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1. Introduction

Let Pn denote the class of all complex polynomials of degree at most n and let k
be a positive real number. We denote Tk = {z : |z| = k}, Dk− = {z : |z| < k}, and
Dk+ = {z : |z| > k}. Consider a polynomial p(z) of degree n. In 1926, Bernstein [1]
presented the well-known inequality

max
|z|=1

|p′(z)| ≤ nmax
|z|=1

|p(z)|. (1.1)

Equality holds in (1.1) only for p(z) = azn where a 6= 0. If we restrict to the class of
polynomials having no zeros in D1−, inequality (1.1) can be sharpened. In fact, it was
conjectured by Erdős and later proved by Lax [2] that if p(z) has no zeros in D1−, then

max
|z|=1

|p′(z)| ≤ n

2
max
|z|=1

|p(z)|. (1.2)

For the class of polynomials having no zeros in D1+, Turán [3] proved that

max
|z|=1

|p′(z)| ≥ n

2
max
|z|=1

|p(z)|. (1.3)
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For aj ∈ C (1 ≤ j ≤ n), we let w(z) =

n∏
j=1

(z − aj) and

B(z) =

n∏
j=1

(
1− ajz
z − aj

)
, Rn = Rn(a1, a2, . . . , an) :=

{
p(z)

w(z)
: p ∈ Pn

}
.

The product B(z) is known as a Blaschke product. We can show that |B(z)| = 1 and
zB′(z)

B(z)
= |B′(z)| for z ∈ T1. Note that Rn is the set of rational functions with at most

n poles, a1, a2, . . . , an and with finite limit at infinity. For f defined on T1, we denote
||f || = supz∈T1

|f(z)|, the Chebyshev norm of f on T1. Throughout this paper, we always
assume that all poles a1, a2, . . . , an are in D1+.

In 1995, Li, Mohapatra, and Rodriguez [4] proved some inequalities similar to (1.2),
and (1.3) for rational functions. Among other things they proved the following results.

Theorem 1.1 ([4]). Let r ∈ Rn with all its zeros lying in T1 ∪D1+. Then for z ∈ T1,

|r′(z)| ≤ 1

2
|B′(z)| · ||r||. (1.4)

Equality holds for r(z) = aB(z) + b with |a| = |b| = 1.

Theorem 1.2 ([4]). Let r ∈ Rn, where r has exactly n poles at a1, a2, . . . , an and all its
zeros lie in T1 ∪D1−. Then for z ∈ T1,

|r′(z)| ≥
[

1

2
|B′(z)| − 1

2
(n− t)

]
· |r(z)|, (1.5)

where t is the number of zeros of r. Equality holds for r(z) = aB(z) + b with |a| = |b| = 1.

Remark 1.3. In particular, if r has exactly n zeros in T1 ∪ D1−, then inequality (1.5)
yields Bernstein-type inequality, for z ∈ T1,

|r′(z)| ≥ 1

2
|B′(z)||r(z)|. (1.6)

In 1997, inequalities (1.4) and (1.6) were improved by Aziz and Shah [5] under the
same hypothesis. They obtained the following theorems.

Theorem 1.4 ([5]). Let r ∈ Rn with all its zeros lying in T1 ∪D1+. Then for z ∈ T1,

|r′(z)| ≤ 1

2
|B′(z)| (||r|| −m) ,

where m = min
|z|=1

|r(z)|. Equality holds for r(z) = B(z) + heiα where h ≥ 1 and α is real.

Theorem 1.5 ([5]). Let r ∈ Rn , where r has exactly n zeros and all its zeros lie in
T1 ∪D1−. Then for z ∈ T1,

|r′(z)| ≥ 1

2
|B′(z)| (|r(z)|+m)

where m = min
|z|=1

|r(z)|. Equality holds for r(z) = B(z) + heiα where h ≤ 1 and α is real.

In 1999, Aziz and Zarger [6] considered a class of rational functions Rn not vanishing
in Dk−, where k ≥ 1 and established the following generalization of Theorem 1.1.
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Theorem 1.6 ([6]). Let r ∈ Rn with all its zeros lying in Tk ∪Dk+, where k ≥ 1. Then
for z ∈ T1,

|r′(z)| ≤ 1

2

[
|B′(z)| − n(k − 1)

k + 1
· |r(z)|

2

||r||2

]
· ||r||.

Equality holds for r(z) =

(
z + k

z − a

)n
and B(z) =

(
1− az
z − a

)n
evaluated at z = 1, where

a > 1, k ≥ 1.

In 2004, Aziz and Shah [7] considered a class of rational functions Rn not vanishing in
Dk+, where k ≤ 1 and they proved the following generalization of Theorem 1.2.

Theorem 1.7 ([7]). Let r ∈ Rn where r has exactly n poles at a1, a2, . . . , an and all its
zeros lie in Tk ∪Dk−, k ≤ 1. Then for z ∈ T1,

|r′(z)| ≥ 1

2

[
|B′(z)|+ 2t− n(1 + k)

1 + k

]
· |r(z)|,

where t is the number of zeros of r. Equality holds for r(z) =
(z + k)t

(z − a)n
and

B(z) =

(
1− az
z − a

)n
evaluated at z = 1, where a > 1, k ≤ 1.

As an immediate consequence of Theorem 1.7, they obtained the generalization of
inequality (1.6), where r has exactly n zeros in Tk ∪Dk−, with k ≤ 1.

Corollary 1.8 ([7]). Let r ∈ Rn with all its zeros lying in Tk ∪Dk−, where k ≤ 1. Then
for z ∈ T1,

|r′(z)| ≥ 1

2

[
|B′(z)|+ n(1− k)

1 + k

]
· |r(z)|.

Equality holds for r(z) =

(
z + k

z − a

)n
and B(z) =

(
1− az
z − a

)n
evaluated at z = 1, where

a > 1, k ≤ 1.

Next, we state our main results which generalize results by Aziz and Shah [5, 7] and
Aziz and Zarger [6]. Their proofs will be presented in section 3. The first theorem gives
an estimate of an upper bound of the modulus of the derivative of r(z) on the unit circle
when all zeros of r(z) lie in |z| ≥ k ≥ 1.

Theorem 1.9. Let r(z) = p(z)/w(z) ∈ Rn where p(z) is a polynomial of degree n and
all its zeros lie in Tk ∪Dk+, k ≥ 1. Then for z ∈ T1,

|r′(z)| ≤ 1

2

[
|B′(z)| − n(k − 1)(|r(z)| −m)2

(k + 1)(||r|| −m)2

]
(||r|| −m), (1.7)

where m = min
|z|=k

|r(z)|. Equality holds for r(z) =

(
z + k

z − a

)n
and B(z) =

(
1− az
z − a

)n
evaluated at z = 1, where a > 1, k ≥ 1.

In particular, for k = 1, Theorem 1.9 reduces to Theorem 1.4 and for m = 0, Theorem
1.9 reduces to Theorem 1.6.

The next theorem establishes an estimate of a lower bound of the modulus of the
derivative of r(z) on the unit circle when all zeros of r lie in |z| ≤ k ≤ 1.
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Theorem 1.10. Let r ∈ Rn, where r has exactly n poles at a1, a2, . . . , an and all its
zeros lie in Tk ∪Dk−, k ≤ 1. Then for z ∈ T1,

|r′(z)| ≥ 1

2

[
|B′(z)|+ 2t− n(1 + k)

(1 + k)

]
· (|r(z)|+m), (1.8)

where t is the number of zeros of r with counting multiplicity and m = min
|z|=k

|r(z)|. Equality

holds for r(z) =
(z + k)t

(z − a)n
and B(z) =

(
1− az
z − a

)n
evaluated at z = 1, where a > 1, k ≤ 1.

As an immediate consequence of Theorem 1.10, we have the following generalization
of Theorem 1.5, where r has exactly n zeros in T1 ∪D1−.

Corollary 1.11. Let r(z) = p(z)/w(z) ∈ Rn where p(z) is a polynomial of degree n and
all its zeros lie in Tk ∪Dk−, k ≤ 1. Then for z ∈ T1,

|r′(z)| ≥ 1

2

[
|B′(z)|+ n(1− k)

(1 + k)

]
· (|r(z)|+m),

where m = min
|z|=k

|r(z)|. Equality holds for r(z) =

(
z + k

z − a

)n
and B(z) =

(
1− az
z − a

)n
evaluated at z = 1, where a > 1, k ≤ 1.

In particular, for k = 1, Corollary 1.11 reduces to Theorem 1.5, and for m = 0,
Theorem 1.10 reduces to Theorem 1.7.

2. Lemmas

For the proof of our main theorems, we need the following lemmas. These three
Lemmas are due to Li, Mohapatra, and Rodriguez [4].

Lemma 2.1 ([4]). If r ∈ Rn and r∗(z) = B(z)r(1/z), then for z ∈ T1,

| (r∗(z))′ |+ |r′(z)| ≤ |B′(z)| · ||r||.

Equality holds for r(z) = λB(z) with λ ∈ T1.

Lemma 2.2 ([4]). Let z ∈ C. Then

Re(z) ≤ 1

2
if and only if |z| ≤ |z − 1|.

Moreover, the statement holds when ≤ is replaced by < at each occurrence.

Remark 2.3. Similar to the proof of Lemma 2.2, we can replace ≤ by ≥ and obtain that

Re(z) ≥ 1

2
if and only if |z| ≥ |z − 1|.

Lemma 2.4 ([4]). Let r ∈ Rn.
(i) If all zeros of r lie in T1 ∪D1+, then for z ∈ T1,

Re

(
zr′(z)

r(z)

)
≤ |B

′(z)|
2

,

where r(z) 6= 0.
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(ii) If r has exactly n poles at a1, a2, . . . , an and all its zeros lie in T1 ∪D1−, then
for z ∈ T1,

Re

(
zr′(z)

r(z)

)
≥ |B

′(z)|
2

− 1

2
(n− t),

where t is the number of zeros of r with counting multiplicity and r(z) 6= 0.

The next lemma is due to Aziz and Zarger [6].

Lemma 2.5 ([6]). If z ∈ T1, then

Re

(
zw′(z)

w(z)

)
=
n− |B′(z)|

2
.

We need the following preliminary result for the proofs of Theorem 1.9 and Theorem 1.10.

Lemma 2.6. Assume that r ∈ Rn, where r has exactly n poles at a1, a2, . . . , an. Let t be
the number of zeros of r with counting multiplicity.

(i) If all zeros of r lie in Tk ∪Dk+, where k ≥ 1, and z ∈ T1 with r(z) 6= 0, then

Re

(
zr′(z)

r(z)

)
≤ |B

′(z)|
2

+
2t− n(1 + k)

2(1 + k)
.

(ii) If all zeros of r lie in Tk ∪Dk−, where k ≤ 1, and z ∈ T1 with r(z) 6= 0, then

Re

(
zr′(z)

r(z)

)
≥ |B

′(z)|
2

− n(1 + k)− 2t

2(1 + k)
.

Proof. Let r(z) =
p(z)

w(z)
∈ Rn.

If b1, b2, . . . , bt are all zeros (may be not distinct) of p(z), then t ≤ n.
(i) Assume that |bj | ≥ k ≥ 1, j = 1, 2, . . . , t. Then

zr′(z)

r(z)
=
zp′(z)

p(z)
− zw′(z)

w(z)
=

 t∑
j=1

z

z − bj

− zw′(z)

w(z)
.

For z ∈ T1, this relation with the help of Lemma 2.5 gives

Re

(
zr′(z)

r(z)

)
=

 t∑
j=1

Re

(
z

z − bj

)− (n− |B′(z)|
2

)
. (2.1)

For z ∈ T1 with z 6= bj(1 ≤ j ≤ t), we consider two cases.

Case 1: |bj| = 1. Then k = 1 and

∣∣∣∣ z

z − bj

∣∣∣∣ =

∣∣∣∣ bj
z − bj

∣∣∣∣ =

∣∣∣∣ z

z − bj
− 1

∣∣∣∣ .
By Lemma 2.2, we obtain that Re

(
z

z − bj

)
≤ 1

2
=

1

1 + 1
=

1

1 + k
.

Case 2: |bj| > 1. A bilinear transformation wj(z) =
z

z − bj
maps T1 onto a circle{

w :

∣∣∣∣w +
1

|bj |2 − 1

∣∣∣∣ =
|bj |

|bj |2 − 1

}
. Then

Re

(
z

z − bj

)
≤
(
− 1

|bj |2 − 1

)
+

|bj |
|bj |2 − 1

=
1

|bj |+ 1
≤ 1

1 + k
.
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From both cases, Re

(
z

z − bj

)
≤ 1

1 + k
for |bj | ≥ k ≥ 1, z ∈ T1 with z 6= bj (1 ≤ j ≤ t).

Substituting this relation into (2.1), we obtain that

Re

(
zr′(z)

r(z)

)
≤

t∑
j=1

(
1

1 + k

)
−
(
n− |B′(z)|

2

)
=
|B′(z)|

2
+

2t− n(1 + k)

2(1 + k)
.

(ii) Assume that |bj | ≤ k ≤ 1, j = 1, 2, . . . , t. Then

zr′(z)

r(z)
=
zp′(z)

p(z)
− zw′(z)

w(z)
=

 t∑
j=1

z

z − bj

− zw′(z)

w(z)
.

For z ∈ T1, this relation with the help of Lemma 2.5 gives

Re

(
zr′(z)

r(z)

)
=

 t∑
j=1

Re

(
z

z − bj

)− (n− |B′(z)|
2

)
. (2.2)

For z ∈ T1 with z 6= bj(1 ≤ j ≤ t), we consider two cases.

Case 1: |bj| = 1. Then k = 1 and

∣∣∣∣ z

z − bj

∣∣∣∣ =

∣∣∣∣ bj
z − bj

∣∣∣∣ =

∣∣∣∣ z

z − bj
− 1

∣∣∣∣ .
By Remark 2.3, we obtain that Re

(
z

z − bj

)
≥ 1

2
=

1

1 + 1
=

1

1 + k
.

Case 2: |bj| < 1. A bilinear transformation wj(z) =
z

z − bj
maps T1 onto a circle{∣∣∣∣w − ( 1

1− |bj |2

)∣∣∣∣ =
|bj |

1− |bj |2

}
. Then

Re

(
z

z − bj

)
≥
(

1

1− |bj |2

)
− |bj |

1− |bj |2
=

1

1 + |bj |
≥ 1

1 + k
.

From both cases, Re

(
z

z − bj

)
≥ 1

1 + k
for |bj | ≤ k ≤ 1, z ∈ T1 with z 6= bj (1 ≤ j ≤ t).

Substituting this relation into (2.2), we obtain that

Re

(
zr′(z)

r(z)

)
≥

t∑
j=1

(
1

1 + k

)
−
(
n− |B′(z)|

2

)
=
|B′(z)|

2
− n(1 + k)− 2t

2(1 + k)
.

3. Proofs of the main theorems

In this section, we present the proofs of our main results.

Proof of Theorem 1.9. Assume that r ∈ Rn has no zeros in |z| < k, where k ≥ 1. Let
m = min

|z|=k
|r(z)|. If r(z) has a zero on |z| = k, then m = 0 and hence for every α with

|α| < 1, we get r(z)−αm = r(z). In case r(z) has no zeros on |z| = k, we have for every α
with |α| < 1 that |−αm| = |α| ·m < |r(z)| for |z| = k. It follows from Rouche’s theorem
that R(z) = r(z)−αm and r(z) have the same number of zeros in {|z| < k}. That is, for
every α with |α| < 1, R(z) has no zeros in |z| < k. We assume that R(z) 6= 0. Observe
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that the number of zeros of R(z) with counting multiplicity is n by Lemma 2.6 (i) yields
that for z ∈ T1,

Re

(
zR′(z)

R(z)

)
≤ |B

′(z)|
2

+
2t− n(1 + k)

2(1 + k)
=
|B′(z)|

2
+
n(1− k)

2(1 + k)
. (3.1)

Note that R∗(z) = B(z)R(1/z) = B(z)R(1/z). Then

(R∗(z))′ = R(1/z)B′(z) +B(z)
(
R(1/z)

)′
= B′(z)R(1/z) +B(z)

(
R
′
(1/z)

)(
− 1

z2

)
= B′(z)R(1/z)− B(z)

z2
·R′(1/z).

Then z(R∗(z))′ = zB′(z)R(1/z) − B(z)

z
· R′(1/z). Since z ∈ T1, we have z =

1

z
,

|B(z)| = 1,
zB′(z)

B(z)
= |B′(z)|, and so

|z(R∗(z))′| =
∣∣∣zB′(z)R(z)−B(z)zR′(z)

∣∣∣
=

∣∣∣∣zB′(z)B(z)
·R(z)− zR′(z)

∣∣∣∣
=
∣∣∣|B′(z)|R(z)− zR′(z)

∣∣∣ .
Since |B′(z)| is real, we get |z(R∗(z))′| = ||B′(z)|R(z)− zR′(z)| . Then∣∣∣∣z(R∗(z))′R(z)

∣∣∣∣2 =

∣∣∣∣|B′(z)| − zR′(z)

R(z)

∣∣∣∣2
= |B′(z)|2 − 2|B′(z)| · Re

(
zR′(z)

R(z)

)
+

∣∣∣∣zR′(z)R(z)

∣∣∣∣2
≥ |B′(z)|2 − 2|B′(z)|

[
|B′(z)|

2
+
n(1− k)

2(1 + k)

]
+

∣∣∣∣zR′(z)R(z)

∣∣∣∣2
=

∣∣∣∣zR′(z)R(z)

∣∣∣∣2 +
n(k − 1)

(1 + k)
· |B′(z)|,

where the inequality comes from (3.1).
This implies that for z ∈ T1,[

|R′(z)|2 +
n(k − 1)

(1 + k)
· |R(z)|2|B′(z)|

] 1
2

≤ |(R∗(z))′|, (3.2)

where R∗(z) = B(z)R(1/z) = r∗(z)− αmB(z).
Moreover, (R∗(z))′ = (r∗(z))′ − αmB′(z) and R′(z) = (r(z)− αm)′ = r′(z).
Apply these relations into (3.2), we obtain that[

|r′(z)|2 +
n(k − 1)

(1 + k)
· |r(z)− αm|2|B′(z)|

] 1
2

≤ |(r∗(z))′ − αmB′(z)|, (3.3)
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for z ∈ T1 and for α with |α| < 1.
Choose the argument of α such that

|(r∗(z))′ − αmB′(z)| = |(r∗(z))′| −m |α| |B′(z)|, (3.4)

for z ∈ T1.
Triangle inequality yields that |r(z)−mα| ≥ ||r(z)| −m|α|| .
Note that ||r(z)| −m|α||2 = (|r(z)| −m|α|)2 which implies that

|r(z)−mα|2 ≥ (|r(z)| −m|α|)2. (3.5)

Substituting relations (3.4) and (3.5) into (3.3), we obtain that[
|r′(z)|2 +

n(k − 1)

(1 + k)
· (|r(z)| −m|α|)2|B′(z)|

] 1
2

≤ |(r∗(z))′| −m |α| |B′(z)|.

Letting |α| → 1, we get[
|r′(z)|2 +

n(k − 1)

(1 + k)
· (|r(z)| −m)2|B′(z)|

] 1
2

≤ |(r∗(z))′| −m|B′(z)|.

Lemma 2.1 implies that[
|r′(z)|2 +

n(k − 1)

(1 + k)
· (|r(z)| −m)2|B′(z)|

] 1
2

≤ |B′(z)| · ||r|| − |r′(z)| −m|B′(z)|.

Equivalently,

|r′(z)|2 +
n(k − 1)

(1 + k)
· (|r(z)| −m)2|B′(z)| ≤

[
(||r|| −m)|B′(z)| − |r′(z)|

]2
.

Hence,

|r′(z)|2 +
n(k − 1)

(1 + k)
· (|r(z)| −m)2|B′(z)|

≤ (||r|| −m)2|B′(z)|2 − 2(||r|| −m)|B′(z)||r′(z)|+ |r′(z)|2.

Then

2(||r|| −m)|r′(z)| ≤ (||r|| −m)2|B′(z)| − n(k − 1)

(1 + k)
(|r(z)| −m)2.

Thus,

|r′(z)| ≤ (||r|| −m)2|B′(z)|
2(||r|| −m)

− n(k − 1)(|r(z)| −m)2

2(1 + k)(||r|| −m)

=
1

2

[
|B′(z)| − n(k − 1)(|r(z)| −m)2

(1 + k)(||r|| −m)2

]
(||r|| −m),

where m = min
|z|=k

|r(z)|.

This proves inequality for R(z) 6= 0. In case R(z) = 0, we obtain that r′(z) = 0. This
implies that the above inequality is trivially true.

Therefore, inequality holds for all z ∈ T1.
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To show that equality (1.7) holds for r(z) =
(z + k)n

(z − a)n
and B(z) =

(
1− az
z − a

)n
, where

a > 1, k ≥ 1 at z = 1, we observe that

||r|| = sup
z∈T1

|r(z)| = (1 + k)n

(1− a)n
= |r(1)|, m = min

|z|=k
|r(z)| = 0, and |B′(1)| = n(a+ 1)

a− 1
.

Since r′(z) =

[
n

z + k
+

n

a− z

] [
(z + k)n

(z − a)n

]
, we obtain that

|r′(1)| =
[

n

1 + k
+

n

a− 1

] [
(1 + k)t

(1− a)n

]
=

[
n

1 + k
+

n

a− 1

]
||r||.

The right side of the relation (1.7) is

1

2

[
|B′(1)| − (n(k − 1))(|r(1)| −m)2

(1 + k)(||r|| −m)2

]
(||r|| −m) =

1

2

[
n(a+ 1)

a− 1
− n+

2t

1 + k

]
||r||

=
1

2

[
2n

a− 1
+

2n

1 + k

]
||r||

= |r′(1)|.

This proves Theorem 1.9 completely.

Remark 3.1. We show that our upper bound in Theorem 1.9 improves an upper bound
in Theorem 1.4 as follows.
Since k ≥ 1, we get that

(n(k − 1))(|r(z)| −m)2

(1 + k)(||r|| −m)2
≥ (n(0))(|r(z)| −m)2

(1 + k)(||r|| −m)2

= 0.

Hence, |B′(z)| − (n(k − 1))(|r(z)| −m)2

(1 + k)(||r|| −m)2
≤ |B′(z)|.

In particular, if k = 1, then

|B′(z)| − (n(k − 1))(|r(z)| −m)2

(1 + k)(||r|| −m)2
= |B′(z)|.

Therefore, our upper bound in Theorem 1.9 is better than an upper bound in Theorem
1.4.

Next, we give the proof of the second main Theorem.

Proof of Theorem 1.10. Assume that r ∈ Rn has no zeros in |z| > k, where k ≤ 1.
Let m = min

|z|=k
|r(z)| and t be the number of zeros of r with counting multiplicity. If

r(z) has a zero on |z| = k, then m = 0 and hence for every α with |α| < 1, we get
r(z) + αm = r(z). In case r(z) has no zeros on |z| = k, we have for every α with |α| < 1
that |αm| < |r(z)| for |z| = k. It follows from Rouche’s theorem that R(z) = r(z) + αm
and r(z) have the same number of zeros in |z| < k. That is, for every α with |α| < 1, R(z)
has no zeros in |z| > k. We assume that R(z) 6= 0 on |z| = 1. Lemma 2.6 (ii) implies that
for z ∈ T1,

Re

(
zR′(z)

R(z)

)
≥ |B

′(z)|
2

− n(1 + k)− 2t

2(1 + k)
,
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where R(z) 6= 0.
Then ∣∣∣∣R′(z)R(z)

∣∣∣∣ =

∣∣∣∣zR′(z)R(z)

∣∣∣∣ ≥ Re

(
zR′(z)

R(z)

)
≥ |B

′(z)|
2

− n(1 + k)− 2t

2(1 + k)
.

This implies that

|R′(z)| ≥
[
|B′(z)|

2
− n(1 + k)− 2t

2(1 + k)

]
· |R(z)|, for z ∈ T1.

Since |R′(z)| = |r′(z)|, we obtain that

|r′(z)| ≥ 1

2

[
|B′(z)| − n(1 + k)− 2t

(1 + k)

]
· |r(z) + αm|, for z ∈ T1.

Note that this inequality is trivially true for R(z) = 0 on |z| = 1. Therefore, this inequality
holds for all z ∈ T1. Choosing the argument of α suitably in the right side of the above
inequality and noting that the left side is independent of α, we get that

|r′(z)| ≥ 1

2

[
|B′(z)| − n(1 + k)− 2t

(1 + k)

]
· (|r(z)|+ |α|m), for z ∈ T1.

Letting |α| → 1, we get for z ∈ T1 that

|r′(z)| ≥ 1

2

[
|B′(z)| − n(1 + k)− 2t

(1 + k)

]
· (|r(z)|+m)

=
1

2

[
|B′(z)|+ 2t− n(1 + k)

(1 + k)

]
· (|r(z)|+m).

Similarly to the argument of the proof of Theorem 1.9, we can show that (1.8) becomes

equality when r(z) =
(z + k)t

(z − a)n
and B(z) =

(
1− az
z − a

)n
, where a > 1, k ≤ 1 at z = 1.

4. Conclusion

This paper investigates the estimate of the modulus of the derivative of r(z) on the
unit circle. We establish an upper bound when all zeros of r(z) lie in |z| ≥ k ≥ 1 and a
lower bound when all zeros of r(z) lie in |z| ≤ k ≤ 1. In particular, if r(z) has exactly
n zeros and k = 1, our main theorems generalize results by Aziz and Shah [5] and Aziz
and Zarger [6]. Furthermore, if r(z) has a zero on Tk, the second main result generalizes
a result by Aziz and Shah [7].
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