs at the end points
- eitherλ = 0 or λ = 1

4 . If the minimum occurs at λ = 0, then again, ∂z∂y∂xFλ (Π) ≥ 0.
Otherwise,

16q4λ∂z∂y∂xFλ (Π) ≥ 16

(
1 + 2β (x, y, z)

(
1

4

)
+ γ (x, y, z)

(
1

4

)2
)

= x2y2z2 + 4x2yz + 4xy2z + 4xyz2 − 32xyz + x2 + y2 + z2

+ 4xy + 4yz + 4xz − 16x− 16y − 16z + 52

= (7− xyz) (1− xyz) + 4xy (1− z)2 + 4xz (1− y)
2

+ 4yz (1− x)
2

+ (15− x) (1− x) + (15− y) (1− y) + (15− z) (1− z)
≥ 0

which again implies ∂z∂y∂xFλ (Π) ≥ 0.
In any case, we have ∂z∂y∂xFλ (Π) ≥ 0 as desired.

4. Conclusion and discussion

We are about to conclude our work throughout the report in this section. Durante et al.
[20], characterized the linear rational transformation T (C) of a bivariate (quasi-)copula
C : [0, 1]2 → [0, 1], given in the form

T (C)(x, y) =
a0 + a1x+ a2y + a3C(x, y)

b0 + b1x+ b2y + b3C(x, y)

where ai, bi ∈ R, for i = 0, 1, 2, 3. For the set of all bivariate quasi-copula Q and all
bivariate copula C, they showed that T (Q) ⊆ Q if and only if T (C) ⊆ C if and only if
T = Tλ, λ ∈ [0, 1], where

Tλ(C)(x, y) =
C(x, y)

1− λ+ λ(2− x− y) + λC(x, y)

for any copula(quasi-copula) C. They also showed that the bivariate Frechet-Hoeffding
lower bound is the unique fixed point of Tλ for all 0 < λ ≤ 1. Moreover, they showed
that the iterations Tnλ (C) that is defined recursively by Tn+1

λ := Tnλ ◦ Tλ where T 1
λ := Tλ

for all n ≥ 1 tends to the bivariate Frechet-Hoeffding lower bound as n tends to infinity.
We note that the bivariate Frechet-Hoeffding lower bound is a copula.

In our works, we extend the previous result to a transformation for a multivariate
(quasi-)copula C given in the form

F (C) (x1, . . . , xk) =
a0 +

∑k
i=1 aixi + ak+1C (x1, . . . , xk)

b0 +
∑k
i=1 bixi + bk+1C (x1, . . . , xk)

where x1, . . . , xk ∈ [0, 1] and ai, bi ∈ R for i = 0, ..., k. We successfully show that all
multivariate quasi-copula transformations must be in the form

Fλ (C) (x1, . . . , xk) =
C (x1, . . . , xk)

1− λ+ λ
∑k
i=1 (1− xi) + λC (x1, . . . , xk)

where x1, . . . , xk ∈ [0, 1] and λ ∈ [0, 1]. This result is analogous to the bivariate case.
However, we found that the only way F is a multivariate copula transformation is that
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F = F0. In other words, the only multivariate copula linear rational transformation is
the trivial identity transformation. This is different from what happen in the bivariate
case. Actually, this follows from the fact that the multivariate Frechet-Hoeffding lower
bound is not a copula and the fact that the multivariate Frechet-Hoeffding lower bound
is the unique fixed point of Fλ for all 0 < λ ≤ 1.

The above fact implies that Fλ(C) might not be a copula even though C is a copula.
Nevertheless, Fλ(C) might still be a copula for some specific copula C. We demonstrate
this point by consider the transformation of the trivariate product copula Π. We show
that Fλ(Π) is a copula when 0 ≤ λ ≤ 1

4 .
To go further, the next problem we are interested in is finding the suitable range of

λ that makes Fλ(C) still a copula for the specific copula C. However, this might be
challenging due to several complicated tasks. One is to find the necessary and sufficient
conditions of a given copula and how it interacts with the range of λ. The next step is
to prove that the volume is still non-negative whenever each variable varies in [0, 1], as
you can see as the variable increases, the more difficult to prove that the volume is still
non-negative. It might be interesting if we found a suitable family of copulas such that
the range of λ for the transformation of this family does not decrease to zero when the
dimension tends to infinity.
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