Infinite Families of Congruences Modulo 5 for Ramanujan's General Partition Function

Jubaraj Chetry ${ }^{1}$ and Nipen Saikia ${ }^{2, *}$
${ }^{1}$ Department of Mathematics, Paschim Dhemaji College, Assam, India, Pin-787053
e-mail: jubarajchetry470@gmail.com
${ }^{2}$ Department of Mathematics, Rajiv Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh, India, Pin-791112.
e-mail : nipennak@yahoo.com

Abstract

For any non-negative integer n and non-zero integer r, let $p_{r}(n)$ denote Ramanujan's general partition function. By employing q-identities, we prove some new Ramanujan-type congruences modulo 5 for $p_{r}(n)$ for $r=-(5 \lambda+1),-(5 \lambda+3),-(5 \lambda+4),-(25 \lambda+1),-(25 \lambda+2)$, and any integer λ.

MSC: 11P82; 11P83
Keywords: Ramanujan's general partition function; partition congruence; q-identities.

Submission date: 29.12.2019 / Acceptance date: 04.06.2022

1. Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers, called parts, whose sum equals n. For example, $n=3$ has three partitions, namely,

$$
3, \quad 2+1, \quad 1+1+1
$$

If $p(n)$ denote the number of partitions of n, then $p(3)=3$. The generating function for $p(n)$ is given by

$$
\sum_{n=0}^{\infty} p(n) q^{n}=\frac{1}{(q ; q)_{\infty}}, \quad p(0)=1
$$

where, here and throughout this paper

$$
(a ; q)_{\infty}=\prod_{k=1}^{\infty}\left(1-a q^{k-1}\right), \quad|q| \leq 1 .
$$

Ramanujan [1, 2] proved following beautiful congruences for $p(n)$:

$$
p(5 n+4) \equiv 0 \quad(\bmod 5), p(7 n+5) \equiv 0 \quad(\bmod 7), \text { and } p(13 n+6) \equiv 0 \quad(\bmod 11)
$$

[^0]In a letter to Hardy written from Fitzroy House late in 1918 [3, p. 192-193], Ramanujan introduced the general partition function $p_{r}(n)$ for integers $n \geq 0$ and $r \neq 0$ as

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{r}(n) q^{n}=\frac{1}{(q ; q)_{\infty}^{r}}, \quad|q|<1 \tag{1.1}
\end{equation*}
$$

In order to describe the partition function $p_{r}(n)$, we first give the notion of colour partition. A part in a partition of n is said to have r colours if there are r copies of each part available and all of them are viewed as distinct objects.

Now, for $r>1, p_{r}(n)$ denotes the number of partitions of n where each part may have r distinct colours. For example, if each part in the partitions of 3 have two colours, say red and green, then the number of two colour partitions of 3 is 10 , namely

$$
\begin{aligned}
& 3_{r}, \quad 3_{g}, \quad 2_{r}+1_{r}, \quad 2_{r}+1_{g}, \quad 2_{g}+1_{g}, \quad 2_{g}+1_{r}, \\
& 1_{r}+1_{r}+1_{r}, \quad 1_{g}+1_{g}+1_{g}, \quad 1_{r}+1_{g}+1_{g}, \quad 1_{r}+1_{r}+1_{g} .
\end{aligned}
$$

Thus, $p_{2}(3)=10$. For $r=1, p_{1}(n)$ is the usual partition function $p(n)$ which counts the number of unrestricted partitions of a non-negative integer n. Gandhi [4] studied the colour partition function $p_{r}(n)$ and found Ramanujan-type congruences for certain values of r. For example, he proved that

$$
p_{2}(5 n+3) \equiv 0 \quad(\bmod 5)
$$

and

$$
p_{8}(11 n+4) \equiv 0 \quad(\bmod 11)
$$

Newman [5] also found some congruences for colour partition. Recently, Hirschhorm [6] found congruences for $p_{3}(n)$ modulo higher powers of 3 .

If $r<0$, then

$$
p_{r}(n)=\left(p_{r}(n, e)-p_{r}(n, o)\right),
$$

where $p_{r}(n, e)$ (resp. $\left.p_{r}(n, o)\right)$ is the number of partitions of n with even (resp. odd) number of distinct parts and each part have r colours. For example, if $n=5$ and $r=-1$ then $p_{-1}(5, e)=2$ with relevant partitions $4+1$ and $3+2$, and $p_{-1}(5, o)=1$ with the relevant partition 5. Thus, $p_{-1}(5)=2-1=1$. Similarly, we see that $p_{-2}(3)=4-2=2$. The case $r=-1$ is the famous Euler's pentagonal number theorem.

Ramanujan [3] showed that, if λ is a positive integer and \bar{w} is a prime of the form $6 \lambda-1$, then

$$
p_{-4}\left(n \bar{w}-\frac{(\bar{w}+1)}{6}\right) \equiv 0 \quad(\bmod \bar{w}) .
$$

Ramanathan [7], Atkin [8], and Ono [9]. Baruah and Ojah [10] also proved some congruences for $p_{-3}(n)$. Recently, Baruah and Sharma [11] proved some arithmetic identities and congruences of $p_{r}(n)$ for some particular negative values of r. Saikia and Chetry [12] also proved infinite families of congruences modulo 7 of $p_{r}(n)$ for negative values of r.

In this paper, we prove some new Ramanujan-type congruences modulo 5 for $p_{r}(n)$ for $r=-(5 \lambda+1),-(5 \lambda+3),-(5 \lambda+4),-(25 \lambda+1)$, and $-(25 \lambda+2)$, where λ is any integer, by employing some q-identities. In particular, we prove the following infinite families of congruences modulo 5 for the $p_{r}(n)$:

Theorem 1.1. For any integer λ and $\ell=3,4$, we have

$$
p_{-(5 \lambda+1)}(5 n+\ell) \equiv 0 \quad(\bmod 5) .
$$

Theorem 1.2. For any integer λ and $\ell=2,3,4$, we have

$$
p_{-(5 \lambda+3)}(5 n+\ell) \equiv 0 \quad(\bmod 5) .
$$

Theorem 1.3. For any integer λ, we have

$$
p_{-(5 \lambda+4)}(5 n+4) \equiv 0 \quad(\bmod 5) .
$$

Theorem 1.4. For any integer λ and $\ell=1,2,3,4$, we have

$$
p_{-(25 \lambda+1)}(25 n+5 \ell+1) \equiv 0 \quad(\bmod 5) .
$$

Theorem 1.5. For any integer λ and $\ell=1,2,3,4$, we have

$$
p_{-(25 \lambda+2)}(25 n+5 \ell+2) \equiv 0 \quad(\bmod 5) .
$$

2. Preliminaries

To prove Theorems 1.1-1.5 we will employ some q-identities. Ramanujan [13] stated that, if

$$
R(q)=\frac{\left(q^{2} ; q^{5}\right)_{\infty}\left(q^{3} ; q^{5}\right)_{\infty}}{\left(q ; q^{5}\right)_{\infty}\left(q^{4} ; q^{5}\right)_{\infty}}
$$

then

$$
\begin{equation*}
(q ; q)_{\infty}=\left(q^{25} ; q^{25}\right)_{\infty}\left(R\left(q^{5}\right)-q-\frac{q^{2}}{R\left(q^{5}\right)}\right) \tag{2.1}
\end{equation*}
$$

Hirschhorn and Hunt [14, Lemma 2.2] proved that, if R is a series in powers of q^{5}, then

$$
\begin{equation*}
\eta=q^{-1} R-1-q R^{-1} \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta=\frac{(q ; q)_{\infty}}{q\left(q^{25} ; q^{25}\right)_{\infty}} \tag{2.3}
\end{equation*}
$$

From Hirschhorn and Hunt [14], we have

$$
\begin{equation*}
H_{5}(\eta)=-1, \quad H_{5}\left(\eta^{2}\right)=-1, \quad H_{5}\left(\eta^{3}\right)=5, \quad \text { and } \quad H_{5}\left(\eta^{4}\right)=-5 \tag{2.4}
\end{equation*}
$$

where H_{5} is an operator which acts on series of positive and negative powers of a single variable, and simply picks out the term in which the power is congruent to 0 modulo 5 .

Note: Here we replaced the symbol H in [14] by H_{5}.
Lemma 2.1. We have

$$
(q ; q)_{\infty}^{5} \equiv\left(q^{5} ; q^{5}\right)_{\infty} \quad(\bmod 5)
$$

Proof. This follows easily from the binomial theorem.
Lemma 2.2. [15, p. 53] We have

$$
(q ; q)_{\infty}^{3}=\sum_{k=0}^{\infty}(-1)^{k}(2 k+1) q^{k(k+1) / 2}
$$

3. Proof of Theorems 1.1-1.5

In this section, all congruences are to the modulus 5 .
Proof of Theorem 1.1: Setting $r=-(5 \lambda+1)$ in (1.1), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{-(5 \lambda+1)}(n) q^{n}=(q ; q)_{\infty}^{5 \lambda+1}=(q ; q)_{\infty}^{5 \lambda}(q ; q)_{\infty} \tag{3.1}
\end{equation*}
$$

Employing Lemma 2.1 and (2.1) in (3.1), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{-(5 \lambda+1)}(n) q^{n} \equiv\left(q^{5} ; q^{5}\right)_{\infty}^{\lambda}\left(q^{25} ; q^{25}\right)_{\infty}\left(R\left(q^{5}\right)-q-\frac{q^{2}}{R\left(q^{5}\right)}\right) \tag{3.2}
\end{equation*}
$$

Extracting the terms involving $q^{5 n+\ell}$, where $\ell=3,4$, in both sides of (3.2), we arrive at the desired result.

Proof of Theorem 1.2: Setting $r=-(5 \lambda+3)$ in (1.1), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{-(5 \lambda+3)}(n) q^{n}=(q ; q)_{\infty}^{5 \lambda+3}=(q ; q)_{\infty}^{5 \lambda}(q ; q)_{\infty}^{3} \tag{3.3}
\end{equation*}
$$

Employing Lemma 2.1 in (3.3), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{-(5 \lambda+3)}(n) q^{n} \equiv\left(q^{5} ; q^{5}\right)_{\infty}^{\lambda}(q ; q)_{\infty}^{3} \tag{3.4}
\end{equation*}
$$

Using Lemma 2.2 in (3.4), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{-(5 \lambda+3)}(n) q^{n} \equiv\left(q^{5} ; q^{5}\right)_{\infty}^{\lambda} \times \sum_{k=0}^{\infty}(-1)^{k}(2 k+1) q^{k(k+1) / 2} \tag{3.5}
\end{equation*}
$$

Since there exist no non-negative integer k such that $k(k+1) / 2$ is congruent to 2 or 4 modulo 5 , extracting the terms involving $q^{5 n+k}$, where $k=2,4$, in both sides of (3.5), we prove the cases $\ell=2$ and 4 , respectively.

Again, extracting the terms involving $q^{5 n+3}$ in both sides of (3.5) and noting $2 k+1 \equiv 0$ $(\bmod 5)$ for $k=2$, we arrive at the case $\ell=3$.

Proof of Theorem 1.3: Setting $r=-(5 \lambda+4)$ in (1.1), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{-(5 \lambda+4)}(n) q^{n}=(q ; q)_{\infty}^{5 \lambda+4}=(q ; q)_{\infty}^{5 \lambda}(q ; q)_{\infty}^{4} \tag{3.6}
\end{equation*}
$$

Employing Lemma 2.1 and (2.3) in (3.6), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{-(5 \lambda+4)}(n) q^{n} \equiv\left(q^{5} ; q^{5}\right)_{\infty}^{\lambda} \eta^{4} q^{4}\left(q^{25} ; q^{25}\right)_{\infty}^{4} \tag{3.7}
\end{equation*}
$$

Extracting the terms involving $q^{5 n+4}$ and using the operator H_{5} in (3.7), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{-(5 \lambda+4)}(5 n+4) q^{5 n+4} \equiv\left(q^{5} ; q^{5}\right)_{\infty}^{\lambda} H_{5}\left(\eta^{4}\right) q^{4}\left(q^{25} ; q^{25}\right)_{\infty}^{4} \tag{3.8}
\end{equation*}
$$

Using (2.4) in (3.8), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{-(5 \lambda+4)}(5 n+4) q^{5 n+4} \equiv(-5)\left(q^{5} ; q^{5}\right)_{\infty}^{\lambda} q^{4}\left(q^{25} ; q^{25}\right)_{\infty}^{4} \tag{3.9}
\end{equation*}
$$

Now the desired result follows from (3.9) and the fact that $5 \equiv 0(\bmod 5)$.
Proof of Theorem 1.4: Setting $r=-(25 \lambda+1)$ in (1.1), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{-(25 \lambda+1)}(n) q^{n}=(q ; q)_{\infty}^{25 \lambda+1}=(q ; q)_{\infty}^{25 \lambda}(q ; q)_{\infty} \tag{3.10}
\end{equation*}
$$

Employing Lemma 2.1 and (2.3) in (3.10), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{-(25 \lambda+1)}(n) q^{n} \equiv\left(q^{25} ; q^{25}\right)_{\infty}^{\lambda} \eta q\left(q^{25} ; q^{25}\right)_{\infty} \tag{3.11}
\end{equation*}
$$

Extracting the terms involving $q^{5 n+1}$ and using the operator H_{5} in (3.11), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{-(25 \lambda+1)}(5 n+1) q^{5 n+1} \equiv q\left(q^{25} ; q^{25}\right)_{\infty}^{\lambda+1} H_{5}(\eta) \tag{3.12}
\end{equation*}
$$

Using (2.4) in (3.12), dividing by q, and replacing q^{5} by q, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{-(25 \lambda+1)}(5 n+1) q^{n} \equiv(-1)\left(q^{5} ; q^{5}\right)_{\infty}^{\lambda+1} \tag{3.13}
\end{equation*}
$$

Extracting the terms involving $q^{5 n+\ell}$, where $\ell=1,2,3,4$, in both sides of (3.13), we arrive at the desired result.

Proof of Theorem 1.5: Setting $r=-(25 \lambda+2)$ in (1.1), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{-(25 \lambda+2)}(n) q^{n}=(q ; q)_{\infty}^{25 \lambda+2}=(q ; q)_{\infty}^{25 \lambda}(q ; q)_{\infty}^{2} \tag{3.14}
\end{equation*}
$$

Employing Lemma 2.1 and (2.3) in (3.14), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{-(25 \lambda+2)}(n) q^{n} \equiv\left(q^{25} ; q^{25}\right)_{\infty}^{\lambda} \eta^{2} q^{2}\left(q^{25} ; q^{25}\right)_{\infty}^{2} \tag{3.15}
\end{equation*}
$$

Extracting the terms involving $q^{5 n+2}$ and using the operator H_{5} in (3.15), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{-(25 \lambda+2)}(5 n+2) q^{5 n+2} \equiv q^{2}\left(q^{25} ; q^{25}\right)_{\infty}^{\lambda+2} H_{5}\left(\eta^{2}\right) \tag{3.16}
\end{equation*}
$$

Using (2.4) in (3.16), dividing by q^{2}, and replacing q^{5} by q, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{-(25 \lambda+2)}(5 n+2) q^{n} \equiv 1 \times\left(q^{5} ; q^{5}\right)_{\infty}^{\lambda+2} \tag{3.17}
\end{equation*}
$$

Extracting the terms involving $q^{5 n+\ell}$, where $\ell=1,2,3,4$, in both sides of (3.17), we arrive at the desired result.

Acknowledgements

The authors would like to thank the referee for his/her helpful comments.

References

[1] S. Ramanujan, Some properties of $p(n)$, the number of partition of n, Proceedings of the Cambridge Philosophical Society, 19 (1919) 207-210.
[2] S. Ramanujan, Congruence properties of partitions, Mathematische Zeitschrift, 9 (1921) 147-153.
[3] B.C. Berndt and R.A. Rankin, Ramanujan: Letters and Commentary, Providence, Rhode Island, 1995.
[4] J.M. Gandhi, Congruences for $p_{r}(n)$ and Ramanujan's τ function, The American Mathematical Monthly, 70 (1963) 265-274.
[5] M. Newman, Congruence for the coefficients of modular forms and some new congruences for the partition function, Canadian Journal of Mathematics, 9 (1957) 549-552.
[6] M.D. Hirschhorn, Partitions in 3 colours, The Ramanujan Journal, 45 (2018) 399-411
[7] K.G. Ramanathan, Identities and congruences of the Ramanujan type, Canadian Journal of Mathematics, 2 (1950) 168-178.
[8] A.O.L. Atkim, Ramanujan congruence for $p_{k}(n)$, Canadian Journal of Mathematics, 20 (1968) 67-78.
[9] K. Ono, Distribution of the partition function modulo m, Annals of Mathematics, 151 (1) (2000) 293-307.
[10] N.D. Baruah and K.K. Ojah, Some congruences deducible from Ramanujan's cubic continued fraction, International Journal of Number Theory, 7 (2011) 1331-1343.
[11] N.D. Baruah and B.K. Sarmah, Identities and congruences for the general partition and Ramanujan tau functions, Indian Journal of Pure and Applied Mathematics, 44 (5) (2013) 643-671.
[12] N. Saikia and J. Chetry, Infinite families of congruences modulo 7 for Ramanujans general partition function, Annales mathmatiques du Québec, 42 (2018) 127-132
[13] S. Ramanujan, Collected Papers, Chelsea, New York,1962.
[14] M.D. Hirschhorn and D.C. Hunt, A simple proof of Ramanujan conjecture for power of 5, Journal fur die Reine und Angewandte Mathematik, 326 (1981) 1-17.
[15] B.C. Berndt, Ramanujan's Notebooks, Part III. Springer-Verlag, New York, 1991.

[^0]: *Corresponding author.

