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Abstract In this paper, we obtain a characterization for QM(L(X )), the quasi-multiplier algebra of

L(X ), where X is a foundation hypergroup . It is shown that QM(L(X )) can be identified by M(X )

for this class of hypergroups. We also investigate quasi-multipliers on the second dual Banach algebra

Lc(X )∗∗. Indeed, we show that QM(Lc(X )∗∗) is isomorphic with M(X ). As an application, we prove

that QM(Lc(X )∗∗) = L(X ) if and only if X is discrete.
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1. Introduction

This paper is concerned with the space of separately continuous quasi-multipliers on
Banach algebras associated with hypergroups. Quasi-multipliers appeared as a general-
ization of the notion of multipliers in work of Akemann and Pedersen on C∗-algebras [1].
Indeed, Quasi-multipliers have been well interpreted as those elements of the enveloping
von Neumann algebra A∗∗ which are continuous on the set of states in A∗ with respect
to the weak∗-topology. McKennon later in [2], introduced a topology, finer than both the
topology of convergence of norms and weak∗-topology, on the space of quasi-multipliers of
a C∗-algebra A and deduced some basic characterizations. The notion of quasi-multiplier
was a cornerstone in many different subjects such as C∗-algebras, operator spaces, Hilbert
C∗-modules and Banach algebras, see [3], [4], [5] and [6] for more details. Motivated by
this, quasi-multipliers were first studied within the framework of Banach algebras with a
bounded approximate identity by K. McKennon [7].

*Corresponding author. Published by The Mathematical Association of Thailand.
Copyright c© 2022 by TJM. All rights reserved.



1576 Thai J. Math. Vol. 20 (2022) /A. Alinejad and M. Essmaili

Definition 1.1. For a Banach algebra A a bilinear map m : A × A −→ A is called a
quasi-multiplier if for all a, b, c, d ∈ A,

m(ab, cd) = am(b, c)d.

We note that the quasi-multiplier algebra of A is the set of all separately continuous
quasi-multipliers on A which is denoted by QM(A). In the case where A admits a
bounded approximate identity, it is shown in [7, Theorem 2] that QM(A) is a Banach
space with the norm defined by

‖m‖ = sup{‖m(a, b)‖ : a, b ∈ A, ‖a‖ = ‖b‖ = 1}.

Recall that an approximate identity (eα) in a Banach algebra A will be called an ultra-
approximate identity for A if for all m ∈ QM(A) and a ∈ A, the nets (m(eα, a)) and
(m(a, eα)) are ‖ · ‖-Cauchy.

For a locally compact Hausdorff group G, K. McKennon identified quasi-multipliers on
the group algebra L1(G). More precisely, it is proved in [7] that QM(L1(G)) is isomorphic
with the measure algebra M(G). Morover in [8], Vasudevan and Goel showed that for Ba-
nach algebra A with a bounded approximate identity QM(A) can be embedded into A∗∗.
This fact extended the well-known embedding of the left multipliers (right multipliers) of
A into A∗∗ [9]. More developments have arised by Grosser [10], Vasudevan and Goel and
Takahashi [11], Kassem and Rowlands [12], Lin [5], Argün and Rowlands [13]. Recently in
[14], Alinejad and Rostami obtained some results on quasi-multiplier of Banach algebras
related to locally compact semigroups. In this paper, we concentrate on some classes of
Banach algebras associated with hypergroups. The theory of hypergroups was initiataed
independently by Dunkl [15], Jewett [16], and Spector [17] in 1970’s. This theory has
received a good deal of attention from harmonic analysts. Ghahramani and Medghalchi
[18] investigated multipliers on Banach algebras associated with locally compact hyper-
groups and showed that for a foundation hypergroup X , the multiplier algebras of L(X )
is isomorphic with M(X ) [18, Proposition 1]. Moreover, they characterized compact mul-
tipliers on L(X ), see [18] and [19] for more details. Motivated by these facts, the present
paper is organized as follows:

In section 2, we characterize quasi-multipliers on L(X ), for a certain class of hyper-
groups X . As the main result, we prove that QM(L(X )) may be identified by M(X ).
Indeed, this fact improves an interesting result of McKennon [7, Corollary of Theorem
22] in the setting of locally compact groups to a more general setting of locally compact
hypergroups. In section 3, we concentrate on multiplier and quasi-multiplier algebra of
the second dual of hypergroup algebras. Precisely, we show that the multiplier and quasi-
multiplier algebra of Lc(X )∗∗ is isomorphic with M(X ) for certain hypergroups X . As a
consequence, we prove that QM(Lc(X )∗∗) = L(X ) if and only if X is discrete.

2. Quasi-multiplier Algebra of Hypergroup Algebras

We first remark some standard notations and definitions that we shall need. We
follow the hypergroup structure of Dunkl [15, Definition 1.1] without the commutativity
assumption, that is more general than that of Jewett [16].

Throughout the paper, X denotes a locally compact Hausdorff space, M(X ) is the
Banach space of all bounded complex-valued regular Borel measures on X with the total
variation norm and Mp(X ) is the set of all probability Borel Measures on X . Normally,
we devote the symboles Cb(X ), C0(X ), and Cc(X ) for the space of bounded continuous
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complex-valued functions on X , those that vanish at infinity, and those that have compact
support, respectively.

Definition 2.1. The space X is called a hypergroup if there is a map λ : X×X −→Mp(X )
with the following properties:

(i) the measures λ(x,y) have compact support for all x, y ∈ X .

(ii) for each f ∈ Cc(X ), the mapping (x, y) 7→
∫
X f(t) dλ(x,y)(t) is in Cb(X × X ),

and the mappings

x 7→
∫
X
f(t) dλ(x,y)(t), x 7→

∫
X
f(t) dλ(y,x)(t)

are in Cc(X ) for all y ∈ X .
(iii) the convolution (µ, ν) 7→ µ ∗ ν on M(X ) defined by∫

X
f(t) d(µ ∗ ν)(t) =

∫
X

∫
X

∫
X
f(t) dλ(x,y)(t) dµ(t) dν(t)

is associative, where f ∈ C0(X ), µ, ν ∈M(X ).
(iv) there is a unique point e ∈ X (say the identity) such that

λ(x,e) = δx = λ(e,x) (x ∈ X ),

where δx denotes the Dirac measure at x.

With the above definition, M(X ) can be regarded as a Banach algebra. Furthermore,
Ghahramani and Medghalchi in [18] defined L(X ) as a subalgebra M(X ), consisting of
all measures µ for which the mappings x 7→ |µ| ∗ δx and x 7→ δx ∗ |µ| from X to M(X )
are norm continuous. They have shown that L(X ) is a closed ideal in M(X ) and also
that if X admits a left invariant measure m, then L(X ) = L1(X ,m) [18, Remark 1]. The
hypergroup X is called foundation if

X =
⋃
{supp (µ) : µ ∈ L(X )}.

In this case, the Banach algebra L(X ) has a bounded approximate identity, see [18] and
[19]. We note that all hypergroups considered in this article are assumed to be foundation
hypergroups without left invariant Haar measure. In [18, Lemma 1], it is proved that the
Banach algebra L(X ) admits a bounded approximate identity with norm 1 carried by any
compact neiborhood of e.

In the following, we show that L(X ) possesses an ultra-approximate identity.

Theorem 2.2. Let X be a hypergroup. Then L(X ) admits an ultra-approximate identity.

Proof. Let (eα) be the bounded approximate identity for L(X ). Suppose that T is a left
multiplier of L(X ). By [18, Proposition 1], it follows that the multiplier algebra of L(X )
is isometrically isomorphic with M(X ). We consider µ ∈M(X ) such that

T (ν) = µ ∗ ν (ν ∈ L(X )).

Since L(X ) is an ideal in M(X ), then for all ν ∈ L(X ),

lim
α
‖ν ∗ T (µα)− ν ∗ µ‖ = lim

α
‖(ν ∗ µ)− (ν ∗ µ) ∗ µα‖ = 0.

Therefore, {ν ∗ T (µα)} is a Cauchy net in L(X ). For a right multiplier R of L(X ), it is
shown similarly that, for each ν ∈ L(X ), the net {R(µα) ∗ ν} is Cauchy in L(X ). Hence,
by [7, Theorem 8], we conclude that (eα) is an ultra-approximate identity and the proof
is complete.
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As a consequence of the above theorem and [7, Theorem 9], we give the following
prompt result.

Corollary 2.3. Let X be a hypergroup. Then QM(L(X )) is identified with M(X ).

For a Banach algebra A and continuous bilinear mapping m : A×A −→ A we construct
the maps m∗ : A∗ ×A −→ A∗ and mt

∗
: A×A∗ −→ A∗ as follows:

〈m∗(f, a), b〉 = 〈f,m(a, b)〉, 〈mt∗(a, f), b〉 = 〈f,m(b, a)〉,

for all a, b ∈ A and f ∈ A∗.
In the sequel, we give a characterization of quasi-multipliers of hypergroup algebras as

a generalization of Wendel’s theorem.

Theorem 2.4. Let X be a hypergroup. Then for a continuous bilinear mapping m : L(X )×
L(X ) −→ L(X ) the following statements are equivalent:

(i) m(µ′ ∗ µ, ν ∗ ν′) = µ′ ∗m(µ, ν) ∗ ν′ for all µ, µ′, ν, ν′ ∈ L(X ).
(ii) m(δx ∗ µ, ν ∗ δy) = δx ∗m(µ, ν) ∗ δy for all µ, ν ∈ L(X ) and x, y ∈ X .

(iii) m(µ′ ∗ µ, ν ∗ ν′) = µ′ ∗m(µ, ν) ∗ ν′ for all µ, ν ∈ L(X ) and µ′, ν′ ∈M(X ).
(iv) there exists ξ ∈ M(X ) such that m(µ, ν) = µ ∗ ξ ∗ ν for all µ, ν ∈ L(X ).

Moreover ‖m‖ = ‖ξ‖.

Proof. (i) ⇒ (ii): Let µ, ν ∈ L(X ) and x ∈ X and let (eα) be a bounded approximate
identity in L(X ). Then for all f ∈ C0(S) we have

〈m(δx ∗ µ, ν), f〉 = lim
α
〈eα ∗m(δx ∗ µ, ν), f〉

= lim
α
〈m(eα ∗ (δx ∗ µ), ν), f〉

= lim
α
〈m((eα ∗ δx) ∗ µ), ν), f〉

= lim
α
〈(eα ∗ δx) ∗m(µ, ν), f〉

= lim
α
〈eα ∗ (δx ∗m(µ, ν)), f〉

= 〈δx ∗m(µ, ν), f〉.

Hence, m(δx ∗ µ, ν) = δx ∗m(µ, ν). Similarly, we can show that

m(µ, ν ∗ δy) = m(µ, ν) ∗ δy (µ, ν ∈ L(X ), y ∈ X ),

and so the proof is complete.
(ii)⇒ (iii): Suppose that µ, ν ∈ L(X ) and µ′, ν′ ∈M(X ). Therefore,

〈f,m(µ′ ∗ µ, ν)〉 = 〈mt∗(ν, f), µ′ ∗ µ〉

=

∫
X
〈mt∗(ν, f), δx ∗ µ〉 dµ′(x)

=

∫
X
〈f,m(δx ∗ µ, ν)〉 dµ′(x)

=

∫
X
〈f, δx ∗m(µ, ν)〉 dµ′(x)

= 〈f, µ′ ∗m(µ, ν)〉,
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holds for all f ∈ C0(X ). Consequently, m(µ′∗µ, ν) = µ′∗m(µ, ν). Also for each f ∈ C0(X ),
we get,

〈f,m(µ, ν ∗ ν′)〉 = 〈m∗(f, µ), ν ∗ ν′〉

=

∫
X
〈m∗(f, µ), ν ∗ δy〉 dν′(y)

=

∫
X
〈f,m(µ, ν ∗ δy〉 dν′(y)

=

∫
X
〈f,m(µ, ν) ∗ δy〉dν′(y)

= 〈f,m(µ, ν) ∗ ν′〉.
Hence, m(µ, ν ∗ ν′) = m(µ, ν) ∗ ν′, for all µ, ν, ν′ ∈ L(X ).
(iii)⇒ (i): Since L(X ) ⊂M(X ), it is clear.
(i) ⇒ (iv): Let (eα) be a bounded approximate identity of norm 1 in L(X ). Since
m is jointly continuous [7, Theorem 1], without loss of generality, we may assume that
m(eα, eα) −→ ξ in the weak∗-topology. Therefore, we have

〈f,m(µ, ν)〉 = lim
α
〈f,m(µ ∗ eα, eα ∗ ν)〉

= lim
α
〈f, µ ∗m(eα, eα) ∗ ν〉

= lim
α
〈ν · f · µ,m(eα, eα)〉

= lim
α
〈ν · f · µ, ξ〉

= 〈f, µ ∗ ξ ∗ ν〉.
for all f ∈ C0(X ) and µ, ν ∈M(X ). This implies that m(µ, ν) = µ ∗ ξ ∗ ν. For the second
part, let ε > 0 be arbitrary. Then there exists an f ∈ C0(X ) such that ‖f‖ ≤ 1 and
‖ξ‖ − ε ≤ |〈ξ, f〉|. On the other hand,

|〈ξ, f〉| = | limα〈m(eα, eα), f〉|
≤ limα |〈m(eα, eα), f〉|

≤ ‖m‖.
By this fact, we immediately conclude that ‖m‖ = ‖ξ‖.

The implication (iv)⇒ (i) is straightforward.

Remark 2.5.
(i) Using the previous theorem we immediately conclude that for a locally compact

group G, m ∈ QM(L1(G)) if and only if there exists a measure µ ∈ M(G) such that
‖m‖ = ‖µ‖ and m(f, g) = f ∗ µ ∗ g, for all f, g ∈ L1(G).

(ii) We note that without the continuity of bilinear map m, the clauses (i), (iii) and
(iv) in Theorem 2.4 are again equivalent. Indeed, since L(X ) has a bounded approximate
identity it follows that the bilinear map m is automatically continuous, see [7, Theorem
1].

3. Some Results on Second Dual of Hypergroup Algebras

Let L(X )∗ and L(X )∗∗ be the first and second topological duals of L(X ), respectively,
and set B = L(X )∗ · L(X ). It is shown in [20] that B∗ is a Banach algebra equiped
with the first Arens product � and also L(X ) ⊆ B∗. Let ı : B −→ L(X )∗ be the natural
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embedding and also π : L(X )∗∗ −→ B∗ is the adjoint of ı. Then the quotient map π is
identity on L(X ) and it is a weak∗-weak∗ continuous homomorphism from L(X )∗∗ onto
B∗ [20]. Also, we have

F�G = F�π(G) (F,G ∈ L(X )∗∗).

We remark that C0(X ) ⊆ B and B∗ = M(X ) ⊕ C0(X )⊥, where the sum is the algebra
direct sum of the subspace M(X ) and the two sided ideal C0(X )⊥ defined by

C0(X )⊥ = {F ∈ B∗ : F
∣∣
C0(X ) = 0 }.

Definition 3.1. A compact set K ⊆ X is called a compact carrier for F ∈ L(X )∗∗ if we
have

〈F, f〉 = 〈F, fχK〉 (f ∈ L(X )∗),

where fχK ∈ L(X )∗ defined by 〈fχK , µ〉 = 〈f, µχK〉.

Now, we set

Lc(X )∗∗ = clL(X )∗∗{F ∈ L(X )∗∗ : F has compact carrier }.
If X = G is a locally compact group, then Lc(X )∗∗ = L∞0 (G)∗, where L∞0 (G) is the
introverted subspace of L∞(G) consisting of all f ∈ L∞(G) such that, for given ε > 0,
there is a compact subset K of X for which ‖g‖G\K ≤ ε; see also [21] and [22]. It is well
known that for a foundation hypergroup X , L(X ) is a two-sided closed ideal in Lc(X )∗∗

[20, Theorem 14(d)]. Furthermore, an easy application of the Goldstine’s theorem shows
that L(X ) is weak∗ dense in Lc(X )∗∗. It is worthwhile to mention that Medghalchi in
[20, Theorem 11] showed that

L(X )∗∗ = Lc(X )∗∗ ⊕ π−1(C0(X )⊥),

as Banach algebras. Moreover, it is proved that π(Lc(X )∗∗) = M(X ) [20, Proposition
13].

Definition 3.2. An element E ∈ Lc(X )∗∗ is called a mixed identity if

µ�E = E♦µ = µ (µ ∈ L(X ),

where ♦ denotes the second Arens product on Lc(X )∗∗.

Let X be a hypergroup. We denote by E(X ), the nonempty set of all mixed identities
of Lc(X )∗∗, and E1(X ), consisting of those with norm 1. Note that E ∈ E1(X ) if and
only if it is a weak∗-cluster point of an approximate identity in L(X ) bounded by one.
Moreover, when X is a hypergroup, and E is an element of Lc(X )∗∗ with norm 1, then E
is a mixed identity if and only if E is a right identity for Lc(X )∗∗ and π(E) = δe; that is,

F�E = F

for all F ∈ Lc(X )∗∗; see [20].
Let A be a Banach algebra and LM(A) and RM(A) denote the Banach algebra of left

and right multipliers on A, respectively. Define the linear isometry mapλ : LM(A) −→
QM(A) for each T ∈ LM(A) by

[λ(T )](x, y) = xT (y) (x, y ∈ A).

Similarly, the function ρ : RM(A) −→ QM(A) defined by

[ρ(T )](x, y) = T (x)y (x, y ∈ A),

is also a linear isometry [7, Theorem 4].
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First, we obtain a characterization of multiplier algebra of Lc(X )∗∗ as follows.

Proposition 3.3. Let X be a hypergroup. Then the multiplier algebra of Lc(X )∗∗ is
isomorphic with M(X ).

Proof. Let (eα) be a bounded approximate identity of L(X ) with norm 1. So, if we assume
that E is a weak∗ cluster points of (eα), then E is a right identity in Lc(X )∗∗. Now, let
T : Lc(X )∗∗ −→ Lc(X )∗∗ be a right multiplier. We conclude that

T (m) = T (m�E) = m�T (E) (m ∈ Lc(X )∗∗).

Now, it follows that

T (m) = m�n = m�π(n).

Now, we know that the algebra consisting of elements π(n) is exactly M(X ). On the other
hand, since M(X ) has an identity we conclude that the multiplier algebra of Lc(X )∗∗ is
M(X ).

Now, we are ready to characterize quasi-multipliers of the second dual Banach algebra
Lc(X )∗∗.

Theorem 3.4. Let X be a hypergroup. Then the quasi-multiplier algebra of Lc(X )∗∗ is
isomorphic with M(X ).

Proof. Since L(X ) has a bounded approximate identity so E1(X ) is a nonempty set. Let
E ∈ E1(X ) be a right identity of Lc(X )∗∗. For m ∈ QM(Lc(X )∗∗ define the linear operator
T : Lc(X )∗∗ −→ Lc(X )∗∗ by

T (F ) = m(E,F ) (F ∈ Lc(X )∗∗).

If F,G ∈ Lc(X )∗∗, then

T (F�G) = m(E,F�G)

= m(E,F )�G

= T (F )�G.

It follows that T ∈ LM(Lc(X )∗∗). Furthermore, for all F,G ∈ Lc(X )∗∗ we have

[λ(T )](F,G) = F�T (G)

= F�m(E,G)

= m(F�E,G)

= m(F,G).

Thus λ(T ) = m and hence λ is surjective. This implies that the quasi-multiplier algebra
of Lc(X )∗∗ is isomorphic to left multiplier algebra of Lc(X )∗∗. By using Proposition 3.3,
we conclude that the quasi-multiplier algebra of Lc(X )∗∗ is isomorphic with M(X ).

As a consequence, we obtain a necessary and sufficient condition for which the quasi-
multiplier algebra Lc(X )∗∗ is equal to L(X ).

Corollary 3.5. Let X be a hypergroup. Then the following assertions are equivalent.

(i) QM(Lc(X )∗∗) = L(X ).
(ii) X is discrete.
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Proof. Let X be discrete hypergroup. Thus by [20, Theorem 14(c)] we conclude that
M(X ) = Lc(X )∗∗ = L(X ). Now, it follows from Theorem 3.4 that

QM(Lc(X )∗∗) = M(X ) = L(X ).

Conversely, suppose that quasi-multiplier algebra of Lc(X )∗∗ is equal to L(X ). By
Theorem 3.4, we deduce that M(X ) = L(X ) and so X is discrete.

At the end, we obtain some results on the right annihilator of Lc(X )∗∗ which is denoted
by Annr(Lc(X )∗∗) and defined by

Annr(Lc(X )∗∗) = {R ∈ Lc(X )∗∗| Lc(X )∗∗�R = {0}}.

Let X be a hypergroup. Then Annr(Lc(X )∗∗) is exactly the weak∗-closed ideal

ker(π) = {F − E�F : F ∈ Lc(X )∗∗}

in Lc(X )∗∗ for all E ∈ E1(X ). Indeed, it follows immediately that if π(R) = 0 then R is a
right annihilator. If R is a right annihilator, then in particular µ�R = 0 for all µ ∈ L(X ).
So for f ∈ C0(X ) we have f = g · µ for some g ∈ L(X )∗ and µ ∈ L(X ). Thus,

〈π(R), f〉 = 〈π(R), g · µ〉
= 〈µ�π(R), g〉

= 0.

In the following, we show that the subspaces L(X ) and Annr(Lc(X )∗∗) are invariant with
respect to any quasi-multiplier on Lc(X )∗∗.

Theorem 3.6. Let X be a hypergroup and m : Lc(X )∗∗ × Lc(X )∗∗ −→ Lc(X )∗∗ be a
quasi-multiplier. Then the following statements hold:

(i) m(L(X )× L(X )) ⊆ L(X ).
(ii) m(Annr(Lc(X )∗∗)×Annr(Lc(X )∗∗)) ⊆ Annr(Lc(X ))∗∗).

Proof. (i) For each µ, µ′, ν, ν′ ∈ L(X ), we have

m(µ′ ∗ µ, ν ∗ ν′) = µ′�m(µ, ν)�ν′.

On the other hand, since L(X ) is an ideal in Lc(X )∗∗ and L(X )2 = L(X ) , it follows that
m(L(X )× L(X )) ⊆ L(X ).

(ii) Let R,S ∈ Annr(Lc(X )∗∗). Then we have

µ�m(R,S)�ν = m(µ�R,S�ν) = 0 (µ, ν ∈ L(X )).

Hence

L(X )�m(R,S)�L(X ) = 0.

On the other hand, since the map π : L(X )∗∗ −→ B∗ is a homomorphism and π acts as
the identity map on L(X ) we conclude that

L(X ) ∗ π(m(R,S)) ∗ L(X ) = 0.

Now, since L(X ) has a bounded approximate identity it follows that m(R,S) ∈ ker(π) =
Annr(Lc(X )∗∗), as required.
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